
MATH 101 V01 – ASSIGNMENT 1
Solutions

1. Consider

∫ 2

0

(1− 2t) dt.

(a) Calculate the Riemann sum for this integral using left endpoints and 4 subintervals.

(b) Calculate the Riemann sum for this integral using right endpoints and 4 subintervals.

(c) Explain why, if any function f is continuous on [l, r], then
∫ r

l
f(t) dt may be calculated by the

definition of the integral as the limit of Riemann sums using any choice of sample points t∗i in each
subinterval [ti−1, ti] of the partition.

(d) Find the value of the integral, using the definition of the integral as the limit of Riemann sums using
right endpoints t∗i = ti in every subinterval.

(e) Interpret your result for part (d) in terms of the areas between the curve and the horizontal axis,
between t = 0 and t = 2.

Solution:

The function is f(t) = 1− 2t, t ∈ [0, 2], the interval width is ∆t = (r− l)/n = 2
n , the partition points are

ti = l + i∆t = 2i
n , i = 0, 1, . . . , n.

(a) With n = 4, ∆t = 1
2 and the partition points are t0 = 0, t1 = 1

2 , t2 = 1, t3 = 3
2 , t4 = 2. The left

endpoint of each subinterval [ti−1, ti] is t∗i = ti−1. The Riemann sum is

n∑
i=1

f(t∗i ) ∆t =

4∑
i=1

f(ti−1) 1
2

= f(0) 1
2 + f(1/2) 1

2 + f(1) 1
2 + f(3/2) 1

2

= (1) 1
2 + (0) 1

2 + (−1) 1
2 + (−2) 1

2

= −1

(b) The right endpoint of each subinterval [ti−1, ti] is t∗i = ti. The Riemann sum is

n∑
i=1

f(t∗i ) ∆t =

4∑
i=1

f(ti)
1
2

= f(1/2) 1
2 + f(1) 1

2 + f(3/2) 1
2 + f(2) 1

2

= (0) 1
2 + (−1) 1

2 + (−2) 1
2 + (−3) 1

2

= −3

(c) If a function f is continuous on [l, r], then it is integrable on [l, r] and therefore the limit of the
Riemann sums limn→∞

∑n
i=1 f(t∗i ) ∆t =

∫ r

l
f(t) dt has the same value for any choice of sample points t∗i

in each subinterval [ti−1, ti].

(d) Since f(t) = 1 − 2t, t ∈ [0, 2], is continuous, by part (c) the value of the integral is the same as the
limit of the Riemann sums using as sample points the right endpoints t∗i = ti = 2i

n of each subinterval
[ti−1, ti]. For each positive integer n, the Riemann sum is

n∑
i=1

f(t∗i ) ∆t =

n∑
i=1

f(ti)
2
n =

∑n
i=1 f

(
2i
n

)
2
n =

∑n
i=1

(
1− 4i

n

)
2
n

= 2
n

∑n
i=1 1− 8

n2

∑n
i=1 i

= 2
n n− 8

n2

n(n+1)
2

= 2− 4
(
n+1
n

)
.



Taking the limit as n→∞, we get∫ 2

0

(1− 2t) dt = lim
n→∞

n∑
i=1

f(t∗i ) ∆t

= lim
n→∞

[
2− 4

(
n+1
n

)]
= 2− 4

= −2.

(e) Between t = 0 and t = 2, the area above the t-axis and below the curve y = f(t) = 1− 2t is A+ = 1
4

(area of a triangle), and the area below the t-axis and above the curve y = f(t) = 1− 2t is A− = 9
4 (area

of a larger triangle). The value of the integral is the net area∫ 2

0

(1− 2t) dt = A+ −A− = 1
4 −

9
4 ,

or the difference of areas.

2. Prove both the following statements, using the definition of the integral.

(a) If f and g are integrable on [l, r], then f + g is integrable on [l, r], and∫ r

l

[f(t) + g(t)] dt =

∫ r

l

f(t) dt +

∫ r

l

g(t) dt,

(b) If f is integrable on [l, r], then for any constant c, the function cf is integrable on [l, r], and∫ r

l

cf(t) dt = c

∫ r

l

f(t) dt.

