
MATH 101 V01 – ASSIGNMENT 7
Solutions

1. (a) Use linear approximation to estimate log(0.98).

(b) Find the degree 2 Taylor polynomial T2(x), of the function f(x) = x5/2, about x = 4.

(c) Find the degree 3 Taylor polynomial T3(x), of the function f(x) =
√
x, about x = 4.

(d) Find the degree 5 Taylor polynomial T5(x), of the function f(x) = cos(x), about x = π
3 .

(e) Find the degree 8 Taylor polynomial T8(x), of the function f(x) = cos(x), about x = 0 (a Taylor
polynomial about x = 0 is called a Maclaurin polynomial).

Solution: For all parts, we use the formula for the Taylor polynomial Tn(x).

(a) Let f(x) = log(x), c = 1, n = 1. Then

f(x) = log(x), f ′(x) =
1

x
,

and evaluating at x = c = 1, we get
f(1) = 0, f ′(1) = 1,

and the linear approximation of log(x) about x = 1 is

L(x) = T1(x) = f(1) + f ′(1)(x− 1) = 0 + (x− 1) = x− 1.

Then L(0.98) = 0.98− 1 = −0.02, So we estimate

log(0.98) ≈ −0.02.

(The actual value of log(0.98) is −0.020203 accurate to six decimal places.)

(b) Let f(x) = x5/2, c = 4, n = 2. Then

f(x) = x5/2, f ′(x) = 5
2x

3/2, f ′′(x) = 15
4 x

1/2,

and evaluating at x = c = 4, we get

f(4) = 45/2 = (
√

4)5 = 32, f ′(4) = 5
243/2 = 5

2 (
√

4)3 = 20, f ′′(x) = 15
4 41/2 = 15

2 ,

and the degree 2 Taylor polynomial of f(x) = x5/2 about x = 4 is

T2(x) = 32 + 20(x− 4) + 15
4 (x− 4)2.

(c) Let f(x) =
√
x, c = 4, n = 3. Then

f(x) = x1/2, f ′(x) = 1
2x
−1/2, f ′′(x) = − 1

4x
−3/2, f (3)(x) = 3

8x
−5/2,

and evaluating at x = c = 4, we get

f(4) = 2, f ′(4) = 1
4 , f ′′(4) = − 1

32 , f (3)(4) = 3
256 ,

and the degree 3 Taylor polynomial of f(x) =
√
x about x = 4 is

T3(x) = 2 + 1
4 (x− 4)− 1

64 (x− 4)2 + 1
512 (x− 4)3.



(d) Let f(x) = cos(x), c = π
3 , n = 5. Then

f(x) = cos(x), f ′(x) = − sin(x), f ′′(x) = − cos(x), f (3)(x) = sin(x), f (4)(x) = cos(x), f (5)(x) = − sin(x),

and evaluating at x = c = π
3 , we get

f
(
π
3

)
= cos

(
π
3

)
= 1

2 , f
′ (π

3

)
= −

√
3
2 , f

′′ (π
3

)
= − 1

2 , f
(3)
(
π
3

)
=
√
3
2 , f

(4)
(
π
3

)
= 1

2 , f
(5)
(
π
3

)
= −

√
3
2 .

Then the degree 5 Taylor polynomial of f(x) = cos(x) about x = π
3 is

T5(x) = 1
2 −

√
3
2

(
x− π

3

)
− 1

4

(
x− π

3

)2
+
√
3

12

(
x− π

3

)3
+ 1

48

(
x− π

3

)4 − √3
240

(
x− π

3

)5
.

(e) Let f(x) = cos(x), c = 0, n = 8. Then

f (0)(x) = cos(x), f (1)(x) = − sin(x), f (2)(x) = − cos(x), f (3)(x) = sin(x), f (4)(x) = cos(x), etc.

(a pattern should be apparent), and evaluating at x = c = 0, we get

f (0)(0) = 1, f (1)(0) = 0, f (2)(0) = −1, f (3)(0) = 0, f (4)(0) = 1, etc.

and the degree 8 Maclaurin polynomial of f(x) = cos(x) is

T8(x) = 1− 1
2!x

2 + 1
4!x

4 − 1
6!x

6 + 1
8!x

8.

2. (a) Find an upper bound on the absolute value of the error made if linear approximation about x = 4 is
used to estimate (3.9)5/2, and determine (without calculating the “exact” value numerically) whether
this approximation is greater than, or less than, the exact value (3.9)5/2.

(b) Find an upper bound on the absolute value of the error made if the degree 2 Taylor polynomial about
x = 4 is used to estimate

√
4.2, and determine (without calculating the “exact” value numerically)

whether this approximation is greater than, or less than, the exact value
√

4.2.

(c) Determine what degree n of Taylor polynomial Tn(x), of the function f(x) = cos(x), about x = π
3 is

needed to guarantee that the Taylor polynomial approximation of cos(69◦) is accurate within 5×10−6

(i.e. the error is guaranteed to have an absolute value no larger than 5× 10−6).

