MATH 552 (2022W1) Lecture 4: Wed Sep 13

[Last lecture: Example (1.F) with double eigenvalues (especially the

“generic” case), Jordan normal forms, real normal forms |

Invariant sets, hyperbolicity and stability for linear flows

For a linear flow in R", a subset S C R" is a (dynamically)
(a) invariant set,
(b) positively invariant set,
(c) negatively invariant set, or
(d) locally invariant set,
if an initial value z(0) = xy € S implies the solution of the initial value
problem z(t) = ¢(t,0,x¢) € S (i.e. p(t,0,5) C.S) for all
(a)
(b)
©
()
respectively.
Thus, invariant sets consist entirely of orbits (or parts of orbits). An

invariant subspace is an algebraic subspace that is (dynamically) in-



variant. Generalized eigenspaces are both algebraically invariant and (dy-
namically) invariant. From now on we will often omit the adjective “dy-

namically” when talking about invariant sets.

If Ais a constant real n X n matrix, then qualitative properties of the
linear flow e?, generated by the linear vector field Az through the linear

autonomous ODE

x=Ar, x€R",

are determined in “most” cases by the real parts Re();) of the eigenvalues

A; of the matrix of coefficients A.

Exercise. Show that if R” = V] @& V5 is the direct sum decomposition of
R™ into subspaces V; and V5 that are algebraically invariant under a real
n x n matrix A (ie. AV; CV;, 7 =1,2), then V} and V5 are invariant
subspaces (i.e. with respect to the linear vector field £ = Ax, or the

linear flow e

. Hint: With respect to some suitable basis, the matrix

representing A is block diagonal.

Stable, unstable and centre subspaces: For any real n x n matrix A:
(a) the stable subspace T* is the direct sum of the generalized eigenspaces
corresponding to all the eigenvalues with

(b) the unstable subspace T" is the direct sum of the generalized
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eigenspaces corresponding to all the eigenvalues with
(c) the centre subspace T is the direct sum of the generalized eigenspaces
corresponding to all eigenvalues with

Of course, all three subspaces T, T, T are invariant subspaces. The

direct sum decomposition of the state space into invariant subspaces

gives much of the qualitative (i.e. topological) behaviour we are usually

interested in, such as stability.

Asymptotic behaviour refers to qualitative behaviour of solutions z(t)

©(t,0,20) as t — +oo or t — —oo. The linear flow e’ (or the matrix A,

or the linear vector field Ax, or the autonomous ODE & = Ax) is called
hyperbolic if T¢ = {0}, ie. f R" =T* @ T", i.e. if A has no eigenvalue
with zero real part, i.e. Re();) # 0 for all eigenvalues of A. In the hy-
perbolic case, asymptotic behaviour is easy to determine (e.g. Homework

Assignment 1).
Notions of stablility: Let x(t) = o(t,0,xq), where z(0) = zy. An
invariant set Sy is

(a) Lyapunov stable if for any (e.g. sufficiently small) open set U con-

taining Sy, there exists an open set V' containing Sy such that zqg € V
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implies z(t) € U for all t € [0, +00);

(b) asymptotically stable (or attracting) if there exists an open
set Uy containing Sy such that xy € Uy implies dist(x(t), Sy) — 0 as
t — +o0;

(c) stable if both (a) and (b) are true;

(d) unstable if (a) is false.

In (b), dist(z(t),Sy) = inf{ ||z(t) — y|| : v € So}. Note that, according
to these definitions (from the textbook), “unstable” is NOT the same as
“not stable” (an invariant set could be both not stable and not unstable).
The textbook (p. 17) gives an example (nonlinear “SNIC”) of an invariant
set that is asymptotically stable but is not Lyapunov stable. More common
are examples (see Homework Assignment 1) that are Lyapunov stable but

are not asymptotically stable.

The singleton set consisting of an equilibrium (a solution of Ax = 0)

is an important example of an invariant set.

If a linear vector field is hyperbolic (and therefore, since zero is not an
eigenvalue, the equilibrium 0 is unique), then the stability of the equi-
librium 0 can be determined directly from the signs of real parts of the

eigenvalues, and details of the real normal form of A in this case are not

4



so important for asymptotic behaviour or stability.

i. If 7% = R" (all eigenvalues have strictly negative real parts) then the
equilibrium 0 is

ii. If T # {0} (some eigenvalue has a strictly positive real part) then the

equilibrium 0 is

If £ = Az is nonhyperbolic and z(0) = xy € T then the qualitative
(topological) behaviour of x(t) = ¢(t,0, () can depend on some details

of the real normal form of A.

Example 1.G. Topological classification of all 2-dimensional linear flows,
by trace and determinant of the coefficient matrix. See also Example 2.3

(p. 48) in the textbook. Consider
i = Az, z¢eR%

where

ail a2

as1 a2

1s a real 2 X 2 matrix.

The characteristic polynomial is easily verified to be

h()\) = )\2 — (a11 -+ agg))\ + (anagg — a12a21) = )\2 — o)+ A,



where
o= is the trace of A,

A = is the determinant of A.

(If you do not already know that tr(A) = Ay + Ay and det(A) = A\,

where A1, Ay are the eigenvalues of A, it is worth verifying for yourself.)

We start with the nonhyperbolic case.

Case [iv]: nonhyperbolic (Re()\;) = 0 for at least one eigenvalue)

There are four subcases
(a) purely imaginary eigenvalues
(b+) simple zero eigenvalue

(c) double zero eigenvalue

Plot [iv] in the (o, A)-plane:

The three open regions in the (o, A)-plane complementary to [iv] corre-

spond to the hyperbolic cases.



Case [i]: hyperbolic sink o < 0, A > 0 (Re(A;) < 0 for both eigenvalues).

The origin 0 is the unique equilibrium, and it is stable.
(“stable nodes”, “stable foci”, “stable improper nodes” all have the same

topological classification as hyperbolic sinks.)

Case [ii]: hyperbolic source o > 0, A > 0 (Re(\;) > 0 for both eigenval-

ues). 0 is an unstable equilibrium.

Case [iii]: hyperbolic saddle A < 0 (A < 0 < Ag). 0 is an unstable

equilibrium.

For the hyperbolic cases [i], [ii], [iii] the particular details of the real normal
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form do not affect the topological classification.

But, for all the nonhyperbolic subcases of [iv], we need to examine the
real normal form in more detail:
iv], (purely imaginary eigenvalues, “linear centre”): the real normal form

and its exponential are
R = , eRt =

where w = VA > 0. The phase portrait in normal form coordinates, and

a typical phase portrait in original coordinates:

The origin 0 is the unique equilibrium, it is Lyapunov stable but not stable
(because it is not asymptotically stable).
[iv]p+ (simple zero eigenvalue): the real normal form and its exponential

are



Phase portrait in normal form coordinates:

There is a line of equilibria. If ¢ < 0, each equilibrium is Lyapunov sta-
ble but not stable. If ¢ > 0, each equilibrium is unstable. (What is the
stability of the invariant set — a line — consisting of all the equilibria?)
iv]. (double zero eigenvalue): there are two further (sub-)subcases de-
pending on the real normal form

[iv]erg) (“generic”):

R: , eRt:

with the phase portrait in normal form coordinates:

There is a line of equilibria. Each equilibrium is unstable.



[iV]e(n) (“nongeneric”):
R = el =

There is a plane of equilibria. Each equilibrium is Lyapunov stable but

not stable.

Completed classification diagram in the (o, A)-plane
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