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1 Introduction

We know that Seifert fibre spaces, which are 3-manifolds foliated by circles, make up 6 of the 8 Thurston
geometries. The point of this project is to answer the following question: how does the foliation of a
3-manifold by circles give information about its geometry?

At first I thought that a Seifert fibration should be used to define a Riemannian metric carrying the
geometric information. Of course, I misunderstood a key lesson of Thurston (and Klein): the geometry of
a space is determined by the group of isometries acting on that space; if we understand the group, then we
understand the geometry. So instead we should use the foliation to describe the isometries.

To achieve the stated goal, I attempt to explain the geometrization of the closed and orientable Seifert
manifolds. The precise theorem is the following

Theorem 1. Let M be a closed (i.e. compact and without boundary) 3-manifold. M admits a geometric

structure modelled on one of S2×R, S3,R3,Nil,H2×R or S̃L2 iff M is a Seifert fibre space. Moreover, there
are two combinatorial invariants of Seifert fibre spaces, e and χ, which separate Seifert fibred spaces into six
classes such that the six model geometries correspond to the classes according to the following table:

χ > 0 χ = 0 χ < 0

e = 0 S2 × R R3 H2 × R
e 6= 0 S3 Nil S̃L2

I will explain the backward direction in the orientable case, i.e. the following statement: if M is Seifert
fibred and orientable, then it admits the appropriate geometric structure.

Remark. An explanation of the terms:
(1) Having a geometric structure modelled on X essentially means being a quotient of X by some discrete

subgroup of Isom(X). The manifolds R3,Nil,H2 × R, S̃L2 are all simply connected and homeomorphic to
R3; their geometry is contained in their specified isometry groups. The full definition is more detailed and
can be found in chapter 3.8 of [7].

(2) Seifert fibre spaces are 3-manifolds with a foliation by circles. Equivalently, they are almost S1-
bundles over a surface in a sense which we will make precise later on. An example to keep in mind is S3

foliated by the fibres of the Hopf fibration.

The standard reference for understanding the non-hyperbolic geometries on 3-manifolds is [5]. This is the
main source of the results presented here. There are also other books and articles which describe Thurston’s
program, such as [3] and, from the fountainhead, [7]. As an introduction to 3-manifolds in general, there
is [1], which has beautiful illustrations, and [2], which presents the more basic results, such as the prime
decomposition and JSJ decomposition theorems.

In order to prove Theorem 1, we need to know the classification of Seifert fibre spaces, the geometrization
of the so-called good 2 dimensional orbifolds and the fundamental groups of Seifert fibre spaces. Thus in
part 2 we introduce these spaces and give their basic properties, one of which is the orbifold structure of the
base space. In part 3 we give the necessary facts on orbifolds and state how they can be given a geometric
structure, in part 4 we return to Seifert fibre spaces to give their classification and describe their fundamental
groups. Finally, in part 5 we pull it all together to show how to obtain a given Seifert fibre space as a quotient
of the appropriate geometry.

2 Introduction to Seifert fibre spaces

The definitions given by Scott start by describing the simplest Seifert fibre spaces in terms of foliations, but
we are in fact only considering very nice examples of foliations (the leaves are always either copies of S1 or



part of a product foliation by copies of R), so there is no need to have more than a vague understanding
of what a foliation is in order to understand the rest. The reason this concept is used is that Seifert fibre
spaces are not S1-bundles: they decompose as a disjoint union of circles, finitely many of which do not have
a neighbourhood of circles that is isomorphic to D2 × S1. We will say more about this below.

Definition 1. A trivial fibred solid torus is D2 × S1 with the product foliation by circles (this is the
same as the trivial S1-bundle over D2). A fibred solid torus is a torus with a foliation by circles that is
finitely covered by a trivial fibred solid torus (by this is meant that the covering map restricted to a leaf of
the trivial fibred solid torus covers a leaf of the fibred solid torus).

Proposition 1. Let Tp,q be the solid torus with foliation obtained by taking D2 × [0, 1] (with the product
foliation by intervals) and gluing D2 × {0} to D2 × {1} with a p/q twist. To be completely unambiguous,
let D2 = {z ∈ C : |z|≤ 1} and suppose that p, q are coprime integers. Then the gluing map is

rei2πt 7→ rei2π(t+
p
q ).

Tp,q is a fibred solid torus.

