MATH 101 V01 — ASSIGNMENT 7

Solutions
1. (a) Use linear approximation to estimate log(0.98).
(b) Find the degree 2 Taylor polynomial T5(x), of the function f(x) = , about x = 4.
(¢) Find the degree 3 Taylor polynomial T5(z), of the function f(z) = /x, about x=4.
(d) Find the degree 5 Taylor polynomial T5(x), of the function f(z) = cos(z), about z = Z.
(e) Find the degree 8 Taylor polynomial Tg(z), of the function f (m) cos(x), about = 0 (a Taylor

polynomial about & = 0 is called a Maclaurin polynomial).
Solution: For all parts, we use the formula for the Taylor polynomial T}, (x).

(a) Let f(x) =log(z), c=1,n=1. Then

f(2) =log(z), f'(z) =1,

T
and evaluating at x = ¢ = 1, we get
fy=o0, f(1)=1,

and the linear approximation of log(z) about x =1 is
Lx)=Ti(z)=f()+ f/(I)(z—1)=0+(z—1) =2 — 1.
Then L(0.98) = 0.98 — 1 = —0.02, So we estimate
10g(0.98) ~ —0.02.
(The actual value of 1log(0.98) is —0.020203 accurate to six decimal places.)
(b) Let f(z) = 2°/2, ¢ =4, n = 2. Then
fla)y =2 f@) =52 f'(x) = Ral/?,
and evaluating at z = c = 4, we get
fA) =47 = (VA =32, f(4) =342 =3(VA°’ =20, f'(a)=747=7,
and the degree 2 Taylor polynomial of f(z) = 25/2 about x = 4 is

To(z) = 324 20(x — 4) + 2 (z — 4)%

(c) Let f(z) =z, c=4,n=3. Then
fay=a'? fay=te? ) = -t O = G,
and evaluating at x = ¢ = 4, we get
f@=2 f@=5 [@=-5 4=
and the degree 3 Taylor polynomial of f(z) = \/z about x =4 is

Ti(z)=2+3(x—4) - &z -4+ L@ —49)>



(d) Let f(x) = cos(x), c= %, n=>5. Then
f(x) = cos(x), f'(x) = —sin(z), f"(x) = = cos(x), fP(z) = sin(z), [P (2) = cos(x), f©(x) = —sin(x),
and evaluating at * = ¢ = %, we get

F(3)=cos(3) =51 (3)=—3 1" (5) =—5 95 =393 =113 =-%

Then the degree 5 Taylor polynomial of f(z) = cos(x) about x = % is
P51+ B -5 - E-5)

(e) Let f(z) = cos(z), c =0, n=238. Then
FOz) =cos(z), [P (x)=—sin(z), fP(x)=—cos(z), fO(z)=sin(z), [P (z)=cos(z), etc.
(a pattern should be apparent), and evaluating at z = ¢ = 0, we get
fO)=1, 1Y) =0, ()
)

= cos(x) is

~1, f®)=0, f@0)=1, etc

and the degree 8 Maclaurin polynomial of f(x

[ V)

Ts(z) =1— La2° + Jz —éxGJréx.

W=

. (a) Find an upper bound on the absolute value of the error made if linear approximation about z = 4 is
used to estimate (3.9)%/2, and determine (without calculating the “exact” value numerically) whether
this approximation is greater than, or less than, the exact value (3.9)%/2.

(b) Find an upper bound on the absolute value of the error made if the degree 2 Taylor polynomial about
z = 4 is used to estimate /4.2, and determine (without calculating the “exact” value numerically)
whether this approximation is greater than, or less than, the exact value v/4.2.

(c) Determine what degree n of Taylor polynomial T;,(z), of the function f(zx) = cos(x), about z = %
needed to guarantee that the Taylor polynomial approximation of cos(69°) is accurate within 5 x 10
(i.e. the error is guaranteed to have an absolute value no larger than 5 x 1076).

