MATH 552 (2023W1) Lecture 3: Mon Sep 11

[Last lecture: Orbits and phase portraits, Two examples of & = Ax,
r € R? {eM},er, with A having (Example 1.B) real distinct eigenvalues,

(Example 1.C) nonreal complex conjugate eigenvalues.|

A third important example — multiple eigenvalues:
Example 1.F./Exercise. (Real, and Jordan, normal forms for a real
eigenvalue of multiplicity 2)

Case i. (“nongeneric” case)
A= ,  where \; € R,
Case ii. (“generic” case)

A= ., where \; € R,
0 M\

(a) In both cases, the characteristic polynomial of A is
h()\) = det(A — )\]2) = ()\1 - )\)2

A1 is aroot of A(A) (i.e. an eigenvalue of A) of (algebraic) multiplicity m; =
2. Verify that in case i, there are two linearly independent eigenvectors

for A\i, but in case ii, there is only one linearly independent eigenvector



vﬁ” € R? for A\; (i.e. in case ii the kernel, or nullspace N(A — X\ 15) has
dimension 1 < my and N (A — A\ [5) = span{vgl]}).

(b) Case i is similar to Example 1.D, 2 distict real eigenvalues. In case ii,
solve the matrix initial value problem W = AW, W(0) = I,, whose solution
is defined to be W(t) = M (t,0) to find the principal matrix M (t,0).

(c) Notice that in case ii, we have A = S + N, where
S - ’N =

S is semisimple (diagonalizable), N is nilpotent (some postitive in-
teger power is zero). Check that SN = N.S, then we can use a result

SHNE = e5teNt - Compute e (see

from Homework Assignment 1 to get e
Example 1.B), and use the series definition to compute e™ (this series

terminates in a finite sum because N is nilpotent). Then verify in case ii,

el = 571Nt = = M(t,0).
(d) From part (a), zﬁ” = (1 0)T will work as an eigenvector in both
cases. In case ii, v?] = (0 1)Tis not an eigenvector. But, check that in

2]

case 1, v satisfies



and thus (A — A\ Ip)? v?] = 0, and in fact in case ii the generalized

eigenspace for the real eigenvalue \; is
X (A1) = N((A = ME)™) N R? = span{vi”, v!}.
(e) For case ii, draw the phase portrait if (i) Ay < 0; (i) > 0; (iii) = 0.

The real normal form of a matrix

It is possible to find the linear flow e’ explicitly, by first finding a
basis of (possibly complex) generalized eigenvectors of A and then
using these to determine a real nonsingular linear coordinate change T’
that takes the real matrix A into its real normal form R. The linear
flow e for a linear vector field with the matrix R in real normal form
can be computed explicitly without too much trouble (for examples, see
Homework Assignment 1).

See Appendix B. Linear Algebra. Here in these lectures we give a

summary and an example. The sum of subspaces V; and V5 is

and, if furthermore V3 N'V5 = {0}, then the sum is called a direct sum



If V=V, & Vs then every v € V' has a unique decomposition as

By factoring the characteristic polynomial h(\) = det(A — A1) com-

pletely over C into linear factors,
h(A) = (AL = A)™ - (Ag = A)™,

we find all the distinct eigenvalues Ay, ..., Ay and their (algebraic) multi-

plicities myq, ..., my. An important theorem in linear algebra states that
C'"=N{(A=ML)") D - DN(A— Na)"),

where each algebraically invariant subspace N ((A — A;1,,)") of C" is

spanned by a basis of m; vectors, called generalized eigenvectors:

N((A = N\1,)") = Span{vgl}, . v[.mj]}.

J

If an eigenvalue A\; € C happens to be real (i.e. Im(\;) = 0) then it is

possible to choose the basis of generalized eigenvectors vjm, el U][-mj] SO
that they are all real, and we will assume this has been done, so we can

think of each vj[.k] c R"™.

“there exists a direct sum of algebraically invariant subspaces” <

“the matrix can be block-diagonalized with respect to some basis”
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By arranging the n generalized eigenvectors v}k] € C" to be columns of a

nonsingular n X n matrix P, the linear change of variables
x=Pz, x2,2e€C"
transforms the complexified £ = Ax, x € C" into the equivalent
z=Jz, zeC"

where J = P71AP is the block-diagonal Jordan normal form of A

(see Theorem 1.2, in Appendix B).