Proof. It is easier to describe the group of deck transformations on D2 × S1: let ψ : D2 × S2 → D2 × S2

rotate the disc factor of by q/p of a turn and the circle factor by 1/p of a turn. Explicitly,

ψ(z, ei2πt) = (zei2π
q
p , ei2π(t+

1
p )).

Then ψp = id and the quotient map D2 × S1 → (D2 × S1)/〈ψ〉 is a covering map of degree p. The quotient
is Tp,q.

Remark. We can now see why using S1-bundles would be wrong. Tp,q has two different types of fibre: the
central fibre {0} × S1 is p-covered by the central fibre of the trivial fibred solid torus and represents the
generator of π1(Tp,q), whereas the other fibres of Tp,q are homeomorphic images of the non-central fibres of
the trivial fibred solid torus and each of them represents p times the generator of π1(Tp,q). No neighbourhood
U of {0} × S1 is a trivial S1-bundle.

Fact: Every standard fibred solid torus is isomorphic to Tp,q, for some p, q. WLOG, assume that p, q are
coprime. The p is unique, but the q is only unique in the interval 1 ≤ q < p.

Definition 2. A Seifert fibre space is a 3-manifold which decomposes as a disjoint union of circles such
that each circle has a regular neighbourhood which is isomorphic (in a fibre-preserving way) to either a
trivial fibred solid torus or a standard fibred solid torus. If a fibre has a neighbourhood isomorphic to Tp,q,
then the fibre is called singular of order p and (p, q) are called the orbit invariants of the singular fibre.
Otherwise the fibre is called regular.

Consider now the quotient space X obtained by identifying every fibre of a Seifert fibre space M to a
point. Let η : M → X denote the quotient map. So each x ∈ X represents a fibre of M . If x represents
a non-singular fibre, then a neighbourhood of x is homeomorphic to R2. If x represents a singular fibre of
order p, then a small disc neighbourhood of x is p-covered by η restricted to some embedded disc D2 ↪→M
which is transverse to the fibre represented by x. Such singular points are the only feature of orbifolds which
distinguishes them from usual surfaces, for the orbifolds which arise in this paper.

3 Elementary Orbifold Facts

This section is mostly a restatement of section §2 in [5]. The reader should refer to it for more details.

Example 1. We restate the example of an orbifold mentioned above. Consider Z/nZ acting on D2 by
z 7→ ei2π/nz and the quotient of D2 by this action. A fundamental domain for the action is a wedge of the
disc of angle 2π/n. The quotient of D2 by this action is an orbifold. The image of 0 under the quotient map
is called a cone point. This is because the quotient is obtained from the fundamental domain by gluing the
sides, yielding a cone. Of course, topologically, the orbifold is just another copy of D2. We should however
consider it as more than a topological space if we want to encode some information about the fibres of a
Seifert fibre space.



Definition 3. An orbifold is a topological manifold such that every point has a neighbourhood which is
homeomorphic to a quotient of R2 by a finite subgroup of Isom(R2). A point whose every neighbourhood is
a quotient by a nontrivial action will be called singular.

Remark. (1) In general orbifolds are defined in all dimensions, but we only need 2 dimensional orbifolds in
this paper. (2) Since the action in the definition can be trivial, smooth surfaces are orbifolds.

Since in this paper we are only considering orientable Seifert manifolds, our orbifolds always arise as
topological surfaces with isolated cone points, i.e. points with neighbourhoods homeomorphic to R2/Zn, as
in the above example. There are 2 other kinds of singular points on a 2-dimensional orbifold, arising from
acting on R2 by Z2 generated by a reflection or by the dihedral group generated by reflections across two
lines that intersect at a point. We need only mention them again once.

Definition 4. Let Σ be a surface and αi ∈ N. Σ(α1, . . . , αn) will denote an orbifold with n cone points of
order α1, . . . , αn and which is homeomorphic to Σ.

We would like to define covering spaces and a useful notion of fundamental group for orbifolds. For
instance the disc with one cone point in the example above is n-covered by a disc, so its fundamental group
should be Z/nZ.

3.1 Orbifold Cover and Fundamental Group

We define orbifold covers so that D2(n) covers D2(m) iff n|m.

Definition 5. We say that a map f : X → Y between orbifolds is an orbifold covering if every y ∈ Y has
a neighbourhood U such that, if U ' R2/G, then there is a subgroup H < G and every x ∈ f−1(y) has a
neighbourhood V which is homeomorphic to Rn/H.

