
MATH 552 (2023W1) Lecture 3: Mon Sep 11

[Last lecture: Orbits and phase portraits, Two examples of ẋ = Ax,

x ∈ R2, {eAt}t∈R, with A having (Example 1.B) real distinct eigenvalues,

(Example 1.C) nonreal complex conjugate eigenvalues.]

A third important example – multiple eigenvalues:

Example 1.F./Exercise. (Real, and Jordan, normal forms for a real

eigenvalue of multiplicity 2)

Case i. (“nongeneric” case)

A =

 λ1 0

0 λ1

 , where λ1 ∈ R,

Case ii. (“generic” case)

A =

 λ1 1

0 λ1

 , where λ1 ∈ R,

(a) In both cases, the characteristic polynomial of A is

h(λ) = det(A− λI2) = (λ1 − λ)2.

λ1 is a root of h(λ) (i.e. an eigenvalue ofA) of (algebraic) multiplicitym1 =

2. Verify that in case i, there are two linearly independent eigenvectors

for λ1, but in case ii, there is only one linearly independent eigenvector



v
[1]
1 ∈ R2 for λ1 (i.e. in case ii the kernel, or nullspace N (A− λ1I2) has

dimension 1 < m1 and N (A− λ1I2) = span{v[1]1 }).

(b) Case i is similar to Example 1.D, 2 distict real eigenvalues. In case ii,

solve the matrix initial value problem Ψ̇ = AΨ, Ψ(0) = I2, whose solution

is defined to be Ψ(t) = M(t, 0) to find the principal matrix M(t, 0).

(c) Notice that in case ii, we have A = S + N , where

S =


 , N =




S is semisimple (diagonalizable), N is nilpotent (some postitive in-

teger power is zero). Check that SN = NS, then we can use a result

from Homework Assignment 1 to get e(S+N)t = eSteNt. Compute eSt (see

Example 1.B), and use the series definition to compute eNt (this series

terminates in a finite sum because N is nilpotent). Then verify in case ii,

eAt = sSteNt =


 = M(t, 0).

(d) From part (a), v
[1]
1 = ( 1 0 )ᵀ will work as an eigenvector in both

cases. In case ii, v
[2]
1 = ( 0 1 )ᵀ is not an eigenvector. But, check that in

case ii, v
[2]
1 satisfies
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and thus (A − λ1I2)
2 v

[2]
1 = 0, and in fact in case ii the generalized

eigenspace for the real eigenvalue λ1 is

X(λ1) = N ((A− λ1I2)m1) ∩ R2 = span{v[1]1 , v
[2]
1 }.

(e) For case ii, draw the phase portrait if (i) λ1 < 0; (ii) > 0; (iii) = 0.

The real normal form of a matrix

It is possible to find the linear flow eAt explicitly, by first finding a

basis of (possibly complex) generalized eigenvectors of A and then

using these to determine a real nonsingular linear coordinate change T

that takes the real matrix A into its real normal form R. The linear

flow eRt for a linear vector field with the matrix R in real normal form

can be computed explicitly without too much trouble (for examples, see

Homework Assignment 1).

See Appendix B. Linear Algebra. Here in these lectures we give a

summary and an example. The sum of subspaces V1 and V2 is

and, if furthermore V1 ∩ V2 = {0}, then the sum is called a direct sum
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If V = V1 ⊕ V2, then every v ∈ V has a unique decomposition as

By factoring the characteristic polynomial h(λ) = det(A − λIn) com-

pletely over C into linear factors,

h(λ) = (λ1 − λ)m1 · · · (λd − λ)md,

we find all the distinct eigenvalues λ1, . . . , λd and their (algebraic) multi-

plicities m1, . . . ,md. An important theorem in linear algebra states that

Cn = N ((A− λ1In)m1)⊕ · · · ⊕ N ((A− λdIn)md),

where each algebraically invariant subspace N ((A − λjIn)mj) of Cn is

spanned by a basis of mj vectors, called generalized eigenvectors:

N ((A− λjIn)mj) = span{v[1]j , . . . , v
[mj ]

j }.

If an eigenvalue λj ∈ C happens to be real (i.e. Im(λj) = 0) then it is

possible to choose the basis of generalized eigenvectors v
[1]
j , . . . , v

[mj ]

j so

that they are all real, and we will assume this has been done, so we can

think of each v
[k]
j ∈ Rn.

“there exists a direct sum of algebraically invariant subspaces” ⇔

“the matrix can be block-diagonalized with respect to some basis”
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By arranging the n generalized eigenvectors v
[k]
j ∈ Cn to be columns of a

nonsingular n× n matrix P , the linear change of variables

x = Pz, x, z ∈ Cn

transforms the complexified ẋ = Ax, x ∈ Cn into the equivalent

ż = Jz, z ∈ Cn,

where J = P−1AP is the block-diagonal Jordan normal form of A

(see Theorem 1.2, in Appendix B).

