
MATH 552 (2023W1) Lecture 1: Wed Sep 06

INTRODUCTION TO DYNAMICAL SYSTEMS

1. Linear Dynamical Systems

Review of homogeneous linear systems of ODEs

Please read at least the first two pages of Appendix A. Review of

(Multivariable) Differential Calculus.

Let J = (−δ1, δ2), where −∞ ≤ −δ1 < δ2 ≤ +∞, be an open interval

and let A(t) be a real n × n matrix of coefficient functions that are all

continuous on t ∈ J . Then according to a basic theorem of ODEs, the

homogeneous linear system

ẋ = A(t)x, x ∈ Rn, (1.1)

where ˙ = d
dt, x = ( x1 · · · xn )ᵀ =


x1

...

xn

, always has n linearly

independent real (continuous, n-vector) solutions on J ,



(for more details, see almost any undergraduate ODE textbook). For

example, if n = 2, then (1.1) can be written more explicitly as ẋ1

ẋ2

 =

 a11(t) a12(t)

a21(t) a22(t)


 x1

x2

 ,

and any 2 linearly independent solutions have the form

ψ[1](t) =

 ψ
[1]
1 (t)

ψ
[1]
2 (t)

 , ψ[2](t) =

 ψ
[2]
1 (t)

ψ
[2]
2 (t)

 .

Putting n linearly independent solutions of (1.1) as the columns of a

real n× n matrix, we get a fundamental matrix

A fundamental matrix (it is not unique – why not?) satisfies

Ψ̇ = A(t)Ψ, det Ψ(t) 6= 0 for all t ∈ J , (1.2)

and a general solution for (1.1) can be written in the form

x(t) = Ψ(t)c, c = ( c1 · · · cn )ᵀ ∈ Rn arbitrary. (1.3)

2



Example 1.A./Exercise. ẋ = A(t)x, x ∈ R2, where

A(t) =

 −1 + 3
2 cos2(t) 1− 3

2 sin(t) cos(t)

−1− 3
2 sin(t) cos(t) −1 + 3

2 sin2(t)

 t ∈ R.

Verify that

is a fundamental set of solutions. Find a general solution, form a funda-

mental matrix, and check (1.2)–(1.3) explicitly. Then prove (1.2)–(1.3) for

a general (1.1).

If A(·) is continuous on J and if t0 ∈ J , then another basic theorem

of ODEs states that, for any x0 ∈ Rn, the initial value problem

ẋ = A(t)x, x(t0) = x0 (1.4)

has a unique solution which we denote

x(t) = ϕ(t, t0, x0) ∈ Rn,

for t ∈ J . For a homogeneous linear system, this unique solution of (1.4)
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can be expressed in terms of a fundamental matrix Ψ(t) as (Exercise)

ϕ(t, t0, x0) = Ψ(t)Ψ(t0)
−1x0. (1.5)

For an initial time t0 ∈ J , the principal (fundamental) matrix

at t0 is the unique fundamental matrix Ψ(t) = M(t, t0) that solves the

matrix initial value problem

Ψ̇ = A(t)Ψ, Ψ(t0) = In,

where In denotes the n× n identity matrix. If x0 ∈ Rn is given, then the

unique solution x(t) = ϕ(t, t0, x0) of the initial value problem

ẋ = A(t)x, x(t0) = x0 ∈ Rn,

is

x(t) = ϕ(t, t0, x0) = M(t, t0)x0.

By the above discussion, we always have

M(t, t0) = Ψ(t)Ψ(t0)
−1

(although this may not always be the most convenient way to findM(t, t0)).

For t0 ∈ J and x0 ∈ Rn, the solution curve passing through the

point (t0, x0) ∈ R× Rn is

Cr(t0, x0) = {(t, x) : x = ϕ(t, t0, x0), t ∈ J } ⊆ R× Rn.
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Example 1.B. ẋ = [−1
2 + cos(t)]x, x(0) = 1 ∈ R1.

Example 1.C. ẋ = −1
2 x, x(0) = 1 ∈ R1.

Linear flows, linear continuous-time dynamical systems

If A is a constant real n × n matrix, then the (constant-coefficient)

homogeneous linear system of ODEs

ẋ = Ax, x ∈ Rn (1.6)
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is called autonomous, J = R, and the right-hand side Ax of the ODE

is called a linear vector field in this case where it does not depend

explicitly on t.

Exercise. Let x(t) = ϕ(t, t0, x0) denote the unique solution of the initial

value problem ẋ = Ax, x(t0) = x0, and let y(t) = ϕ(t, 0, x0) denote the

unique solution of the initial value problem ẏ = Ay, y(0) = x0. Show

that x(t) = y(t− t0).

Thus without loss of generality, we may always take the initial time as

t0 = 0 in an initial value problem for an autonomous system, and consider

ẋ = Ax, x(0) = x0 ∈ Rn. (1.7)

For autonomous homogeneous linear systems, the principal matrixM(t, 0)

is called the linear flow (or linear evolution operator).

The exponential matrix eAt is defined to be

(If you are worried about convergence, you can prove as an exercise that

the series is absolutely convergent in matrix norm, for every t ∈ R.)
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Theorem 1.1 (Linear flow).

M(t, 0) = eAt.

The triple {R,Rn, eAt} is a linear continuous-time dynamical

system, where R is the time set, Rn is the state space (or phase

space), {eAt}t∈R is the family of linear evolution operators, or the

linear flow. Often, for brevity we will refer to a linear continuous-time

dynamical system as a linear flow.

A linear flow satisfies

= (DS.0)

= (DS.1)

for all s, t ∈ R. The first property (DS.0) follows directly from the

definition of the exponential matrix, the second (DS.1) follows from a

result in Homework Assignment 1.
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