Definition 6. An orbifold is called good if it is covered by a smooth surface. Otherwise it is bad.

For example S2(p) and S2(p, q) for p 6= q are bad orbifolds. It turns out that there aren’t many other
closed bad orbifolds:

Proposition 2. There are only 4 bad orbifolds: S2(p), S2(p, q) with p 6= q and D2 with one or two ”corner
reflectors”.

Proof. We do not need to worry about the last 2 bad orbifolds. See Theorem 13.3.6 in [6] for a proof.

Here is how to define the fundamental group consistently with the desired result π1D
2(n) = Zn. It is

a fact that every orbifold X has a universal orbifold cover X̃, i.e. that X̃ is connected and X̃ → X is an
orbifold cover which factors through any other orbifold cover of X. Furthermore, if X is good, then the
universal orbifold cover of X coincides with the universal cover of a surface covering X and the universal
orbifold cover is automatically a regular cover. See Proposition 13.2.4 in [6] for proofs of these facts.

Definition 7. Let X be an orbifold. π1X is defined to be the group of deck transformations acting on the
universal orbifold cover of X.

In [5] the universal cover of the orbifolds with cone point singularities is constructed by hand, by re-
moving the singularities, taking the universal cover of the resulting non-compact manifold and gluing back
appropriate disc orbifolds. At the same time, this construction allows one to easily obtain a presentation for
the orbifold fundamental group:

Let X be the orientable surface of genus g with n cone points of order αi and let Y be the non-orientable
surface of genus g with n cone points of order α′i. We have the following presentations for their orbifold
fundamental groups:

π1X = 〈a1, b1, . . . , ag, bg, x1, . . . , xn|xαi
i ,Πi[ai, bi]x1 · · ·xn〉

π1Y = 〈a1, . . . , ag, x1, . . . , xn|x
α′

i
i ,Πiaix1 · · ·xn〉,

where the relators indicate which words are trivial and Πiai denotes the product a1a2 · · · ag.



3.2 Geometrization

Just as surfaces inherit a unique geometry as a quotient of S2,R2 or H2, so do orbifolds. The following
theorem states this precisely. We will use it to put geometric structures on Seifert fibre spaces without
getting our hands too dirty. It will be a very useful black box for us in section 6.

Theorem 2. Every good orbifold is isomorphic as orbifold to a quotient of S2,R2 or H2 by some discrete
group of isometries.

Proof. Theorem 13.3.6 in [6].

The above cover by surfaces of good orbifolds is finite:

Theorem 3. Every good compact orbifold without boundary is finitely covered by a surface.

This is Theorem 2.5 in [5], where Scott gives references for the proof of the group-theoretic reformulation
of this theorem in terms of properties of subgroups of PSL2(R).

3.3 Orbifold Euler Characteristic

Definition 8. Let X be a good orbifold, so, by the above theorem, X is finitely covered by a surface X̂.
Let n be the degree of the covering. The Euler characteristic of X is defined to be

χ(X) =
1

n
χ(X̂).

Proposition 3. (Riemann-Hurwitz) Let X = Σ(α1, . . . , αn) be a good orbifold. Then

χ(X) = χ(Σ)−
n∑
i=1

1− 1

αi
.

Proof. The proof is elementary and explained in [5]. The idea is to remove from Σ a small disc neighbourhood
Di of each cone point. Since χ(D2) = 1, χ(Σ) = χ(Σ \ ∪iDi) + n. Now X is finitely covered by a manifold

X̂. Let d be the degree of the covering. The preimage of a disc containing a singularity of order αi consists
of d/αi discs. Altogether this implies the formula:

χ(X) =
1

d
χ(X̂) =

(
χ(Σ \ ∪iDi) +

1

d

n∑
i=1

d

αi

)
= χ(Σ)−

n∑
i=1

1− 1

αi
.

The Riemann-Hurwitz formula is also used to define the Euler characteristic of bad orbifolds. Here is a
precision to Theorem 2:

Corollary 1. The Euler characteristics of a good orbifold and of a manifold covering the orbifold have the
same sign.

Thus the geometrization of orbifolds is exactly like the geometrization of surfaces: if χ(X) < 0 then X
is finitely covered by H2, etc.

