

[**Last lecture:** Orbits and phase portraits, Two examples of  $\dot{x} = Ax$ ,  $x \in \mathbb{R}^2$ ,  $\{e^{At}\}_{t \in \mathbb{R}}$ , with  $A$  having (Example 1.B) real distinct eigenvalues, (Example 1.C) nonreal complex conjugate eigenvalues.]

A third important example – multiple eigenvalues:

**Example 1.F./Exercise.** (Real, and Jordan, normal forms for a real eigenvalue of multiplicity 2)

**Case i.** (“nongeneric” case)

$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{pmatrix}, \quad \text{where } \lambda_1 \in \mathbb{R},$$

**Case ii.** (“generic” case)

$$A = \begin{pmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{pmatrix}, \quad \text{where } \lambda_1 \in \mathbb{R},$$

(a) In both cases, the characteristic polynomial of  $A$  is

$$h(\lambda) = \det(A - \lambda I_2) = (\lambda_1 - \lambda)^2.$$

$\lambda_1$  is a root of  $h(\lambda)$  (i.e. an eigenvalue of  $A$ ) of (algebraic) multiplicity  $m_1 =$

2. Verify that in case i, there are two linearly independent eigenvectors for  $\lambda_1$ , but in case ii, there is only one linearly independent eigenvector

$v_1^{[1]} \in \mathbb{R}^2$  for  $\lambda_1$  (i.e. in case ii the *kernel*, or *nullspace*  $\mathcal{N}(A - \lambda_1 I_2)$  has dimension  $1 < m_1$  and  $\mathcal{N}(A - \lambda_1 I_2) = \text{span}\{v_1^{[1]}\}$ ).

(b) Case i is similar to Example 1.D, 2 distinct real eigenvalues. In case ii, solve the matrix initial value problem  $\dot{\Psi} = A\Psi$ ,  $\Psi(0) = I_2$ , whose solution is defined to be  $\Psi(t) = M(t, 0)$  to find the principal matrix  $M(t, 0)$ .

(c) Notice that in case ii, we have  $A = S + N$ , where

$$S = \begin{pmatrix} & \\ & \end{pmatrix}, N = \begin{pmatrix} & \\ & \end{pmatrix}$$

$S$  is **semisimple** (diagonalizable),  $N$  is **nilpotent** (some positive integer power is zero). Check that  $SN = NS$ , then we can use a result from Homework Assignment 1 to get  $e^{(S+N)t} = e^{St}e^{Nt}$ . Compute  $e^{St}$  (see Example 1.B), and use the series definition to compute  $e^{Nt}$  (this series terminates in a finite sum because  $N$  is nilpotent). Then verify in case ii,

$$e^{At} = e^{St}e^{Nt} = \begin{pmatrix} & \\ & \end{pmatrix} = M(t, 0).$$

(d) From part (a),  $v_1^{[1]} = (1 \ 0)^\top$  will work as an eigenvector in both cases. In case ii,  $v_1^{[2]} = (0 \ 1)^\top$  is not an eigenvector. But, check that in case ii,  $v_1^{[2]}$  satisfies

and thus  $(A - \lambda_1 I_2)^2 v_1^{[2]} = 0$ , and in fact in case ii the generalized eigenspace for the real eigenvalue  $\lambda_1$  is

$$X(\lambda_1) = \mathcal{N}((A - \lambda_1 I_2)^{m_1}) \cap \mathbb{R}^2 = \text{span}\{v_1^{[1]}, v_1^{[2]}\}.$$

(e) For case ii, draw the phase portrait if (i)  $\lambda_1 < 0$ ; (ii)  $> 0$ ; (iii)  $= 0$ .

### The real normal form of a matrix

It is possible to find the linear flow  $e^{At}$  explicitly, by first finding a basis of (possibly complex) **generalized eigenvectors** of  $A$  and then using these to determine a *real* nonsingular linear coordinate change  $T$  that takes the real matrix  $A$  into its **real normal form**  $R$ . The linear flow  $e^{Rt}$  for a linear vector field with the matrix  $R$  in real normal form can be computed explicitly without too much trouble (for examples, see Homework Assignment 1).