(d) Determine what degree n of Maclaurin polynomial T}, (z), of the function f(z) = log(1+z), is needed
to guarantee that the Maclaurin polynomial approximation of log(1.4) is accurate within 1073.

is
6

Solution: For all parts, we use Taylor’s Theorem (with Lagrange remainder), in particular the formula

for the error,

En(®) = g /0 (s) (@ = 0",

where s is some number between ¢ and .
(a) Let f(x) = 2°/2, ¢ = 4, n = 1. Taylor’s Theorem says that
(3.9)%/2 = £(3.9) = T1(3.9) + E1(3.9),
where the error (or remainder) is (see the solution of 1(b), f”(z) = 221/2)
E1(3.9) = 4 f"(s) (3.9 — 4)* = 13/5(0.01),

for some number s between 3.9 and 4. Taking absolute values, we get the same right hand side

|E1(3.9)] = 124/5(0.01).



[43

Since /s is positive and increasing (one could assume this is “well known”, or one could show that the
derivative of /s with respect to s is positive for 3.9 < x < 4), as s increases from 3.9 to 4, the largest
possible value of |E;(3.9)] would be at the right endpoint of the interval [3.9,4] known to contain s, if
s = 4. Then we get an upper bound for the absolute value of the error

|E1(3.9)] < £v4(0.01) = 12(0.01) = 0.0375.
Because the error is F4(3.9) is positive, we have from Taylor’s Theorem
(3.9)%/2 = f£(3.9) = T1(3.9) + E1(3.9) > T1(3.9),

SO

the linear approximation is less than the exact value (3.9)%/2.

(The answers can be checked with a calculator: the linear approximation is 71(3.9) = 30, the “exact”
value is (3.9)%/2 = 30.03734327, the approximation is indeed less than the exact value and the error is
0.03734327, which is less than 0.0375 as predicted.)

(b) Let f(z) = y/z. Taylor’s Theorem says that
VA2 = f(4.2) = Ty(4.2) + E5(4.2),
where the error is (see 1(c), f® (x) = 3 x%/2)
B>(4.2) = #f®(s)(4.2 — 4)* = £ s75/20.008,

for some number s between 4.2 and 4. Since the expression is already positive, we get

|Ba(4.2)] = 0005
Since /2 = (y/5)® is positive and increasing, as s increases from 4 to 4.2, its reciprocal 1/(y/s)® is

positive and decreasing, as s increases from 4 to 4.2 (one could check that the derivative is negative on
the interval), and the largest possible value for |E5(4.2)| would occur at the left endpoint of the interval
known to contain s, if s =4, so we get an upper bound for the absolute value of the error

008 — Ll — (.000015625.

|E2(4'2)| < %(ﬂ)s - 64000

The error is positive (F3(4.2) > 0) and therefore

Th(4.2) < V4.2.

(Checking with a calculator we get T5(4.2) = 2 + (4.2 — 4) — £ (4.2 — 4)? = 2.049375, f(4.2) =
V4.2 = 2.049390153 accurate to 10 significant digits, therefore E5(4.2) = f(4.2) = T»(4.2) = 0.000015153,
which is positive, as predicted, and its absolute value is not larger than the upper bound 0.000015625, as
predicted).

(c) Note that 69° is 263(? radians. We are required to find a positive integer n such that the absolute value
of the error satisfies

|E, (Br)] <5x107°.

Taylor’s Theorem gives

237\ | _ n+1 23n _ m|ntl
1B (%50) | = Gy S (9)] |3 — 5
where s is some number between 2% and %. The derivatives of f(z) = cos(z) are f'(z) = —sin(z),

f"(x) = —cos(z), fO)(x) = sin(x), f®(z) = cos(x), etc., so the absolute value |f("T1)(s)| is either



|sin(s)| or | cos(s)|. Both of these are always less than or equal to 1 in absolute value, so it is always true
that
[FO D (s) < 1

for all n, without using any specific information about s. Using this, we get an upper bound for the
absolute value of the error for the Taylor polynomial T, (x):

T T n+1
1En (55) | < o |30l -
Trying different values of n, we get
1 72 1 73
23w 23w
1B (%67) | < 2102 < 0013, |E2 (Bl < 37905 = 0-00065,

By (Br) < LT <0.000026,  |E, (22)] < & ™ < 0.0000008 = 8 x 10~
1B (55) | < 507 < B4 (50) | < 51505 <0 =8x 1077,

and we can stop at
n=4

since 8 x 1077 < 5 x 107, Therefore the 4th-degree Taylor polynomial Ty(x), of cos(x) centred at x = T
is guaranteed to be within 5 x 107¢ of the exact value of cos(69°).