4 More on Seifert fibre spaces

Many authors call Seifert fibre spaces Seifert fibrations, with good reason:

Theorem 4. Let M be a Seifert fibre space with base orbifold X. Then there is a short exact sequence

1→ K → π1M → π1X → 1,

where K is the cyclic subgroup of π1M generated by a regular fibre. It is infinite unless M is covered by S3.
We call the quotient map η : M → X a Seifert fibration.



Definition 9. If a singular fibre has orbit invariants (p, q), then it has Seifert invariants (α, β), where
α = p and β is such that βq ≡ 1 (mod p) and 1 ≤ β < p. The reason for these invariants is their use in
describing the fundamental group.

Remark. Note that we are using normalized Seifert invariants, so that they are uniquely determined by
the normalized orbit invariants of the fibres. For this reason, we need an additional invariant in order to
characterize Seifert fibre spaces (it is not mentioned in [3], for example). For a Seifert fibration η : M → X,
the invariant is denoted b(η) and it is an integer if M is oriented. In the case where X has no singular points,
b(η) is the obstruction to the existence of a section of the S1-bundle and it is an element of H2(S;Z). b is
defined for orbifolds as a generalization of the definition given for usual manifolds. For reasons explained
in §3 of [5], we should in fact consider a slightly different obstruction for Seifert fibre spaces, which is the
Euler number of M , denoted e(η) or e(M). Briefly, the point is to find an obstruction that is in a sense
multiplicative with respect to finite covering spaces. If M has n cone points with Seifert invariants (αi, βi),
the the Euler number of M is related to b by the formula

e = −b−
n∑
i=1

βi
αi
.

However it is the invariant b that shows up in the fundamental groups of Seifert fibre spaces.

Proposition 4. Closed Seifert fibre spaces are determined by their b invariant, their Seifert invariants and
the underlying surface of the base orbifold. Therefore we write M = M(g, b, (α1, β1), . . . , (αn, βn)), with the
convention that g is negative for non-orientable surfaces.

4.1 Fundamental Group

We can now give the presentation for the fundamental group of any orientable Seifert fibre space M =
M(g, b, (α1, β1), . . . , αn, βn)). Suppose first that the underlying surface of the base orbifold of M is orientable
(equivalently, that g ≥ 0, according to our conventions). Then

π1M = 〈a1, b1, . . . , ag, bg, x1, . . . , xn, k|[k, ai], [k, bi], [k, xi], xαi
i k

βi ,Πi[ai, bi]x1 · · ·xn = kb〉 (1)

If g < 0, then

π1M = 〈a1, . . . , a−g, x1, . . . , xn|a−1i kai = k−1, [k, xi], x
αi
i k

βi ,Πia
2
ix1 · · ·xn = kb〉 (2)

Refer to [5] for the construction of π1M in the illuminating special case of a Seifert bundle η : M → T 2(α).
For the general construction, see [4].

The following theorem says that most Seifert fibre spaces have a unique Seifert structure.

Theorem 5. If M is a closed 3-manifold which is homeomorphic to two non-isomorphic Seifert fibre spaces,
then either M is covered by T 3, S2 × S1 or S3.

Proof. This is Theorem 3.8 in [5].

This implies that if M is a Seifert fibre space with χ < 0 or χ = 0 and e 6= 0, then its Seifert invariants
are determined by its fundamental group. See sections 5.2 and 5.3 in [4] and Theorem 6 therein, where
Seifert manifolds covered by T 3, S2 × R or S3 are called ”small”. This is not the case for S3, for example,
which has infinitely many descriptions as a Seifert fibre space.

5 Why Seifert fibred manifolds are geometric

In this section, we wish to prove the direction (M is Seifert ⇒ M has the prescribed geometric structure)
of Theorem 1, which appears as Theorem 5.3 in [5]. In short, the core idea is to fully adopt the Kleinian
paradigm, that is to define the geometry of a space by describing the group of isometries of the said space;
so there is no discussion of Riemannian metrics here.



Throughout this section M is a Seifert fibre space and X is its base orbifold. Recall the short exact
sequence

1→ K → π1M → π1X → 1,

where K is a cyclic group that is infinite unless M is covered by S3.
In just a bit more detail, the strategy for proving that the Seifert fibre space M has a geometry modelled

on (M̃,G) is to correctly embed π1M into G, i.e. to specify how each generator of π1(M) acts as an isometry

of M̃ such that the action of π1(M) is free and discrete. This will then imply that the quotient space is a

3-manifold with geometry modelled on (M̃,G).
We split our discussion in the following cases, according to whether χ(X) is negative, zero or positive

and whether e(M) is zero or not.

