MATH 552 (2023W1) Lecture 7: Fri Sep 22

| Last lecture: ... linear discrete-time dynamical systems; Floquet mul-

tipliers for continuous-time periodic systems. |
2. Nonlinear Dynamical Systems

Existence, uniqueness and smooth dependence

First we review some ODE theory. Let f : R x R” x R™ — R" have
a domain that is an open subset U C R x R" x R, and consider a

(paremetrized) family of initial value problems for systems of ODEs

T = f(t,z,a), x(ty) = zo. (2.1)

A fundamental theorem on ODEs is

Theorem 2.1. If f is C? (p > 1), and (ty,xr9,a) € U, then each
member of the family of initial value problems (2.1) has a unique

solution x(t) = @(t,tg, o, ) defined for t belonging to some unique



mazimal open interval of existence J = J(to, xg, ) C R that con-
tains tg, and in general depends on (ty, xg, ). Moreover, the solution

©(t, ty, xo, ) is CP in all its variables (t,to, xo, ).

We ignore parameter dependence for the rest of this chapter. Let f :
R x R" — R" have a domain that is an open subset U C R x R", and

consider the initial value problem for a single system of ODEs

= f(t,z), x(ty) = x. (2.2)

We note that Theorem 2.1 can be applied to the existence, uniqueness
and smooth dependence of the solution x(t) = ¢(t,tg, xg) of (2.2). For

(to, zg) € U, the unique maximally defined solution curve containing

(to, .CL’()) 1S



Autonomous systems of ODEs and flows

If f:R"— R" with a domain that is an open subset U C R", does
not depend explicitly on ¢, then the system of ODEs & = f(x) is called
autonomous. In this autonomous case, without loss of generality (see

Homework Assignment 2) we can assume the initial time is zero,
to =0,
and for autonomous systems we consider the initial value problems

t= f(z), z(0)=x, (2.3)

where x( belongs to the domain of f. In (2.3) we call f the vector field,
we call the x-values states, and the domain of f is the state space.
The collection of the unique maximally defined solutions (¢, 0, ) for all
possible initial value problems (2.3) is called the local flow (generated

by the vector field f) in R”. For autonomous systems we use the notation

gpt(gjo) - @(tv 07 xO)

to denote the solutions of initial value problems (2.3), and we call each

an evolution operator.



If the vector field f is C? on its domain, then for each fixed t, the
evolution operator ¢! is a local CP diffeomorphism in R", with a domain
that is an open subset of the domain of f. The collection of evolution

operators satisfy

o’ =id, (DS.0)
QOSH = o gpt for all s,t € R, (DS.1)

whenever both sides are defined, where id is the identity map in R",

ie id(z) =z for all z € R".

Example 2.A. &= —2° z(0) =z, € R



By elementary methods, if zg > 0, the unique maximally defined solu-

tion of the initial value problem is

Exercise. Find explicity ¢'(xq) and J(0, x¢), if 29 < 0, or if 2y = 0.

If X = R" (or more generally, if X is a manifold) and if ¢ () is defined
for all o € X and all t € R (i.e. J(0,29) = R for all zy € X) then the
local flow in X is called a global flow on X, properties (DS.0)-(DS.1)
hold everywhere on X without restrictions, and the triple {R, X, o'} is
called a continuous-time dynamical system. For brevity we will
usually refer to a local flow or a global flow or a continuous-time dynamical
system simply as a “flow”, and denote it by ¢’ or # = f(z). Sometimes,

we will consider flows on manifolds X other than R" (examples later).

For a flow, the orbit of a state x is

oriented by the direction of increasing t, and the phase portrait of
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a flow is the partitioning of the state space into orbits. Orbits Or(x)
are projections of solution curves Cr(0,xg) onto the state space (these

projections are well defined for autonomous ODEs/flows).

A subset S C X is

a) an invariant set,

(
(b) a positively invariant set,
(c) a negatively invariant set, or

(c) a locally invariant set,

if z(0) = zg € S implies z(t) = ¢'(x9) € S (i.e. ¢'(S) C S) for all
(a)
(b)
(c)
(d)

respectively.



An invariant set S is

(a) Lyapunov stable if for any open subset U C X containing .S, there
exists an open subset V' C X containing S, such that x(0) = g € V
implies z(t) = ¢'(xg) € U for all t € [0,+00) (notice we must have
0, +00) C J(0, ) for all xg € V for this definition);

(b) asymptotically stable if there exists an open subset U C X
containing S such that x(0) = xy € U implies dist(¢'(z9),S) — 0 as
t — +00;

(c) stable if both (a) and (b) are true;

(d) unstable if (a) is false.

An equilibrium is a solution x = p°, of

and the singleton set S = {p"}, consisting of an equilibrium pY, is clearly

an invariant set.



Maps

Let f:R" = R" be a C? (p > 1) local diffeomorphism in R" with a

domain that is an open subset of R”, and consider the map

z = f(z), (2.4)

or equivalently the recursion

Thtl = f(:li’k), k € Z. (2.47)

so we find that
T = fk(xo)a

where fY = id is the identity map, f' = f, f2=fo f, f3= fo fof,
etc.; and f!is the inversemap, f 2= flof ! f3=floflof

etc. Each k-th iterate map f*, k € Z, is called an evolution operator.

The evolution operators satisfy
¥ =id, (DS.0)

It = fio f* forall j, k € Z, (DS.1)
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whenever both sides are defined. A global diffeomorphism f on a manifold
X generates a discrete-time dynamical system {Z, X, f*} where
the family of evolution operators {f*},cz are the iterates of f (or of
its inverse f1).

If f is a local diffeomorphism but not a global diffeomorphism, then
f¥(zo) might not be defined for all xy or for all k € Z. If f is not
invertible, we can still consider f* for nonegative integers k. For brevity
we will often call a local diffeomorphism or a global diffeopmorphism or
a discrete-time dynamical system, simply a “map” or “diffeomorphism”,
and denote it by x — f(x) or ;1 = f(xr). We can consider maps in

manifolds X other than R".

Orbits, phase portraits, invariant sets for maps have similar def-

initions as for flows. (Exercise.)

A fixed point for a map is a solution = p, of

and the set {p"} consisting of a fixed point p" is an invariant set.

The definitions for Lyapunov stable, asymptotically stable,
stable and unstable invariant sets for maps are similar to the corre-

sponding definitions for flows. (Exercise.)
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Linearization and hyperbolicity

a) Linearization and hyperbolicity for flows: Suppose p° is an equi-
(a) Yp y ppose p q

librium of
&= f(z).

Near p', make a simple change of coordinates

Under this coordinate change, # = f(x) is transformed into

Suppose we ignore the higher order terms o(]|£|]) (later we will see if this
is advisable, or not!): the linearization (or variational equation) at

p" is the linear vector field
¢ = A€, where A= f.(p"). (2.5)

An equilibrium p° is called hyperbolic if the linearization (2.5) is hy-
perbolic, i.e. if Re A; # 0 for all eigenvalues A; of the constant real n x n
matrix f,(p"). We often call the eigenvalues of the matrix f.(p") the

“cigenvalues of the equilibrium” p°.
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