(You were not required to calculate Ty (23“) but it is approximately 0.3583686496, while cos (zg,gr ) =
0.3583679494, so the error is approximately —7 x 1077, the absolute value is indeed not larger than
5 x 1076, It might be true that a lower value of n would be accurate enough, but we can’t guarantee it

unless we do more work, by finding more accurate upper bounds for | ("1 (s)].)

(d) “Maclaurin” means “Taylor centred at ¢ = 0”. Here we use
z =04

since we want log(1 + ) = log(1.4). We need to find a positive integer n such that the absolute value of
the error satisfies
|E,,(0.4)] < 0.001.

Taylor’s Theorem gives

E,(0.4) = FF(s) (0.4)7+1

n+1)‘

where s is some number between 0 and 0.4. The derivatives of f(z) = log(1 4 x) are
fll@)=1+a)™ f(2) = ()1 +2)72 [Oe) = (-)(=2) (L +2) 7%,
FO@) = (~D)(E2)(=-3) L +a) 7,

etc., so
£ () = (1)(2)(3) - (n) (1 +s) " ! = (1_:?9'),,“
and
(0.4)"+1

|En(0.4)] = FE(s)](0.4)" ] =

1
(n+1)! | (n+1)(1 4 s)n+1”

For any positive integer n the expression (1+ )" is positive and increasing as s increases from 0 to 0.4,
its reciprocal 1/(1 + s)"*! is positive and decreasing as s increases from 0 to 0.4 (you could show that
the derivative is negative for n > 1 and any s in the interval), so the maximum possible value of |E,,(0.4)]
would occur at the left endpoint of the interval, if s = 0. We get the upper bound

(0.4)n+1 - (0.4)n+1

En(04)] < (n+1)(L+0)"t1 — n+41




Trying different values of n, we get

e A3
(03) = 0.0213333, |E5(0.4)| < 04

4)5 4)8
<05) =0.002048, |E5(0.4)| < (06)

4)?
1E1(0.4)] < % — 0.08, |E2(0.4)] <

|E4(0.4)] <

= 0.000682667,

and we can stop at
n=>5
since the upper bound for | E5(0.4)] is less than 1072 = 0.001. Therefore the degree 5 Maclaurin polynomial
Ts(x), of f(x) = log(1 + z), is guaranteed to be within 1072 of log(1 + 0.4).
(In fact, checking with a calculator we get 75(0.4) = 0.3369813333 and log(1.4) = 0.3364722366, so the

actual error is log(1.4) — T5(0.4) = —0.0005090967, whose absolute value is indeed no greater than 0.001,
as guaranteed.)

. Let R be the region between the y-axis and the curve z = (16 + y)1/4, with —16 < y < 0, and both z
and y measured in metres. The region R is rotated around the y-axis, creating a volume. This volume
is filled with a fluid that has volume density 888 kg/m?. Determine the work done (in joules) pumping
all the fluid up to y = 0. Use g = 9.8 m/s? for the acceleration due to gravity. (You must evaluate the
integral and a calculator-ready answer is sufficient.)

Solution:
An infinitesimally thin slice of the fluid at level y is circular with radius # = (16 + 3)*/* and thickness

dy. It has infinitesimal volume 7 2% dy = 7/16 + y dy, infinitesimal mass pm\/16 + y dy, where p = 888
kg/m3. The infinitesimal amount of work done in lifting this slice from level  up to 0, against gravity, is
dW = pr\/16+y dy-g-(0—y), —16<y <0,

where g = 9.8 m/s?. Notice that dW > 0. Then the total amount of work lifting all the slices up to
y = 0, with the fluid occupying slices at levels from y = —16 to y = 0, is

y=0 0
W:/ dW:ﬂ'pg/ (—y)\/16 + y dy.
y=—16 —16

This integral can be evaluated by making a substitution
u=16+vy, du=dy,

then

0
W= wg/ (=9)\/16 + y dy
16

16
:wpg/ (16 — u)v/u du
0

16
= wpg/ (16ul/? — u®/?) du
0
16

and for a calculator-ready answer (i.e. a fully numerical expression that could be evaluated with a calcu-
lator) we must substitute in the numerical values for p and g. The work done is

W = n(388)(9.8) (21692 - 216%2) .



On a test or exam, this need not be simplified any further, but if you have the time (like when doing
homework) you can use 16'/2 = 4 and simplify to

W = 7(888)(9.8) 4 = 7(888)(9.8) 126 ~ 7465477.71 J.



