
MATH 552 (2023W1) Lecture 5: Fri Sep 15

[ Last lecture: Invariant sets and invariant subspaces, stable/unstable/centre

subspaces for linear flows, hyperbolicity, various notions of stability, equi-

libria, topological classification of 2-dimensional linear flows (Example

1.G)

ẋ = Ax, x ∈ R2,

where

A =

 a11 a12

a21 a22


is a real 2× 2 matrix.

The characteristic polynomial is

h(λ) = λ2 − σλ + ∆,

σ = tr(A) = a11 + a22 is the trace of A,

∆ = det(A) = a11a22 − a12a21 is the determinant of A.

(it is useful to recall tr(A) = λ1 + λ2, det(A) = λ1λ2)

Case [iv]: nonhyperbolic (Re(λj) = 0 for at least one eigenvalue)

Four subcases



(a) purely imaginary eigenvalues σ = 0, ∆ > 0 (λ1,2 = ±i
√

∆)

(b±) simple zero eigenvalue ∆ = 0, σ > 0 or < 0 (λ1 = 0, λ2 = σ 6= 0)

(c) double zero eigenvalue ∆ = 0, σ = 0 (λ1 = 0, λ2 = 0)

Plot [iv] in the (σ,∆)-plane, the three open regions in the (σ,∆)-plane

complementary to [iv] correspond to the hyperbolic cases.

Case [i]: hyperbolic sink σ < 0, ∆ > 0 (Re(λj) < 0 for both eigenvalues).

The origin 0 is the unique equilibrium, and it is stable.

(“stable nodes”, “stable foci”, “stable improper nodes” all have the same

topological classification as hyperbolic sinks.)

Case [ii]: hyperbolic source σ > 0, ∆ > 0 (Re(λj) > 0 for both eigenval-

ues). 0 is an unstable equilibrium.

(“unstable nodes”, “unstable foci”, “unstable improper nodes” all have

the same topological classification as hyperbolic sources.)

Case [iii]: hyperbolic saddle ∆ < 0 (λ1 < 0 < λ2). 0 is an unstable

equilibrium.

For the hyperbolic cases [i], [ii], [iii] the particular details of the real normal

form do not affect the topological classification. ]
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But, for all the nonhyperbolic subcases of [iv], we need to examine the

real normal form in more detail:

[iv]a (purely imaginary eigenvalues, “linear centre”): the real normal form

and its exponential are

R =


 , eRt =


 ,

where ω =
√

∆ > 0. The phase portrait in normal form coordinates, and

a typical phase portrait in original coordinates:

The origin 0 is the unique equilibrium, it is Lyapunov stable but not stable

(because it is not asymptotically stable).

[iv]b± (simple zero eigenvalue): the real normal form and its exponential

are

R =


 , eRt =


 .
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Phase portrait in normal form coordinates:

There is a line of equilibria. If σ < 0, each equilibrium is Lyapunov sta-

ble but not stable. If σ > 0, each equilibrium is unstable. (What is the

stability of the invariant set – a line – consisting of all the equilibria?)

[iv]c (double zero eigenvalue): there are two further (sub-)subcases de-

pending on the real normal form

[iv]c(g) (“generic”):

R =


 , eRt =


 .

with the phase portrait in normal form coordinates:

There is a line of equilibria. Each equilibrium is unstable.
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[iv]c(n) (“nongeneric”):

R =


 , eRt =


 .

There is a plane of equilibria. Each equilibrium is Lyapunov stable but

not stable.

Completed classification diagram in the (σ,∆)-plane
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Linear maps, linear discrete-time dynamical systems

A constant real n× n matrix A gives a linear map

x 7→ Ax, x ∈ Rn (1.8)

(often Ax, or the matrix A itself, is called the linear map; or sometimes

the matrix A is said to generate the linear map (1.8)). The linear map

is also a linear diffeomorphism if det(A) 6= 0. Given any initial

value x0 ∈ Rn we generate a sequence of values in Rn with the linear

recursion

xk+1 = Axk, k ∈ Z.

For example (assuming det(A) 6= 0)

It is easy to show that xk = Akx0, where if k = 0 then A0 = In, if

k > 0 then Ak are positive integer powers of the matrix A, or if k < 0

then Ak are positive integer powers of the inverse matrix A−1 for a linear

diffeomorphism. Assuming det(A) 6= 0, the powers Ak of A, with k ∈ Z,

are linear evolution operators, and the triple {Z,Rn, Ak} is a linear

discrete-time dynamical system (Z is the time set, Rn is the

state space, {Ak}k∈Z is the family of linear evolution operators).
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For brevity we will refer to a linear discrete-time dynamical system or a

linear recursion as a “linear map” and assume implicitly that det(A) 6= 0,

unless explicitly noted otherwise, or sometimes as a “linear diffeomor-

phism” if we want to remind the reader explicitly that det(A) 6= 0.

The orbit of a point x0 ∈ Rn for a linear map is

a discrete set of points. (If det(A) = 0, we can define a ”positive semi-

orbit” for nonnegative k.)

It is possible to find integer powers Ak explicitly, by finding a basis of

generalized eigenvectors of A and using this basis to determine a linear

nonsingular coordinate change that takes the matrix A into its real normal

form; the integer powers (both positive and negative) for a matrix in

real normal form can be computed explicitly by hand (see Homework

Assignment 1).

Invariant sets, hyperbolicity and stability for linear maps

A set S ⊆ Rn is (a) an invariant set, (b) a positively invariant

set, etc. if x0 ∈ S implies xk = Ak x0 ∈ S for all (a) k ∈ Z, (b)

k ∈ Z ∩ [0,+∞), etc.
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For a linear map, the eigenvalues µj of the generating matrix A are

often called the multipliers of A. Qualitative properties of a linear map

are determined in “most” cases by the moduli (absolute values) |µj| of the

multipliers µj.

Stable, unstable and centre subspaces: For any linear diffeomorphism

x 7→ Ax (i.e. xk+1 = Axk)

(a) the stable subspace T s is the direct sum of the generalized eigenspaces

corresponding to all the multipliers with

(b) the unstable subspace T u is the direct sum of the generalized

eigenspaces corresponding to all the multipliers with

(c) the centre subspace T c is the direct sum of the generalized eigenspaces

corresponding to all the multipliers with

The direct sum decomposition into invariant subspaces

Rn = T s ⊕ T u ⊕ T c

gives much of the qualitative information we are usually interested in. The

linear map x 7→ Ax is called hyperbolic if T c = {0}, i.e. if there is no

multiplier on the unit circle in the complex plane, i.e. |µj| 6= 1 for all

multipliers of the linear map.

Notions of stability: Stability definitions for discrete-time systems are
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similar to those for continuous-time systems (Exercise: write them out).

The singleton set consisting of a fixed point (a solution of Ax = x,

or equivalently, of (A− In)x = 0) is an invariant set.

If a linear map is hyperbolic (then since 1 is not a multiplier, the fixed

point 0 is unique), then the stability of the fixed point can be determined

directly from the multipliers, and details of the real normal form in this

case are not important for asymptotic behaviour, or stability.

i. If T s = Rn (all multipliers are strictly inside the unit circle) then the

fixed point 0 is stable.

ii. If T u 6= {0} (some multiplier is strictly outside the unit circle) then

the fixed point 0 is unstable.

If x 7→ Ax is nonhyperbolic and x0 ∈ T c then the qualitative (topo-

logical) behaviour of xk = Ak x0 may depend on some details of the real

normal form of A (e.g. see Homework Assignment 1).
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