MATH 552 (2023W1) Lecture 2: Fri Sep 08

[Last lecture: Homogencous linear (systems of) ODEs & = A(t)x,
Autonomous homogeneous linear ODEs & = Axz: generate (by solving

initial value problems for all possible initial values) linear flows {e4};cr ]

Geometry of linear flows

For a point x in state space R", its orbit (or trajectory) is the

subset of state space

oriented by the direction of increasing t. The phase portrait of a linear
flow is a partitioning of the state space into orbits. Notice that orbits are
I-to-1 projections of solution curves onto the state space (guaranteed, for

autonomous systems).



We look at some basic examples with n = 2: consider & = Az, z € R2.

Example 1.D./Exercise. (Real, and Jordan, normal form for 2 distict

real eigenvalues)

, where )\17 Ay € R, A1 7é Ao.
0 Ao

(a) Solve the matrix initial value problem W = AW, W(0) = I, (whose
solution is defined to be W(t) = M(t,0)), in other words, find the 2
solutions, x = YU(t) of = Az, 2(0) = (1 )7 and = = P(t) of
t= Az, x(0) = (0 1)7, then form the matrix W(¢) = M (t,0), to find

M(t,0) =

(b) Use the matrix series definition for e and sum all resulting component

series to check that

so we have a simple example that illustrates Theorem 1.1.

Phase portrait, if (i) Ay < 0 < Ay (the origin is an “unstable saddle”):



Draw your own phase portraits if (ii) A\; < Ay < 0 (the origin is a “stable
node”); (iii) 0 < Ay < Ag (the origin is an “unstable node”); (iv) A\ <
0=MXg; (V) Ay =0 < Ao

Example 1.E./Exercise. (Real normal form for 2 nonreal complex

conjugate eigenvalues)

M1 —wq
A= ,  where g1, wp € R and wy > 0.

w1 M

(a) Verify that the eigenvalues of A are the nonreal, complex conjugate

numbers A\ = 1 + w1, Ao = 1 — twq = A1

(b) Solve the matrix initial value problem ¥ = AW, ¥(0) = I, to find
W(t) = M(t,0).

(¢) Use the matrix series definition for e’ and sum all resulting component

series and check that

where M (t,0) is calculated in part (b).

(d) Because the eigenvalues are nonreal, it is worth making an excursion
into complex coordinates, before ultimately coming back to the original,
real coordinates to calculate M(¢,0) for a third time. Complexify & =

Ax by thinking of x € C? (with the same real matrix A). Then make a

3



linear nonsingular coordinate change in C?

le.xt=Pzor

., where P71 =

zZ9 %)

(note that zo = z; if and only if the complex numbers x; and o are
both purely real). Find the matrix P. Transform the ODE to the new

coordinates

and verify that
4= Jz, where =P AP =

is now a diagonal, but nonreal, matrix (this is the Jordan normal form of
the matrix in this case). Proceeding formally, we easily “solve” the matrix
initial value problem ® = J®, ®(0) = I, just as in Example 2.D (a), to

get

d(t) = = ¢/t



and the “solution” of the initial value problem z = Jz, z(0) = z, is

2(t) = e’ 2y, with

Verify that if 25(0) = 21(0), then 25(t) = 2z1(¢) for all t € R (we say that
the “real” subspace of C*, {29 = z;} = R?, is dynamically invariant).
Now “realify” the “solution” by restricting it to the dynamically invariant
real subspace. Transform back to the xz-coordinates, which are now real,

and verify that you get

x(t) _ LCl(t) _ 331(0)
Ta(t) x2(0)

Verify that the matrix

is the same as M (¢,0) found in part (b), and e/ found in part (c). (The
simplest way to justify this complexify /realify procedure, without worrying
about the theory of complex dynamical systems, is just to check that you

get a correct real solution in the end).



(e) Another way to solve the initial value problem (for the fourth time) is

to use the familiar polar coordinates for z € R?\ {0},
1 =1 cos(f), w9 =r sin(h),

so that

r=|z|| =1/ + 23>0, tan(h) = z—? (if 21 # 0)

Verify that under this (now nonlinear) change of coordinates (use the chain

rule) that & = Ax becomes

The initial value problems for these ODEs are easily solved, to get

But, we must remember that adding any integer multiple of 27 to 6 corre-
sponds to the same point z in R?\ {0}. To take this into account, we think
of the argument, or polar angle, 8 as belonging not to R!, but instead to
the circle S!

6 St
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where the circle is defined as
St = R' /277!

and this notation means 6 € R! is identified with (or is considered
equivalent to) 01 € R! if and only if 0y — 6, € 277} (i.e. 65 and 6y differ
by an integer multiple of 27r). To indicate that we are thinking of 6(¢) as

belonging to the circle and not the real line, we write

A typical orbit is represented for (r,0) € R, x S*, if (i) pp > 0, as

while the same orbit in rectangular coordinates z € R? looks like

(the origin is an “unstable focus”). Draw both representations of a typical
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orbit (with wy > 0), if (ii) p1 < 0 (the origin is a “stable focus™), and if
(iii) g1 = O (the origin is a “centre”). What if wy < 07

Later, when we study the Hopf bifurcation, we will be flipping back and
forth among the three different coordinate systems for the plane: real

rectangular, complexified rectangular, real polar.

Please read the first 5 pages of Appendix B. Some Linear Algebra.