(d) Determine what degree n of Maclaurin polynomial Tn(x), of the function f(x) = log(1+x), is needed
to guarantee that the Maclaurin polynomial approximation of log(1.4) is accurate within 10−3.

Solution: For all parts, we use Taylor’s Theorem (with Lagrange remainder), in particular the formula
for the error,

En(x) = 1
(n+1)! f

(n+1)(s) (x− c)n+1,

where s is some number between c and x.

(a) Let f(x) = x5/2, c = 4, n = 1. Taylor’s Theorem says that

(3.9)5/2 = f(3.9) = T1(3.9) + E1(3.9),

where the error (or remainder) is (see the solution of 1(b), f ′′(x) = 15
4 x

1/2)

E1(3.9) = 1
2! f
′′(s) (3.9− 4)2 = 15

8

√
s (0.01),

for some number s between 3.9 and 4. Taking absolute values, we get the same right hand side

|E1(3.9)| = 15
8

√
s (0.01).



Since
√
s is positive and increasing (one could assume this is “well known”, or one could show that the

derivative of
√
s with respect to s is positive for 3.9 ≤ x ≤ 4), as s increases from 3.9 to 4, the largest

possible value of |E1(3.9)| would be at the right endpoint of the interval [3.9, 4] known to contain s, if
s = 4. Then we get an upper bound for the absolute value of the error

|E1(3.9)| ≤ 15
8

√
4 (0.01) = 15

4 (0.01) = 0.0375.

Because the error is E1(3.9) is positive, we have from Taylor’s Theorem

(3.9)5/2 = f(3.9) = T1(3.9) + E1(3.9) > T1(3.9),

so
the linear approximation is less than the exact value (3.9)5/2.

(The answers can be checked with a calculator: the linear approximation is T1(3.9) = 30, the “exact”
value is (3.9)5/2 = 30.03734327, the approximation is indeed less than the exact value and the error is
0.03734327, which is less than 0.0375 as predicted.)

(b) Let f(x) =
√
x. Taylor’s Theorem says that

√
4.2 = f(4.2) = T2(4.2) + E2(4.2),

where the error is (see 1(c), f (3)(x) = 3
8x
−5/2)

E2(4.2) = 1
3!f

(3)(s)(4.2− 4)3 = 1
16 s
−5/2 0.008,

for some number s between 4.2 and 4. Since the expression is already positive, we get

|E2(4.2)| = 1
16

0.008
(
√
s)5
.

Since s5/2 = (
√
s)5 is positive and increasing, as s increases from 4 to 4.2, its reciprocal 1/(

√
s)5 is

positive and decreasing, as s increases from 4 to 4.2 (one could check that the derivative is negative on
the interval), and the largest possible value for |E2(4.2)| would occur at the left endpoint of the interval
known to contain s, if s = 4, so we get an upper bound for the absolute value of the error

|E2(4.2)| ≤ 1
16

0.008
(
√
4)5

= 1
64000 = 0.000015625.

The error is positive (E2(4.2) > 0) and therefore

T2(4.2) <
√

4.2.

(Checking with a calculator we get T2(4.2) = 2 + 1
4 (4.2 − 4) − 1

64 (4.2 − 4)2 = 2.049375, f(4.2) =√
4.2 = 2.049390153 accurate to 10 significant digits, therefore E2(4.2) = f(4.2)−T2(4.2) = 0.000015153,

which is positive, as predicted, and its absolute value is not larger than the upper bound 0.000015625, as
predicted).

(c) Note that 69◦ is 23π
60 radians. We are required to find a positive integer n such that the absolute value

of the error satisfies
|En

(
23π
60

)
| < 5× 10−6.

Taylor’s Theorem gives

|En
(
23π
60

)
| = 1

(n+1)! |f
(n+1)(s)|

∣∣ 23π
60 −

π
3

∣∣n+1

where s is some number between 23π
60 and π

3 . The derivatives of f(x) = cos(x) are f ′(x) = − sin(x),

f ′′(x) = − cos(x), f (3)(x) = sin(x), f (4)(x) = cos(x), etc., so the absolute value |f (n+1)(s)| is either



| sin(s)| or | cos(s)|. Both of these are always less than or equal to 1 in absolute value, so it is always true
that

|f (n+1)(s)| ≤ 1

for all n, without using any specific information about s. Using this, we get an upper bound for the
absolute value of the error for the Taylor polynomial Tn(x):

|En
(
23π
60

)
| ≤ 1

(n+1)!

∣∣ π
20

∣∣n+1
.

Trying different values of n, we get

|E1

(
23π
60

)
| ≤ 1

2!

π2

202
≤ 0.013, |E2

(
23π
60

)
)| ≤ 1

3!

π3

203
≤ 0.00065,

|E3

(
23π
60

)
| ≤ 1

4!

π4

204
≤ 0.000026, |E4

(
23π
60

)
| ≤ 1

5!

π5

205
≤ 0.0000008 = 8× 10−7,

and we can stop at
n = 4

since 8×10−7 < 5×10−6. Therefore the 4th-degree Taylor polynomial T4(x), of cos(x) centred at x = π
3 ,

is guaranteed to be within 5× 10−6 of the exact value of cos(69◦).