See Appendix **B. Linear Algebra**. Here in these lectures we give a summary and an example. The **sum** of subspaces  $V_1$  and  $V_2$  is

and, if furthermore  $V_1 \cap V_2 = \{0\}$ , then the sum is called a **direct sum**

If  $V = V_1 \oplus V_2$ , then every  $v \in V$  has a *unique* decomposition as

By factoring the characteristic polynomial  $h(\lambda) = \det(A - \lambda I_n)$  completely over  $\mathbb{C}$  into linear factors,

$$h(\lambda) = (\lambda_1 - \lambda)^{m_1} \cdots (\lambda_d - \lambda)^{m_d},$$

we find all the distinct eigenvalues  $\lambda_1, \dots, \lambda_d$  and their (algebraic) multiplicities  $m_1, \dots, m_d$ . An important theorem in linear algebra states that

$$\mathbb{C}^n = \mathcal{N}((A - \lambda_1 I_n)^{m_1}) \oplus \cdots \oplus \mathcal{N}((A - \lambda_d I_n)^{m_d}),$$

where each algebraically invariant subspace  $\mathcal{N}((A - \lambda_j I_n)^{m_j})$  of  $\mathbb{C}^n$  is spanned by a basis of  $m_j$  vectors, called **generalized eigenvectors**:

$$\mathcal{N}((A - \lambda_j I_n)^{m_j}) = \text{span}\{v_j^{[1]}, \dots, v_j^{[m_j]}\}.$$

If an eigenvalue  $\lambda_j \in \mathbb{C}$  happens to be *real* (i.e.  $\text{Im}(\lambda_j) = 0$ ) then it is possible to choose the basis of generalized eigenvectors  $v_j^{[1]}, \dots, v_j^{[m_j]}$  so that they are all real, and we will assume this has been done, so we can think of each  $v_j^{[k]} \in \mathbb{R}^n$ .

“there exists a direct sum of algebraically invariant subspaces”  $\Leftrightarrow$   
 “the matrix can be block-diagonalized with respect to some basis”

By arranging the  $n$  generalized eigenvectors  $v_j^{[k]} \in \mathbb{C}^n$  to be columns of a nonsingular  $n \times n$  matrix  $P$ , the linear change of variables

$$x = Pz, \quad x, z \in \mathbb{C}^n$$

transforms the complexified  $\dot{x} = Ax$ ,  $x \in \mathbb{C}^n$  into the equivalent

$$\dot{z} = Jz, \quad z \in \mathbb{C}^n,$$

where  $J = P^{-1}AP$  is the block-diagonal **Jordan normal form** of  $A$  (see **Theorem 1.2**, in Appendix B).

**Theorem 1.2** (Jordan Normal Form). *Let  $A$  be a real  $n \times n$  matrix. Then there exists a linear nonsingular change of variables  $x = Pz$  (if all the eigenvalues of  $A$  are real, then the matrix  $P$  can be chosen to be real; if  $A$  has any nonreal eigenvalue, then  $P$  is nonreal) that transforms*

$$\dot{x} = Ax \quad \text{into} \quad \dot{z} = Jz,$$

where  $J = P^{-1}AP$  is block-diagonal, with square blocks of various sizes along the diagonal

$$J = \begin{pmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_L \end{pmatrix}$$

and zeros elsewhere. Each block  $J_\ell$ ,  $\ell = 1, \dots, L$  has the form

$$J_\ell = (\lambda_j) \quad \text{or} \quad J_\ell = \begin{pmatrix} \lambda_j & 1 & & & \\ & \lambda_j & \ddots & & \\ & & \ddots & 1 & \\ & & & & \lambda_j \end{pmatrix},$$

i.e. a  $1 \times 1$  block containing an eigenvalue, or a larger block with the eigenvalue  $\lambda_j$  in each position on the main diagonal, the number 1 in each position on the first superdiagonal, and 0 in every other position.