Solution:

(a) Let n be a positive integer, ∆t = r−l
n , ti = l + i∆t = l + i(r−l)

n for i = 0, 1, . . . , n. Let t∗i ∈ [ti−1, ti] be
any choice of sample point in the ith subinterval, i = 1, . . . , n. Then

n∑
i=1

[f(t∗i ) + g(t∗i )] ∆t = [f(t∗1) + g(t∗1)] ∆t + [f(t∗2) + g(t∗2)] ∆t + · · ·+ [f(t∗n) + g(t∗n)] ∆t

= f(t∗1) ∆t + g(t∗1) ∆t + f(t∗2) ∆t + g(t∗2) ∆t + · · ·+ f(t∗n) ∆t + g(t∗n) ∆t

= f(t∗1) ∆t + f(t∗2) ∆t + · · ·+ f(t∗n) ∆t + g(t∗1) ∆t + g(t∗2) ∆t + · · ·+ g(t∗n) ∆t

=
∑
i=1

f(t∗i ) ∆t +
∑
i=1

g(t∗i ) ∆t,

and taking the limit as n→∞ we have

lim
n→∞

n∑
i=1

[f(t∗i ) + g(t∗i )] ∆t = lim
n→∞

n∑
i=1

f(t∗i ) ∆t + lim
n→∞

n∑
i=1

g(t∗i ) ∆t

=

∫ r

l

f(t) dt +

∫ r

l

g(t) dt,

since f and g are both integrable on [l, r]. Therefore the limit exists and has the value
∫ r

l
f(t) dt+

∫ r

l
g(t) dt,

for any choice of sample points t∗i ∈ [ti−1, ti], so f + g is integrable on [l, r] and we can write

lim
n→∞

n∑
i=1

[f(t∗i ) + g(t∗i )] ∆t =

∫ r

l

[f(t) + g(t)] dt =

∫ r

l

f(t) dt +

∫ r

l

g(t) dt.



(b) Let n be a positive integer, ∆t = r−l
n , ti = l + i∆t = l + i(r−l)

n for i = 0, 1, . . . , n. Let t∗i ∈ [ti−1, ti] be
any choice of sample point in the ith subinterval, i = 1, . . . , n, and let c be a constant. Then

n∑
i=1

[c f(t∗i )] ∆t = [c f(t∗1)] ∆t + [c f(t∗2)] ∆t + · · ·+ [c f(t∗n)] ∆t

= c[f(t∗1) ∆t + f(t∗2) ∆t + · · ·+ f(t∗n) ∆t]

= c

n∑
i=1

f(t∗i ) ∆t

and taking the limit as n→∞ we have

lim
n→∞

n∑
i=1

[c f(t∗i )] ∆t = c lim
n→∞

n∑
i=1

f(t∗i ) ∆t

= c

∫ r

l

f(t) dt,

since f is integrable on [l, r]. Therefore the limit exists and has the value c
∫ r

l
f(t) dt, for any choice of

sample points t∗i ∈ [ti−1, ti], so cf is integrable on [l, r] and we can write

lim
n→∞

n∑
i=1

[c f(t∗i )] ∆t =

∫ r

l

[c f(t)] dt = c

∫ r

l

f(t) dt.

3. Let

f(t) =

{
1 if 1 ≤ t ≤

√
2,

2 if
√

2 < t ≤ 2,

and note that this function is not continuous on [1, 2].

(a) Prove that f is integrable on [1, 2], and calculate
∫ 2

1
f(t) dt using the definition of the integral: let

n be a positive integer and use a regular partition 1 = t0 < t1 < t2 < · · · < tn−1 < tn = 2 of [1, 2]
into n subintervals of equal width ∆t = (2− 1)/n = 1/n, choose sample points t∗i ∈ [ti−1, ti] in each
subinterval i = 1, . . . , n, and prove that the limit limn→∞

∑n
i=1 f(t∗i ) ∆t exists and is equal for all

choices of sample points.

(b) Explain in a sentence or two how some other function f on [1, 2] (not the function in part (a)) could
be continuous everywhere except at a single point

√
2 in [1, 2], and the limit limn→∞

∑n
i=1 f(t∗i ) ∆t

does not exist, i.e. f is not integrable on [1, 2].