Theorem 1.2 (Jordan Normal Form). Let A be a real n × n matrix. Then there exists a linear

nonsingular change of variables x = Pz (if all the eigenvalues of A are real, then the matrix P can

be chosen to be real; if A has any nonreal eigenvalue, then P is nonreal) that transforms

ẋ = Ax into ż = Jz,

where J = P−1AP is block-diagonal, with square blocks of various sizes along the diagonal

J =


J1

J2
. . .

JL


and zeros elsewhere. Each block J`, ` = 1, · · · , L has the form

J` = (λj ) or J` =


λj 1

λj
. . .

. . . 1

λj


,

i.e. a 1× 1 block containing an eigenvalue, or a larger block with the eigenvalue λj in each position

on the main diagonal, the number 1 in each position on the first superdiagonal, and 0 in every other

position.
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E.g. suppose n = 11 and

h(λ) = (−5− λ)(−3− λ)4(2i− λ)(−2i− λ)(1 + 3i− λ)2(1− 3i− λ)2,

then we could have

J =



−5 0 0 0 0 0 0 0 0 0 0

0 −3 0 0 0 0 0 0 0 0 0

0 0 −3 1 0 0 0 0 0 0 0

0 0 0 −3 1 0 0 0 0 0 0

0 0 0 0 −3 0 0 0 0 0 0

0 0 0 0 0 2i 0 0 0 0 0

0 0 0 0 0 0 −2i 0 0 0 0

0 0 0 0 0 0 0 1 + 3i 1 0 0

0 0 0 0 0 0 0 0 1 + 3i 0 0

0 0 0 0 0 0 0 0 0 1− 3i 1

0 0 0 0 0 0 0 0 0 0 1− 3i



There are 6 distinct eigenvalues and 7 elementary Jordan blocks, which

shows that the number of distinct eigenvalues is not always the same as

the number of elementary Jordan blocks.

If A is real, and if λj is a nonreal (i.e. Im(λj) 6= 0) eigenvalue with

multiplicity mj, then the complex conjugate λ̄j is also an eigenvalue with
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the same multiplicity. In this case the change of coordinates matrix P

is nonreal, and generalized eigenvectors for λj, λ̄j can (and should) be

chosen in complex conjugate pairs

v
[k]
j = a

[k]
j + ib

[k]
j , v̄

[k]
j = a

[k]
j − ib

[k]
j ,

where a
[k]
j and b

[k]
j are real and linearly independent vectors.

To form a real change of basis matrix T from P : (a) for each real

eigenvalue λj choose the same real generalized eigenvectors v
[k]
j as were

used to form P , to be columns of T ; (b) for each nonreal eigenvalue λj

with Im(λj) > 0 choose the real vectors

a
[k]
j , −b

[k]
j

to be columns of the matrix T . NOTICE THE MINUS SIGN!

Then the real change of variables

x = Ty, x, y ∈ Rn

transforms the real vector field ẋ = Ax, x ∈ Rn into the real vector field

ẏ = Ry, y ∈ Rn,

where R = T−1AT is the real normal form of A (see Theorem 1.3,

in Appendix B).
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Theorem 1.3 (Real Normal Form). Let A be a real n × n matrix. Then there is

always a real linear nonsingular change of variables x = Ty that transforms

ẋ = Ax into ẏ = Ry,

where R = T−1AT is block diagonal with square blocks of various sizes along the

diagonal

R =



R1

R2

. . .

RM


and zeros elsewhere.

i) If λj is a real eigenvalue, then a corresponding block Rm (m = 1, · · · ,M) is

an elementary Jordan block

Rm = (λj ) or Rm =



λj 1

λj
. . .

. . . 1

λj


;

ii) If λj = µj + iωj (µj and ωj both real, ωj > 0) is a nonreal eigenvalue, then a

corresponding block Rm (m = 1, · · · ,M) has the form

Rm = Dj or Rm =



Dj I2

Dj
. . .

. . . I2

Dj


,
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where Dj and I2 are the 2× 2 matrices

Dj =

 µj −ωj

ωj µj

 , I2 =

 1 0

0 1

 .

E.g. the real normal form corresponding to the previous Jordan normal

form is

R =



−5 0 0 0 0 0 0 0 0 0 0

0 −3 0 0 0 0 0 0 0 0 0

0 0 −3 1 0 0 0 0 0 0 0

0 0 0 −3 1 0 0 0 0 0 0

0 0 0 0 −3 0 0 0 0 0 0

0 0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 1 −3 1 0

0 0 0 0 0 0 0 3 1 0 1

0 0 0 0 0 0 0 0 0 1 −3

0 0 0 0 0 0 0 0 0 3 1


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