5.1 χ(X) > 0, e(M) = 0

Proposition 5. If η : M → X is a Seifert fibration with χ(X) > 0, then X is one of RP2, S2 (with no
singular points) or S2(p, p).

Proof. Let Σ denote the underlying surface of X, let n be the number of cone points of X and let αi be the
order oft the ith cone point. Since αi ≥ 2, we have the following inequality:

χ(X) = χ(Σ)−
n∑
i=1

1− 1

αi
≤ χ(Σ)− n

2
.

It follows that χ(X) > 0 only if Σ = S2 and n ≤ 3 or Σ = RP2 and n ≤ 1. Now a Seifert fibred manifold
with a single cone point must have

e(M) = −b− β

α
,

which cannot be an integer, let alone 0. The only options we are left with are for X to be S2 with 0,2 or 3
cone points or RP2 with no cone points. By a similar argument we can eliminate the case of S2 with 3 cone
points: χ(X) > 0 implies that the triple of multiplicities (α1, α2, α3) of the 3 cone points is either (2, 2, k),
for some k ≥ 2, or (2, 3, k), for k ∈ {3, 4, 5}. For all choices of βi satisfying 1 ≤ βi < αi and (αi, βi) = 1, it
is easy to see that

3∑
i=1

βi
αi
6∈ Z,

thus the Euler number e cannot vanish. For example,

1

2
+
β2
3

+
β3
4

=
6 + 4β2 + 3β3

12

and the denominator of the above fraction is odd because β3 ∈ {1, 3} so that e(M(0, b, (2, 1), (3, β2), (4, β3)) 6=
0.

Thus the only possible closed and orientable Seifert fibre spaces M with χ > 0 and e = 0 are the orientable
S1 bundle over RP2, S2 × S1, and the Seifert fibre spaces M(0,−1, (α, β), (α, α− β)). It turns out that the
orientable S1-bundle over RP2 is RP3#RP3, which can be obtained as the quotient of S2 × S1 by the Z2

action (p, eit) 7→ (−p, e−it), and the Seifert fibre spaces M(0,−1, (α, β), (α, α − β)) are all S2 × S1. This
completes the picture for the case with χ > 0 and e = 0.

5.2 χ(X) = 0, e(M) = 0

By a similar argument to the one provided in the proof of Proposition 5, we have

Proposition 6. If η : M → X is a Seifert fibration with χ(X) = 0, then X is one of the following: RP2(p, p),
S2(p, q, r) with (p, q, r) ∈ {(2, 3, 6), (2, 4, 4), (3, 3, 3)}, S2(2, 2, 2, 2), T 2 or K, the Klein bottle.



We can use the proposition above to list all the possible Seifert fibrations η : M → X with χ(X) = 0.
There are 7 distinct Seifert fibrations with orientable total space, one for each orbifold given in the above
proposition. It turns out that 2 of them are isomorphic as smooth manifolds. They can each be given a flat
(R3) structure by tiling Euclidean space. See section 13.1.6 in [3], specifically figure 12.2.

5.3 χ(X) < 0, e(M) = 0

This is done in [5]. Let π1M have a presentation as above, with generating set {a1, b1, . . . , ag, bg, x1, . . . , xn, k}
and let π1X be generated by {a1, b1, . . . , ag, bg, x1, . . . , xn}, where the elements of π1X are images of the
corresponding elements of π1M under the fibration M → X. Since χ(X) < 0, we know from the geometriza-
tion of orbifolds that X is a quotient of H2 by π1X acting by isometries. Define then an action of π1M on
H2 × R as follows:

ai · (x, t) = (ai · x, t)
bi · (x, t) = (bi · x, t)
xi · (x, t) = (xi · x, t− βi/αi)
k · (x, t) = (x, t+ 1)

Proposition 7. The isometries defined by the generators of π1M satisfy the relations that the generators
themselves satisfy in the presentation for π1M .

Proof. Clearly k commutes with everything and xαi
i · (x, t) = (xαi

i · x, t − βi) = k−βi · (x, t). We only need
to check that they also satisfy the long relation. This will follow from e(M) = 0, which is equivalent to
b =

∑
i βi/αi:

g∏
i=1

[ai, bi]x1 · · ·xn · (x, t) =

(
g∏
i=1

[ai, bi]x1 · · ·xn · x, t−
n∑
i=1

βi
αi

)
= (x, t+ b) = kb · (x, t).

