
MATH 552 (2023W1) Lecture 2: Fri Sep 08

[Last lecture: Homogeneous linear (systems of) ODEs ẋ = A(t)x.

Autonomous homogeneous linear ODEs ẋ = Ax: generate (by solving

initial value problems for all possible initial values) linear flows {eAt}t∈R.]

Geometry of linear flows

For a point x0 in state space Rn, its orbit (or trajectory) is the

subset of state space

oriented by the direction of increasing t. The phase portrait of a linear

flow is a partitioning of the state space into orbits. Notice that orbits are

1-to-1 projections of solution curves onto the state space (guaranteed, for

autonomous systems).



We look at some basic examples with n = 2: consider ẋ = Ax, x ∈ R2.

Example 1.D./Exercise. (Real, and Jordan, normal form for 2 distict

real eigenvalues)

A =

 λ1 0

0 λ2

 , where λ1, λ2 ∈ R, λ1 6= λ2.

(a) Solve the matrix initial value problem Ψ̇ = AΨ, Ψ(0) = I2 (whose

solution is defined to be Ψ(t) = M(t, 0)), in other words, find the 2

solutions, x = ψ[1](t) of ẋ = Ax, x(0) = ( 1 0 )ᵀ and x = ψ[2](t) of

ẋ = Ax, x(0) = ( 0 1 )ᵀ, then form the matrix Ψ(t) = M(t, 0), to find

M(t, 0) =


 .

(b) Use the matrix series definition for eAt and sum all resulting component

series to check that

so we have a simple example that illustrates Theorem 1.1.

Phase portrait, if (i) λ1 < 0 < λ2 (the origin is an “unstable saddle”):
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Draw your own phase portraits if (ii) λ1 < λ2 < 0 (the origin is a “stable

node”); (iii) 0 < λ1 < λ2 (the origin is an “unstable node”); (iv) λ1 <

0 = λ2; (v) λ1 = 0 < λ2.

Example 1.E./Exercise. (Real normal form for 2 nonreal complex

conjugate eigenvalues)

A =

 µ1 −ω1

ω1 µ1

 , where µ1, ω1 ∈ R and ω1 > 0.

(a) Verify that the eigenvalues of A are the nonreal, complex conjugate

numbers λ1 = µ1 + iω1, λ2 = µ1 − iω1 = λ̄1.

(b) Solve the matrix initial value problem Ψ̇ = AΨ, Ψ(0) = I2, to find

Ψ(t) = M(t, 0).

(c) Use the matrix series definition for eAt and sum all resulting component

series and check that

where M(t, 0) is calculated in part (b).

(d) Because the eigenvalues are nonreal, it is worth making an excursion

into complex coordinates, before ultimately coming back to the original,

real coordinates to calculate M(t, 0) for a third time. Complexify ẋ =

Ax by thinking of x ∈ C2 (with the same real matrix A). Then make a

3



linear nonsingular coordinate change in C2

i.e. x = P z or

z =

 z1

z2

 = P−1

 x1

x2

 , where P−1 =




(note that z2 = z̄1 if and only if the complex numbers x1 and x2 are

both purely real). Find the matrix P . Transform the ODE to the new

coordinates

and verify that

ż = Jz, where J = P−1AP =




is now a diagonal, but nonreal, matrix (this is the Jordan normal form of

the matrix in this case). Proceeding formally, we easily “solve” the matrix

initial value problem Φ̇ = JΦ, Φ(0) = I2 just as in Example 2.D (a), to

get

Φ(t) =


 = eJt
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and the “solution” of the initial value problem ż = Jz, z(0) = z0, is

z(t) = eJtz0, with

Verify that if z2(0) = z̄1(0), then z2(t) = z̄1(t) for all t ∈ R (we say that

the “real” subspace of C2, {z2 = z̄1} ∼= R2, is dynamically invariant).

Now “realify” the “solution” by restricting it to the dynamically invariant

real subspace. Transform back to the x-coordinates, which are now real,

and verify that you get

x(t) =

 x1(t)

x2(t)

 =




 x1(0)

x2(0)

 .

Verify that the matrix 


is the same as M(t, 0) found in part (b), and eAt found in part (c). (The

simplest way to justify this complexify/realify procedure, without worrying

about the theory of complex dynamical systems, is just to check that you

get a correct real solution in the end).
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(e) Another way to solve the initial value problem (for the fourth time) is

to use the familiar polar coordinates for x ∈ R2 \ {0},

x1 = r cos(θ), x2 = r sin(θ),

so that

r = ‖x‖ =
√
x21 + x22 > 0, tan(θ) =

x2
x1

(if x1 6= 0)

Verify that under this (now nonlinear) change of coordinates (use the chain

rule) that ẋ = Ax becomes

The initial value problems for these ODEs are easily solved, to get

But, we must remember that adding any integer multiple of 2π to θ corre-

sponds to the same point x in R2\{0}. To take this into account, we think

of the argument, or polar angle, θ as belonging not to R1, but instead to

the circle S1

θ ∈ S1
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where the circle is defined as

S1 = R1/2πZ1

and this notation means θ2 ∈ R1 is identified with (or is considered

equivalent to) θ1 ∈ R1 if and only if θ2 − θ1 ∈ 2πZ1 (i.e. θ2 and θ1 differ

by an integer multiple of 2π). To indicate that we are thinking of θ(t) as

belonging to the circle and not the real line, we write

A typical orbit is represented for (r, θ) ∈ R+ × S1, if (i) µ1 > 0, as

while the same orbit in rectangular coordinates x ∈ R2 looks like

(the origin is an “unstable focus”). Draw both representations of a typical
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orbit (with ω1 > 0), if (ii) µ1 < 0 (the origin is a “stable focus”), and if

(iii) µ1 = 0 (the origin is a “centre”). What if ω1 < 0?

Later, when we study the Hopf bifurcation, we will be flipping back and

forth among the three different coordinate systems for the plane: real

rectangular, complexified rectangular, real polar.

Please read the first 5 pages of Appendix B. Some Linear Algebra.
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