E.g. suppose  $n = 11$  and

$$h(\lambda) = (-5 - \lambda)(-3 - \lambda)^4(2i - \lambda)(-2i - \lambda)(1 + 3i - \lambda)^2(1 - 3i - \lambda)^2,$$

then we *could* have

$$J = \begin{pmatrix} -5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2i & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -2i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1+3i & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1+3i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1-3i & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1-3i \end{pmatrix}$$

There are 6 distinct eigenvalues and 7 elementary Jordan blocks, which shows that the number of distinct eigenvalues is not always the same as the number of elementary Jordan blocks.

If  $A$  is real, and if  $\lambda_j$  is a nonreal (i.e.  $\text{Im}(\lambda_j) \neq 0$ ) eigenvalue with multiplicity  $m_j$ , then the complex conjugate  $\bar{\lambda}_j$  is also an eigenvalue with

the same multiplicity. In this case the change of coordinates matrix  $P$  is nonreal, and generalized eigenvectors for  $\lambda_j$ ,  $\bar{\lambda}_j$  can (and should) be chosen in complex conjugate pairs

$$v_j^{[k]} = a_j^{[k]} + ib_j^{[k]}, \quad \bar{v}_j^{[k]} = a_j^{[k]} - ib_j^{[k]},$$

where  $a_j^{[k]}$  and  $b_j^{[k]}$  are *real* and linearly independent vectors.

To form a *real* change of basis matrix  $T$  from  $P$ : (a) for each *real* eigenvalue  $\lambda_j$  choose the same *real* generalized eigenvectors  $v_j^{[k]}$  as were used to form  $P$ , to be columns of  $T$ ; (b) for each *nonreal* eigenvalue  $\lambda_j$  with  $\text{Im}(\lambda_j) > 0$  choose the *real* vectors

$$a_j^{[k]}, \quad -b_j^{[k]}$$

to be columns of the matrix  $T$ . *NOTICE THE MINUS SIGN!*

Then the *real* change of variables

$$x = Ty, \quad x, y \in \mathbb{R}^n$$

transforms the real vector field  $\dot{x} = Ax$ ,  $x \in \mathbb{R}^n$  into the real vector field

$$\dot{y} = Ry, \quad y \in \mathbb{R}^n,$$

where  $R = T^{-1}AT$  is the **real normal form** of  $A$  (see **Theorem 1.3**, in Appendix B).

**Theorem 1.3** (Real Normal Form). *Let  $A$  be a real  $n \times n$  matrix. Then there is always a real linear nonsingular change of variables  $x = Ty$  that transforms*

$$\dot{x} = Ax \quad \text{into} \quad \dot{y} = Ry,$$

where  $R = T^{-1}AT$  is block diagonal with square blocks of various sizes along the diagonal

$$R = \begin{pmatrix} R_1 & & & \\ & R_2 & & \\ & & \ddots & \\ & & & R_M \end{pmatrix}$$

and zeros elsewhere.

i) If  $\lambda_j$  is a real eigenvalue, then a corresponding block  $R_m$  ( $m = 1, \dots, M$ ) is an elementary Jordan block

$$R_m = (\lambda_j) \quad \text{or} \quad R_m = \begin{pmatrix} \lambda_j & 1 & & \\ & \lambda_j & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_j \end{pmatrix};$$

ii) If  $\lambda_j = \mu_j + i\omega_j$  ( $\mu_j$  and  $\omega_j$  both real,  $\omega_j > 0$ ) is a nonreal eigenvalue, then a corresponding block  $R_m$  ( $m = 1, \dots, M$ ) has the form

$$R_m = D_j \quad \text{or} \quad R_m = \begin{pmatrix} D_j & I_2 & & \\ & D_j & \ddots & \\ & & \ddots & I_2 \\ & & & D_j \end{pmatrix},$$

where  $D_j$  and  $I_2$  are the  $2 \times 2$  matrices

$$D_j = \begin{pmatrix} \mu_j & -\omega_j \\ \omega_j & \mu_j \end{pmatrix}, \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

E.g. the real normal form corresponding to the previous Jordan normal form is

$$R = \begin{pmatrix} -5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 \end{pmatrix}$$