MATH 101 V01 — ASSIGNMENT 1

Solutions

2
1. Consider/ (1 —2t) dt.
0

(a) Calculate the Riemann sum for this integral using left endpoints and 4 subintervals.

(b) Calculate the Riemann sum for this integral using right endpoints and 4 subintervals.

(¢) Explain why, if any function f is continuous on [l,7], then [ f(t)dt may be calculated by the
definition of the integral as the limit of Riemann sums using any ch01ce of sample points ¢} in each
subinterval [t;_1,t;] of the partition.

(d) Find the value of the integral, using the definition of the integral as the limit of Riemann sums using
right endpoints ¢7 = ¢; in every subinterval.

(e) Interpret your result for part (d) in terms of the areas between the curve and the horizontal axis,
between ¢t = 0 and t = 2.

Solution:
The function is f( ) =1-=2t,t€[0,2], the interval width is At = (r —I)/n = 2, the partition points are
ti =1+ iAt = i*Ol....,n.

no
(a) With n = 4, At = 5 and the partition points are to = 0, t; = %, to =1, t3 = %, ty = 2. The left
endpoint of each subinterval [t;_1,¢;] is tf = t;_;. The Riemann sum is

)3+ f(1/2) 5+ F(1) 5+ f(3/2)3
3+ 03+ (D 3+(-2)3

(b) The right endpoint of each subinterval [t;_1,%;] is t; = t;. The Riemann sum is

4

Zf At*Zf )3

—fum>;+ﬂw;+f@m) f2)3
=0+ (-1)3+(-2)3+(-3)3
=-3

(c) If a function f is continuous on [, r], then it is integrable on [I,r] and therefore the limit of the

Riemann sums lim,, oo > 1y f(E5) At = fl t) dt has the same value for any choice of sample points ¢}

in each subinterval [t;_1,1,].

(d) Since f(t) =1 —2t, t € [0,2], is continuous, by part (¢) the value of the 1ntcgrdl is the same as the
21

limit of the Riemann sums using as sample points the right endpoints 7 = #; = =* of each subinterval
[ti—1,1;]. For each positive integer n, the Riemann sum is

Zf Athf Ztlf( )f:Z?:l(lf%)%
:ZZ *%Z?:li

_ 2 8 n(n+1)
=nn n? 2

— 94 (nil).

n



Taking the limit as n — oo, we get

2
1—2t)dt = lim fer
fp a2 i >

= lim [2—4( -

n—r oo

)]

=2—-4
= -2
(e) Between ¢t = 0 and ¢ = 2, the area above the t-axis and below the curve y = f(t) =1 — 2t is A+ =1

4
(area of a triangle), and the area below the t-axis and above the curve y = f(t) =1—2tis A_ = § (area
of a larger triangle). The value of the integral is the net area

2
/0 (1—215)dt:A_~_7A_:i,%7
or the difference of areas.

. Prove both the following statements, using the definition of the integral.

(a) If f and g are integrable on [I,r], then f + g is integrable on [I, r], and

/l F(6) + o(t)] dt = /l F(tydt + /l olt) dt,

(b) If f is integrable on [, ], then for any constant ¢, the function cf is integrable on [I,7], and

/lrcf(t)dt: c/lrf(t)dt

Solution:
(a) Let n be a positive integer, At = ==L ¢, = [ +iAt = Z(T D fori=0,1,...,n. Let tf € [ti—1,t:] be
any choice of sample point in the ith subinterval, i = 1, ;M. Then

n

D) + gD A = [f(£]) + g()] At + [f(t5) + g(t3)] At + -+ [£(t,) + g(t;,)] At

=1
= f(t}) At +g(t) At + f(t5) At + g(t5) At + - + f(t5) At + g(th) At
= f(t7) At + f(t5) At + - +f(,L)At+g(t1)At+g(t§)At+---+g(til)At

=3 f( At—i—Zg

=1

and taking the limit as n — co we have

n

nh_I)I;OZ[f(tl) g(t)] At—nh_r)r;to ) At + hm Zg

i=1 i=1

/f dt+/ g(t) dt,

since f and g are both integrable on [I, 7]. Therefore the limit exists and has the value [, f(t) dt+ [ g(t) dt,
for any choice of sample points ¢} € [t;_1,t;], so f + g is integrable on [I,7] and we can write

n

Jm SOUE) + g A= [ 10 +a0)dt= [ e+ [ oo

i=1



(b) Let n be a positive integer, At = =", ¢; = [+ iAt = Z(T D fori=0,1,...,n. Let t* € [t;_1,t] be

n’

any choice of sample point in the ith subinterval, ¢ = 1, M, and let ¢ be a constant Then
Dol fE AL = [e f(])] At + [e f(t5)] At + - + [c f(t,)] At
i=1

c[f (1) At + f(t5) At + - - + f(t;,) At]

e> F(r7) At
=1

and taking the limit as n — co we have

Jm > e S A=c lm ) f(t) At

c./lrf(t)dt

since f is integrable on [[,7]. Therefore the limit exists and has the value ¢ fl t) dt, for any choice of
sample points tf € [t;_1,1;], so ¢f is integrable on [l,r] and we can write