(You were not required to calculate T4
(
23π
60

)
, but it is approximately 0.3583686496, while cos

(
23π
60

)
=

0.3583679494, so the error is approximately −7 × 10−7, the absolute value is indeed not larger than
5 × 10−6. It might be true that a lower value of n would be accurate enough, but we can’t guarantee it
unless we do more work, by finding more accurate upper bounds for |f (n+1)(s)|.)

(d) “Maclaurin” means “Taylor centred at c = 0”. Here we use

x = 0.4

since we want log(1 + x) = log(1.4). We need to find a positive integer n such that the absolute value of
the error satisfies

|En(0.4)| < 0.001.

Taylor’s Theorem gives
En(0.4) = 1

(n+1)! f
(n+1)(s) (0.4)n+1

where s is some number between 0 and 0.4. The derivatives of f(x) = log(1 + x) are

f ′(x) = (1 + x)−1, f ′′(x) = (−1)(1 + x)−2, f (3)(x) = (−1)(−2)(1 + x)−3,

f (4)(x) = (−1)(−2)(−3)(1 + x)−4,

etc., so

|f (n+1)(s)| = (1)(2)(3) · · · (n)(1 + s)−n−1 =
n!

(1 + s)n+1

and

|En(0.4)| = 1
(n+1)! |f

(n+1)(s)| |(0.4)n+1| = (0.4)n+1

(n+ 1)(1 + s)n+1
.

For any positive integer n the expression (1 + s)n+1 is positive and increasing as s increases from 0 to 0.4,
its reciprocal 1/(1 + s)n+1 is positive and decreasing as s increases from 0 to 0.4 (you could show that
the derivative is negative for n ≥ 1 and any s in the interval), so the maximum possible value of |En(0.4)|
would occur at the left endpoint of the interval, if s = 0. We get the upper bound

|En(0.4)| ≤ (0.4)n+1

(n+ 1)(1 + 0)n+1
=

(0.4)n+1

n+ 1
.



Trying different values of n, we get

|E1(0.4)| ≤ (0.4)2

2
= 0.08, |E2(0.4)| ≤ (0.4)3

3
= 0.0213333, |E3(0.4)| ≤ (0.4)4

4
= 0.0064,

|E4(0.4)| ≤ (0.4)5

5
= 0.002048, |E5(0.4)| ≤ (0.4)6

6
= 0.000682667,

and we can stop at
n = 5

since the upper bound for |E5(0.4)| is less than 10−3 = 0.001. Therefore the degree 5 Maclaurin polynomial
T5(x), of f(x) = log(1 + x), is guaranteed to be within 10−3 of log(1 + 0.4).

(In fact, checking with a calculator we get T5(0.4) = 0.3369813333 and log(1.4) = 0.3364722366, so the
actual error is log(1.4)− T5(0.4) = −0.0005090967, whose absolute value is indeed no greater than 0.001,
as guaranteed.)

3. Let R be the region between the y-axis and the curve x = (16 + y)1/4, with −16 ≤ y ≤ 0, and both x
and y measured in metres. The region R is rotated around the y-axis, creating a volume. This volume
is filled with a fluid that has volume density 888 kg/m3. Determine the work done (in joules) pumping
all the fluid up to y = 0. Use g = 9.8 m/s2 for the acceleration due to gravity. (You must evaluate the
integral and a calculator-ready answer is sufficient.)

Solution:

An infinitesimally thin slice of the fluid at level y is circular with radius x = (16 + y)1/4 and thickness
dy. It has infinitesimal volume π x2 dy = π

√
16 + y dy, infinitesimal mass ρπ

√
16 + y dy, where ρ = 888

kg/m3. The infinitesimal amount of work done in lifting this slice from level y up to 0, against gravity, is

dW = ρπ
√

16 + y dy · g · (0− y), −16 ≤ y ≤ 0,

where g = 9.8 m/s2. Notice that dW ≥ 0. Then the total amount of work lifting all the slices up to
y = 0, with the fluid occupying slices at levels from y = −16 to y = 0, is

W =

∫ y=0

y=−16
dW = πρg

∫ 0

−16
(−y)

√
16 + y dy.

This integral can be evaluated by making a substitution

u = 16 + y, du = dy,

then

W = πρg

∫ 0

−16
(−y)

√
16 + y dy

= πρg

∫ 16

0

(16− u)
√
u du

= πρg

∫ 16

0

(16u1/2 − u3/2) du

= πρg
(

32
3 u

3/2 − 2
5 u

5/2
)∣∣∣16

0

and for a calculator-ready answer (i.e. a fully numerical expression that could be evaluated with a calcu-
lator) we must substitute in the numerical values for ρ and g. The work done is

W = π(888)(9.8)
(

32
3 163/2 − 2

5 165/2
)

J.



On a test or exam, this need not be simplified any further, but if you have the time (like when doing
homework) you can use 161/2 = 4 and simplify to

W = π(888)(9.8) 46

15 = π(888)(9.8) 4096
15 ≈ 7465477.71 J.