Theorem 1.2 (Jordan Normal Form). Let A be a real n x n matriz. Then there exists a linear
nonsingular change of variables x = Pz (if all the eigenvalues of A are real, then the matriz P can

be chosen to be real; if A has any nonreal eigenvalue, then P is nonreal) that transforms
= Ax into z=Jz,

where J = P~YAP is block-diagonal, with square blocks of various sizes along the diagonal

Ji
J2

Jr
and zeros elsewhere. Each block J,, ¢ =1,--- L has the form

Jo=(N) or  J= ' :

i.e. a 1 x 1 block containing an eigenvalue, or a larger block with the eigenvalue \; in each position
on the main diagonal, the number 1 in each position on the first superdiagonal, and 0 in every other

position.



E.g. suppose n = 11 and
h(A) = (=5 = X) (=3 = N 20 — \)(=2i — N)(1+3i — N1 — 35 — \)?,

then we could have

0 0 0 0 0
0 -3 0 0 0 0 0 0 0 0 0
0O 0 -3 1 0 0 0 0 0 0 0
0O 0 0 -3 1 0 0 0 0 0 0
0O 0 0 0 =30 0 0 0 0 0

J=1 0 0 0 0 0 2 0 0 0 0 0
0O 0 0 0 0 0 =2 0 0 0 0
o 0 0 0 0 0 0 1+3i 1 0 0
O 0 0 0 0 0 0 0 1+3i 0 0
O 0 0 0 0 0 0 0 0 1-3i 1
O 0 0 0 0 0 0 0

There are 6 distinct eigenvalues and 7 elementary Jordan blocks, which
shows that the number of distinct eigenvalues is not always the same as
the number of elementary Jordan blocks.

If A is real, and if A\; is a nonreal (i.e. Im();) # 0) eigenvalue with

multiplicity m;, then the complex conjugate 5\7 is also an eigenvalue with
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the same multiplicity. In this case the change of coordinates matrix P
is nonreal, and generalized eigenvectors for A;, A; can (and should) be

chosen in complex conjugate pairs

U][_k] _ agk]

R )

+1b;, U ;

where ag-k] and bg.k] are real and linearly independent vectors.
To form a real change of basis matrix T from P: (a) for each real

eigenvalue A; choose the same real generalized eigenvectors v][- | as were

used to form P, to be columns of T (b) for each nonreal eigenvalue A;

with Im(A;) > 0 choose the real vectors

to be columns of the matrix T'. NOTICE THE MINUS SIGN!

Then the real change of variables
=Ty, =z,yeR"
transforms the real vector field £ = Az, x € R" into the real vector field

y= Ry, yekR"

where R = T—'AT is the real normal form of A (sce Theorem 1.3,

in Appendix B).



Theorem 1.3 (Real Normal Form). Let A be a real n x n matriz. Then there is

always a real linear nonsingular change of variables x = Ty that transforms
T = Ax into y = Ry,

where R = T7YAT s block diagonal with square blocks of various sizes along the

diagonal
[ R, )

Ry

\ oy

and zeros elsewhere.
i) If \j is a real eigenvalue, then a corresponding block R,, (m =1,--- M) is

an elementary Jordan block

(Aj 1 \

Aj
R, = () or R, =

S
\ Yy
i) If \j = pj +iw; (p; and w; both real, w; > 0) is a nonreal eigenvalue, then a

corresponding block R,, (m =1,--- M) has the form

(Dj I \




where D; and I are the 2 X 2 matrices

Wi Hy 01
E.g. the real normal form corresponding to the previous Jordan normal

form is

000000 0
0 -3 0 0 00000 0 0
0 0 -3 1 00O0O0O0O0 0
0 0 0 -3 10000 0 0
0 0 0 0 -30 000 0 0
R= 0 0o 0 0 00-2020 0 0
0 0 0 0 020000 0
0 0 0 0 00O T1-310
00 0 0 000 3 1 0 1
0O 0 0 0 0O0O0O0O0 1 -3
\00000000031/