Solution:

(a) Let n be a positive integer, let ∆t = r−l
n = 1

n be the distance between partition points

ti = l + i∆t = l +
i(r − l)

n
= 1 +

i

n
,

for i = 0, 1, . . . , n, and form subintervals between consecutive partition points. Let t∗i ∈ [ti−1, ti] be any
choice of sample point in the ith subinterval, i = 1, . . . , n.

For every n, the partition points ti (endpoints of the subintervals) are rational numbers. The point of
discontinuity t =

√
2 is irrational, so it always lies in the interior of a unique, critical subinterval. So for

every n, there exists a unique positive integer in such that

tin−1 = 1 +
in − 1

n
<
√

2 < 1 +
in
n

= tin .



For example,
n = 1 : t0 = 1, t1 = 2; t0 <

√
2 < t1, in = i1 = 1,

n = 2 : t0 = 1, t1 = 1.5, t2 = 2; t0 <
√

2 < t1, in = i2 = 1,

n = 3 : t0 = 1, t1 = 1 1
3 , t2 = 1 2

3 , t3 = 2; t1 <
√

2 < t2, in = i3 = 2,

n = 4 : t0 = 1, t1 = 1.25, t2 = 1.5, t3 = 1.75, t4 = 2; t1 <
√

2 < t2, in = i4 = 2,

n = 5 : t0 = 1, t1 = 1.2, t2 = 1.4, t3 = 1.6, t4 = 1.8, t5 = 2; t2 <
√

2 < t3, in = i5 = 3.

Furthermore, since the widths ∆t = 1
n of the critical subintervals [tin−1, tin ] that contain

√
2 shrink to zero

as n → ∞, both the left endpoints tin−1 and the right endpoints tin of the critical subinterval converge
to
√

2,

lim
n→∞

(
1 +

in − 1

n

)
=
√

2 = lim
n→∞

(
1 +

in
n

)
. (1)

We split the Riemann sum into three parts, one part for the subintervals all to the left of
√

2 where we
know that f(t∗i ) = 1, one part (a single term) for the subinterval that contains

√
2 where we can’t be

sure what value f(t∗in) takes, and one part for the subintervals to the right of
√

2 where we know that
f(t∗i ) = 2:

n∑
i=1

f(t∗i ) ∆t =

in−1∑
i=1

f(t∗i ) ∆t + f(t∗in) ∆t +

n∑
i=in+1

f(t∗i ) ∆t

=

in−1∑
i=1

(1) ∆t + f(t∗in) ∆t +

n∑
i=in+1

(2) ∆t

= ∆t

in−1∑
i=1

1 + f(t∗in) ∆t + 2∆t

n∑
i=in+1

1

= 1
n (in − 1) + f(t∗in) 1

n + 2
n (n− in)

= in−1
n + f(t∗in) 1

n + 2 n−in
n .

Now taking the limit as n→∞, we use (1) and the fact that f(t∗in) is either 1 or 2, so is bounded in any
case and the limit of the middle term is zero:

lim
n→∞

n∑
i=1

f(t∗i ) ∆t = lim
n→∞

[
in−1
n + f(t∗in) 1

n + 2 n−in
n

]
= (
√

2− 1) + 0 + 2 (2−
√

2),

which can be seen to be the area under the graph of f(t), between t = 1 and t = 2.

This limit does not depend on particular choices of sample points t∗i , so f is integrable on [1, 2], and we
are justified in writing ∫ 2

1

f(t) dt =
√

2− 1 + 2(2−
√

2) = 3−
√

2.

The contribution to the Riemann sum from the single term f(t∗in) 1
n near the jump discontinuity shrinks

to zero as n→∞ and does not affect integrability or the value of the limit.

(b) If some other function f that is continous everywhere in [1, 2] except at
√

2 is unbounded near
√

2,
then it might not be integrable. The function should “grow fast enough” near the point of discontinuity
like the example on p. 55 of the textbook, for example

f(t) =

{
1

t−
√
2

if t 6=
√

2

0 if t =
√

2

is not integrable.


