MATH 552 (2023W1) Lecture 6: Mon Sep 18

[ Last lecture: ...topological classification of 2-dimensional linear flows
(Example 1.G); Linear discrete-time dynamical systems — basic concepts.
)

Example 1.H. Topological classification of all 1-dimensional linear dif-

feomorphisms. See also Example 2.4 (p. 50) in the textbook. Consider
v pr, x€eRY (u#0).
Fixed points: solve
BT =,
le.
(b =1z =0,

thus, if ;& # 1 then 0 is the unique fixed point, while if g = 1 then every
point x (or xg) is fixed.

Dynamics: if we think of 1 as a 1 X 1 matrix, it has eigenvalue u, so u
is the multiplier of the 1-dimensional linear map. Consider the recursion

Lh+1 = KU Tk

[t is easy to see that

Ty = ,ukazo, ke Z.



Case [iii]: nonhyperbolic (|| =1)

There are two subcases
(+)
(—)
Plot [iii] in the “punctured” p-axis, R\ {0} (u# = 0 is punctured out of

the diagram):

There are four open intervals in R\{0} that are complementary to the set
corresponding to [iii], and these open intervals correspond to the hyperbolic
cases.

Case [i].: hyperbolic orientation-preserving sink 0 < p < 1.

Case [i]_: hyperbolic orientation-reversing sink —1 < u < 0.

Case [ii];: hyperbolic orientation-preserving source 1 < p.

Case [ii]_: hyperbolic orientation-reversing source p < —1.

In cases [i]+ we have |u| < 1, 0 is a stable fixed point.
In cases [ii]+ we have |u| > 1, 0 is an unstable fixed point.

Completed classification diagram in the punctured p-axis



Dynamics (phase portraits) can be visualized using staircase/cobweb

diagrams:



Dynamics of the nonhyperbolic cases are easy to determine directly.
iii], u =1 (x — x): every point z is fixed, every point is Liapunov
stable but not stable.

il 4 = —1 (x — —x): the origin 0 is the unique fixed point, it is
Liapunov stable but not stable.

In this last case [iii]_ consider the second iterate map

Thio = Tp, 1.e. x+— x every 2nd iterate

For the second iterate map, every point is fixed, thus every point belongs

to a 2-cycle, an orbit with period 2

{zo, —0}

If 2y # 0, then this 2-cycle is nontrivial (i.e. consists of 2 distinct points).
Exercise.” Make a topological classification of all 2-dimensional linear
diffeomorphisms. Draw a diagram in the “cut” (o, A)-plane showing the
classification (o is the trace, A # 0 is the determinant of the coefficient

matrix, the o-axis A = 0 is cut out of the diagram).



Floquet multipliers for homogeneous linear periodic ODEs

If a homogeneous linear system of ODEs is periodic, we can make a
useful correspondence with a discrete-time dynamical system, where the
corresponding discrete-time unit is one period of the ODE system.

Consider a homogeneous linear, periodic, system of ODEs
T=Alt)z, xeR" (1.9)
where A(t) is a real continuous periodic n X n matrix with period Ty > 0,

At +Ty) = A(t) forallt € R.

To determine the qualitative properties of the linear periodic ODE (1.9),
and in particular the stability of the solution x(t) = 0 (i.e. the constant
vector function defined by z(t) = 0 € R” for all £ € R), we choose an
initial time 0 (any initial time works, 0 is convenient), find the principal
matrix M (t,0) at initial time 0, and define the monodromy matrix

(at initial time 0) to be
M(TO) - M(T07 O))

i.e. the monodromy matrix is the principal matrix evaluated at one period

after the initial time.



Recall that the solution of the initial value problem for (1.9) with initial
condition x(0) = xq is x(t) = (¢, 0, x9) = M(t,0) xy.
After one period, x(Ty) = M (T}, 0) zg = M (Ty) xo.

After two periods

Exercise. Show that z(kTy) = (M (Ty))* zo, k € Z.
Using the fact that x(t) is continuous in every closed interval
| kTh, (k+1)Th ], it can be shown that the stability of the solution z(¢) = 0
for (1.9) is the same as the stability of the fixed point 0 for the linear map
x— M(Ty) z.

It can be proved that the eigenvalues p; of the monodromy matrix
M (Ty) do not depend on which initial time (¢y = 0, or some other ¢y) is

used in the definition. These eigenvalues are called the Floquet mul-



tipliers of (1.9), and a Floquet exponent is a number A; such that

e’ = i, where u; is a Floquet multiplier.

In the special case that A(t) is actually a constant matrix, then (1.9) is
actually autonomous, and then the eigenvalues of the constant matrix A
are Floquet exponents.

Warning: if A(t) is not constant, the eigenvalues \;(t) of A(t) do
not, in general, predict stability correctly and furthermore, it can be
difficult to find the principal matrix M (¢, 0) explicitly.

Exercise. Find the eigenvalues A o(t) of A(t), and the Floquet multipli-
ers and Floquet exponents for Example 1.A. (Notice that the eigenvalues
are not Floquet exponents, and the eigenvalues do not predict stability

correctly.)

If A(t) depends continuously on a parameter, then so do the Floquet
multipliers. This fact can sometimes be used, to determine qualitative
properties of a periodic system (1.9), by using simple perturbation argu-

ments (perturbing the parameter).



2. Nonlinear Dynamical Systems