. Let

n

Jim Solefnac= [feswla=c [ s

i=1

ft) =

1 if1<t<v2,
2 ifV2<t<2,

and note that this function is not continuous on [1, 2].

(a)

(b)

Prove that f is integrable on [1,2], and calculate fl t) dt using the definition of the integral: let
n be a positive integer and use a regular partition 1 = to <t <ty <o <tpog <t,=20f][1,2]
into n subintervals of equal width At = (2 — 1)/n = 1/n, choose sample points tf € [ti—1,t;] in each
subinterval ¢ = 1,...,n, and prove that the limit lim, oo Y, f(¢]) At exists and is equal for all
choices of sample points.

Explain in a sentence or two how some other function f on [1,2] (not the function in part (a)) could
be continuous everywhere except at a single point v/2 in [1,2], and the limit lim, Z?:l flEr) At
does not exist, i.e. f is not integrable on [1,2].

Solution:

(a) Let n be a positive integer, let At = === = % be the distance between partition points

n

ti=l+iAt =1+

i(r—l):1+ii’
n n

for i = 0,1,...,n, and form subintervals between consecutive partition points. Let ¢} € [t;_1,t;] be any
choice of sample point in the ith subinterval, i = 1,...,n.

For every n, the partition points ¢; (endpoints of the subintervals) are rational numbers. The point of
discontinuity ¢ = /2 is irrational, so it always lies in the interior of a unique, critical subinterval. So for
every n, there exists a unique positive integer i,, such that

in 1,
ti,—1 =1+ - <\[<1+n=z

n*



For example,
n=1: to=1,1t=2;tg <V2<ty,in=1i1 =1,

n=2: tog=1,1t =15, to =2 tg < V2 < t1, in =i = 1,
n=3: to=1t1=1%ta=12t3=2; t; <V2 <ty i, =1i3=2,
n=4: to=1,1t =125ty = 1.5, t53 =175, t4 = 2 t; < V2 < to, i, = ig = 2,
n=>5: tog=1,1t =12, to =14, t53=1.6, t4 = 1.8, t5 = 2; to < V2 < t3, i, = i5 = 3.

Furthermore, since the widths At = 1 of the critical subintervals [t;, 1, ;,] that contain v/2 shrink to zero
as n — 00, both the left endpoints ¢;, _; and the right endpoints ¢;, of the critical subinterval converge

to V2,
lim (
n—roo

We split the Riemann sum into three parts, one part for the subintervals all to the left of /2 where we
know that f(tf) = 1, one part (a single term) for the subinterval that contains v/2 where we can’t be
sure what value f(t; ) takes, and one part for the subintervals to the right of V2 where we know that

fer) =2

Z"_1>=\/§:1im (HZ:)' (1)

n—oo

ip—1
Z Athf )AL+ f(t ) AL+ Z Ftr
1=1 1=bn+1
Gy —1
=D () At+ f(t]) At + Z
=1 1=1np+1
T —1
:AtZl—i—f ) At 4+ 2At Z 1

1=in+1
%(Zn -1+ f(t5) 4 n T %(n —in)

in

_ a1 iy
== f) 5 2

Now taking the limit as n — oo, we use (1) and the fact that f(¢; ) is either 1 or 2, so is bounded in any
case and the limit of the middle term is zero:

Tim T F() At = lim [B==L g f(t) £ 42 m5]
=1
=(V2-1)+0+2(2-V2),

which can be seen to be the area under the graph of f(t), between t =1 and ¢t = 2.
This limit does not depend on particular choices of sample points ¢}, so f is integrable on [1,2], and we
are justified in writing

/Qf(t)dtzx/i—1+2(2—\/§)=3—\/§.

The contribution to the Riemann sum from the single term f (¢} )L — near the jump discontinuity shrinks
to zero as n — oo and does not affect integrability or the value of the limit.

(b) If some other function f that is continous everywhere in [1,2] except at v/2 is unbounded near /2,
then it might not be integrable. The function should “grow fast enough” near the point of discontinuity
like the example on p. 55 of the textbook, for example

ﬂw{i@i“#“z

0 ift=+v2

is not integrable.