This proves that we have a homomorphism φ : π1M → Isom(H2×R) = Isom(H2)× Isom(R). The image
of π1M is a discrete subgroup of Isom(H2 × R). Following [5], we check that the action on H2 × R defined
by its image is free: if g ∈ π1M fixes a point of H2×R, then the image g of g in π1X must fix a point of H2.
Either g is identity or not. If g is identity, we can conclude that g itself must be identity. If g is non-trivial,
then it must be conjugate to some power of some xi, as these are the only elements of π1X which act on
H2 with fixed points. It follows then that g is conjugate to an element of the form kaxbi . But the subgroup
of π1M generated by xi and k acts freely on H2 × R, thus we can again conclude that g is identity. This
shows that M is a quotient of H2 × R by a free and discrete action of a subgroup of isometries, i.e. that it
has H2 × R geometry.

5.4 χ(X) > 0, e(M) 6= 0

These manifolds should have spherical geometry. The method for finding out how to take a quotient of S3

to obtain a specific space is on the one hand to list all possible Seifert manifolds with χ > 0 and e 6= 0 and
on the other hand to list all possible finite subgroups of Isom(S3) = SO(4) which act freely on S3. This is
done in both [3] and [5], but perhaps the first reference is more systematically organized. See also chapter 6
in W. Jaco’s ”Lectures on Three-Manifold Topology”.

One then compares the two lists to find that manifolds with χ > 0 and e 6= 0 indeed arise as quotients of
S3.

5.5 χ(X) ≤ 0, e(M) 6= 0

This should be S̃L2 or Nil geometry. Recall that the isometry group of S̃L2 falls into the short exact sequence

1→ R→ Isom+(S̃L2)→ Isom(H2)→ 1.



Similarly, we have
1→ R→ Isom+(Nil)→ Isom(R2)→ 1.

The argument presented here works for both the case χ(X) < 0 and the case χ(X) = 0. In both cases
the Seifert fibre structure is unique and determined by the fundamental group. There are infinitely many
distinct Seifert fibre spaces with χ < 0 and e 6= 0. Consider first the case where the base orbifold X is
S2(α1, . . . , αn) and the Seifert fibre space M = M(0, b, (α1, β1), . . . , (αn, βn)). We have

π1X = 〈x1, . . . , xn|xαi
i ,Πixi〉.

And X is the quotient of H2 by π1X acting by isometries. Again there is a projection of π1M onto π1X:

1→ Z→ π1M → π1X → 1

and we can find xi which project to xi such that

π1M = 〈x1, . . . , xn, k|xαi
i k

βi , [xi, k],Πixik
−b〉.

Let k be an isometry of S̃L2 which projects to identity on H2. The relations xαi
i k

βi = 1 and the requirement
that the isometry xi project to xi ∈ Isom(H2) determine xi. However this does not guarantee that the long
relation Πixi = kb holds. It is however clear that Πixi = kε for some ε because Πixi projects to the identity
in Isom(H2). To have the long relation hold, we should perform the following Tietze transformations: let
K = ku for some u ∈ R and let Xi = xik

vi , where vi is chosen so that Xαi
i Kβi = 1 and replace the generators

xi and k in the group presentation with Xi and K. This implies that vi = (1 − u) βi

αi
. By expanding the

relation ΠiXi = Kb in terms of k, we see that it is equivalent to the equation

ε+ (1− u)

(
β1
α1

+ · · ·+ βn
αn

)
= ub,

which has a solution for u iff the coefficient multiplying u is not 0. But this coefficient is precisely e(M), so

we can solve for u and have π1M act on S̃L2 by isometries.

Remark. This procedure applies to general Seifert fibre spaces M → X with χ(X) < 0 and e(M) 6= 0: if
the underlying manifold of the base orbifold has genus g, then a presentation π1M is obtained from the one
above by adding generators a1, b1, . . . , ag, bg (in the orientable case) which commute with k and by replacing
the long relation Πixi = kb with the relation Πi[ai, bi]x1, . . . , x=k

b. We may then apply the same Tietze
transformations to find the correct isometry K, i.e. there is no need to replace the generators ai, bi.
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