
MATH 552 (2023W1) Lecture 7: Fri Sep 22

[ Last lecture: ... linear discrete-time dynamical systems; Floquet mul-

tipliers for continuous-time periodic systems. ]

2. Nonlinear Dynamical Systems

Existence, uniqueness and smooth dependence

First we review some ODE theory. Let f : R × Rn × Rm → Rn have

a domain that is an open subset U ⊆ R × Rn × Rm, and consider a

(paremetrized) family of initial value problems for systems of ODEs

ẋ = f (t, x, α), x(t0) = x0. (2.1)

A fundamental theorem on ODEs is

Theorem 2.1. If f is Cp (p ≥ 1), and (t0, x0, α) ∈ U , then each

member of the family of initial value problems (2.1) has a unique

solution x(t) = ϕ(t, t0, x0, α) defined for t belonging to some unique



maximal open interval of existence J = J (t0, x0, α) ⊆ R that con-

tains t0, and in general depends on (t0, x0, α). Moreover, the solution

ϕ(t, t0, x0, α) is Cp in all its variables (t, t0, x0, α).

We ignore parameter dependence for the rest of this chapter. Let f :

R × Rn → Rn have a domain that is an open subset U ⊆ R × Rn, and

consider the initial value problem for a single system of ODEs

ẋ = f (t, x), x(t0) = x0. (2.2)

We note that Theorem 2.1 can be applied to the existence, uniqueness

and smooth dependence of the solution x(t) = ϕ(t, t0, x0) of (2.2). For

(t0, x0) ∈ U , the unique maximally defined solution curve containing

(t0, x0) is
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Autonomous systems of ODEs and flows

If f : Rn → Rn, with a domain that is an open subset U ⊆ Rn, does

not depend explicitly on t, then the system of ODEs ẋ = f (x) is called

autonomous. In this autonomous case, without loss of generality (see

Homework Assignment 2) we can assume the initial time is zero,

t0 = 0,

and for autonomous systems we consider the initial value problems

ẋ = f (x), x(0) = x0, (2.3)

where x0 belongs to the domain of f . In (2.3) we call f the vector field,

we call the x-values states, and the domain of f is the state space.

The collection of the unique maximally defined solutions ϕ(t, 0, x0) for all

possible initial value problems (2.3) is called the local flow (generated

by the vector field f ) in Rn. For autonomous systems we use the notation

ϕt(x0) = ϕ(t, 0, x0)

to denote the solutions of initial value problems (2.3), and we call each ϕt

an evolution operator.
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If the vector field f is Cp on its domain, then for each fixed t, the

evolution operator ϕt is a local Cp diffeomorphism in Rn, with a domain

that is an open subset of the domain of f . The collection of evolution

operators satisfy

ϕ0 = id, (DS.0)

ϕs+t = ϕs ◦ ϕt for all s, t ∈ R, (DS.1)

whenever both sides are defined, where id is the identity map in Rn,

i.e. id(x) = x for all x ∈ Rn.

Example 2.A. ẋ = −x2, x(0) = x0 ∈ R1.
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By elementary methods, if x0 > 0, the unique maximally defined solu-

tion of the initial value problem is

Exercise. Find explicity ϕt(x0) and J (0, x0), if x0 < 0, or if x0 = 0.

IfX = Rn (or more generally, ifX is a manifold) and if ϕt(x0) is defined

for all x0 ∈ X and all t ∈ R (i.e. J (0, x0) = R for all x0 ∈ X) then the

local flow in X is called a global flow on X , properties (DS.0)–(DS.1)

hold everywhere on X without restrictions, and the triple {R, X, ϕt} is

called a continuous-time dynamical system. For brevity we will

usually refer to a local flow or a global flow or a continuous-time dynamical

system simply as a “flow”, and denote it by ϕt or ẋ = f (x). Sometimes,

we will consider flows on manifolds X other than Rn (examples later).

