
MATH 552 (2023W1) Lecture 6: Mon Sep 18

[ Last lecture: ...topological classification of 2-dimensional linear flows

(Example 1.G); Linear discrete-time dynamical systems – basic concepts.

]

Example 1.H. Topological classification of all 1-dimensional linear dif-

feomorphisms. See also Example 2.4 (p. 50) in the textbook. Consider

x 7→ µx, x ∈ R1 (µ 6= 0).

Fixed points: solve

µx = x,

i.e.

(µ− 1)x = 0,

thus, if µ 6= 1 then 0 is the unique fixed point, while if µ = 1 then every

point x (or x0) is fixed.

Dynamics: if we think of µ as a 1× 1 matrix, it has eigenvalue µ, so µ

is the multiplier of the 1-dimensional linear map. Consider the recursion

xk+1 = µxk:

It is easy to see that

xk = µkx0, k ∈ Z.



Case [iii]: nonhyperbolic ( |µ| = 1 )

There are two subcases

(+)

(−)

Plot [iii] in the “punctured” µ-axis, R\{0} (µ = 0 is punctured out of

the diagram):

There are four open intervals in R\{0} that are complementary to the set

corresponding to [iii], and these open intervals correspond to the hyperbolic

cases.

Case [i]+: hyperbolic orientation-preserving sink 0 < µ < 1.

Case [i]−: hyperbolic orientation-reversing sink −1 < µ < 0.

Case [ii]+: hyperbolic orientation-preserving source 1 < µ.

Case [ii]−: hyperbolic orientation-reversing source µ < −1.

In cases [i]± we have |µ| < 1, 0 is a stable fixed point.

In cases [ii]± we have |µ| > 1, 0 is an unstable fixed point.

Completed classification diagram in the punctured µ-axis
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Dynamics (phase portraits) can be visualized using staircase/cobweb

diagrams:
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Dynamics of the nonhyperbolic cases are easy to determine directly.

[iii]+ µ = 1 (x 7→ x): every point x is fixed, every point is Liapunov

stable but not stable.

[iii]− µ = −1 (x 7→ −x): the origin 0 is the unique fixed point, it is

Liapunov stable but not stable.

In this last case [iii]− consider the second iterate map

xk+2 = xk, i.e. x 7→ x every 2nd iterate

For the second iterate map, every point is fixed, thus every point belongs

to a 2-cycle, an orbit with period 2

{x0,−x0}

If x0 6= 0, then this 2-cycle is nontrivial (i.e. consists of 2 distinct points).

Exercise.∗ Make a topological classification of all 2-dimensional linear

diffeomorphisms. Draw a diagram in the “cut” (σ,∆)-plane showing the

classification (σ is the trace, ∆ 6= 0 is the determinant of the coefficient

matrix, the σ-axis ∆ = 0 is cut out of the diagram).
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Floquet multipliers for homogeneous linear periodic ODEs

If a homogeneous linear system of ODEs is periodic, we can make a

useful correspondence with a discrete-time dynamical system, where the

corresponding discrete-time unit is one period of the ODE system.

Consider a homogeneous linear, periodic, system of ODEs

ẋ = A(t)x, x ∈ Rn, (1.9)

where A(t) is a real continuous periodic n×n matrix with period T0 > 0,

A(t + T0) = A(t) for all t ∈ R.

To determine the qualitative properties of the linear periodic ODE (1.9),

and in particular the stability of the solution x(t) ≡ 0 (i.e. the constant

vector function defined by x(t) = 0 ∈ Rn for all t ∈ R), we choose an

initial time 0 (any initial time works, 0 is convenient), find the principal

matrix M(t, 0) at initial time 0, and define the monodromy matrix

(at initial time 0) to be

M(T0) = M(T0, 0),

i.e. the monodromy matrix is the principal matrix evaluated at one period

after the initial time.
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Recall that the solution of the initial value problem for (1.9) with initial

condition x(0) = x0 is x(t) = ϕ(t, 0, x0) = M(t, 0)x0.

After one period, x(T0) = M(T0, 0)x0 = M(T0)x0.

After two periods

Exercise. Show that x(kT0) = (M(T0))
k x0, k ∈ Z.

Using the fact that x(t) is continuous in every closed interval

[ kT0, (k+1)T0 ], it can be shown that the stability of the solution x(t) ≡ 0

for (1.9) is the same as the stability of the fixed point 0 for the linear map

x 7→M(T0)x.

It can be proved that the eigenvalues µj of the monodromy matrix

M(T0) do not depend on which initial time (t0 = 0, or some other t0) is

used in the definition. These eigenvalues are called the Floquet mul-
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tipliers of (1.9), and a Floquet exponent is a number λj such that

eλj = µj, where µj is a Floquet multiplier.

In the special case that A(t) is actually a constant matrix, then (1.9) is

actually autonomous, and then the eigenvalues of the constant matrix A

are Floquet exponents.

Warning: if A(t) is not constant, the eigenvalues λj(t) of A(t) do

not, in general, predict stability correctly and furthermore, it can be

difficult to find the principal matrix M(t, 0) explicitly.

Exercise. Find the eigenvalues λ1,2(t) of A(t), and the Floquet multipli-

ers and Floquet exponents for Example 1.A. (Notice that the eigenvalues

are not Floquet exponents, and the eigenvalues do not predict stability

correctly.)

If A(t) depends continuously on a parameter, then so do the Floquet

multipliers. This fact can sometimes be used, to determine qualitative

properties of a periodic system (1.9), by using simple perturbation argu-

ments (perturbing the parameter).
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2. Nonlinear Dynamical Systems
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