For a flow, the orbit of a state x0 is

oriented by the direction of increasing t, and the phase portrait of
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a flow is the partitioning of the state space into orbits. Orbits Or(x0)

are projections of solution curves Cr(0, x0) onto the state space (these

projections are well defined for autonomous ODEs/flows).

A subset S ⊆ X is

(a) an invariant set,

(b) a positively invariant set,

(c) a negatively invariant set, or

(c) a locally invariant set,

if x(0) = x0 ∈ S implies x(t) = ϕt(x0) ∈ S (i.e. ϕt(S) ⊆ S) for all

(a)

(b)

(c)

(d)

respectively.
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An invariant set S is

(a) Lyapunov stable if for any open subset U ⊆ X containing S, there

exists an open subset V ⊆ X containing S, such that x(0) = x0 ∈ V

implies x(t) = ϕt(x0) ∈ U for all t ∈ [0,+∞) (notice we must have

[0,+∞) ⊆ J (0, x0) for all x0 ∈ V for this definition);

(b) asymptotically stable if there exists an open subset U ⊆ X

containing S such that x(0) = x0 ∈ U implies dist(ϕt(x0), S) → 0 as

t→ +∞ ;

(c) stable if both (a) and (b) are true;

(d) unstable if (a) is false.

An equilibrium is a solution x = p0, of

f (x) = 0,

and the singleton set S = {p0}, consisting of an equilibrium p0, is clearly

an invariant set.
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Maps

Let f : Rn → Rn be a Cp (p ≥ 1) local diffeomorphism in Rn with a

domain that is an open subset of Rn, and consider the map

x 7→ f (x), (2.4)

or equivalently the recursion

xk+1 = f (xk), k ∈ Z. (2.4’)

so we find that

xk = f k(x0),

where f 0 = id is the identity map, f 1 = f , f 2 = f ◦ f , f 3 = f ◦ f ◦ f ,

etc.; and f−1 is the inverse map, f−2 = f−1 ◦f−1, f−3 = f−1 ◦f−1 ◦f−1,

etc. Each k-th iterate map f k, k ∈ Z, is called an evolution operator.

The evolution operators satisfy

f 0 = id, (DS.0)

f j+k = f j ◦ f k for all j, k ∈ Z, (DS.1)
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whenever both sides are defined. A global diffeomorphism f on a manifold

X generates a discrete-time dynamical system {Z, X, f k} where

the family of evolution operators {f k}k∈Z are the iterates of f (or of

its inverse f−1).

If f is a local diffeomorphism but not a global diffeomorphism, then

f k(x0) might not be defined for all x0 or for all k ∈ Z. If f is not

invertible, we can still consider f k for nonegative integers k. For brevity

we will often call a local diffeomorphism or a global diffeopmorphism or

a discrete-time dynamical system, simply a “map” or “diffeomorphism”,

and denote it by x 7→ f (x) or xk+1 = f (xk). We can consider maps in

manifolds X other than Rn.

Orbits, phase portraits, invariant sets for maps have similar def-

initions as for flows. (Exercise.)

A fixed point for a map is a solution x = p0, of

and the set {p0} consisting of a fixed point p0 is an invariant set.

The definitions for Lyapunov stable, asymptotically stable,

stable and unstable invariant sets for maps are similar to the corre-

sponding definitions for flows. (Exercise.)
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Linearization and hyperbolicity

(a) Linearization and hyperbolicity for flows: Suppose p0 is an equi-

librium of

ẋ = f (x).

Near p0, make a simple change of coordinates

Under this coordinate change, ẋ = f (x) is transformed into

Suppose we ignore the higher order terms o(‖ξ‖) (later we will see if this

is advisable, or not!): the linearization (or variational equation) at

p0 is the linear vector field

ξ̇ = Aξ, where A = fx(p
0). (2.5)

An equilibrium p0 is called hyperbolic if the linearization (2.5) is hy-

perbolic, i.e. if Re λj 6= 0 for all eigenvalues λj of the constant real n× n

matrix fx(p
0). We often call the eigenvalues of the matrix fx(p

0) the

“eigenvalues of the equilibrium” p0.
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