
MATH 552 (2023W1) Lecture 10: Fri Sep 29

[Last lecture: ... linearization at cycles for flows and maps, Poincaré

maps ...]

Vector field

ẋ = f (x)

Cycle L0 = {p0(t)}, with least period T0 > 0.

Choose a point p00 = p0(0) on the cycle.

Choose a cross-section Σ at p00.

Now, choose an inital value x0 in Σ, and solve the initial value problem

for ẋ = f (x), x(0) = x0, to generate the unique maximally defined solu-

tion x(t) = ϕt(x0). By continuity of solutions with respect to the initial

value (Theorem 2.1), if x0 is sufficiently near p00, then x(t) = ϕt(x0) will

first return to Σ at some instant of time T (x0) > 0, the “first return

time”, near the period T0 of the cycle (in fact, T (p00) = T0).



Define the Poincaré map P : Σ→ Σ by

Therefore, p00 is a fixed point of P . If the vector field f is Cp, then the

Poincaré map P is a local Cp diffeomorphism, with a domain that is an

open set U in Σ that contains p00 (i.e. U is relatively open in Σ).

To make explicit calculations, it is often convenient to define some

smooth local coordinates ξ = (ξ1, . . . , ξn−1) ∈ Rn−1 on Σ.

Arranging for ξ = 0 ∈ Rn−1 to correspond to x = p00 ∈ Σ, we can express
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the Poincaré map in coordinate form as

now with a fixed point 0 ∈ Rn−1. Notice we are using the same symbol

P to denote both the Poincaré map as we originally defined it, and the

expression of that map in a particular coordinate system.

The stability of a cycle {p0(t)} for the flow corresponds to the stability

of the fixed point for the Poincaré map. Linearized stability of the fixed

point is determined by the multipliers (eigenvalues) µ1, . . . , µn−1 of the

linearization of the Poincaré map at its fixed point ξ = 0, the (n − 1) ×

(n− 1) matrix Pξ(0). These multipliers can be shown to be independent

of the choice of the point p00 on the cycle, of the choice of the cross-section

Σ at p00, and of the choice of the coordinates ξ on Σ. In fact, the following

can be proved:

Theorem 2.4. The nontrivial Floquet multipliers of the continuous-

time linearization u̇ = fx(p
0(t))u, of the flow of ẋ = f (x) at the cycle

{p0(t)}t∈R in Rn, are the same as the multipliers of the linearization

η 7→ Pξ(0) η, of the Poincaré map ξ 7→ P (ξ) at the corresponding fixed

point 0 in Rn−1.
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Thus, a cycle for a flow is hyperbolic if and only if the corresponding fixed

point for a Poincaré map is hyperbolic.

Example 2.C. (See Example 2.B.)

ẋ1 = x1 − ωx2 − x31 − x1x22,

ẋ2 = ωx1 + x2 − x21x2 − x32,

where ω > 0 is fixed.

Recall in Example 2.B we found a cycle for this system

p0(t) = (x01(t), x
0
2(t)) = (cos(ωt), sin(ωt)).

Now we construct a Poincaré map for this cycle. Choose a point on the

cycle

and a cross-section

Exercise. Verify that Σ is indeed a cross-section.
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We define a coordinate ξ1 ∈ R1 for Σ, by

so that ξ1 = 0 corresponds to the intersection of the cycle and the cross-

section. Next, we have to solve the initial value problem with initial value

parametrized by ξ1. This is most easily done in polar coordinates: solve

The explicit solution (Exercise) is

which in rectangular coordinates is

In polar coordinates, the cross-section Σ is represented by

so the time of first return is the time it takes for θ(t) to go from 0 to 2π,

which is
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(independent of x0, due to the simplicity of this example). Then the

Poincaré map in rectangular coordinates is

which is easily seen to belong to Σ. The coordinate representation of this

Poincaré map is

We could plot a staircase diagram and phase portrait for P

recalling that ξ1 = 0 corresponds to the point where the cycle intersects

the cross-section.

For a linearized stability analysis, we can explicitly compute the deriva-

tive (Exercise) of the Poincaré map P (in the coordinate representation)
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and we can verify we get the same value as the nontrivial Floquet multiplier

in Example 2.B, as guaranteed by Theorem 2.4.

Example 2.D. (The Poincaré map, the implicit function theorem, and

continuity of eigenvalues can establish the existence and linearization of a

“perturbed” periodic solution.)

Consider a forced, damped nonlinear oscillator

ü + δ u̇− u + u3 = ε cos(ωt), (2.D.1)

where δ, ω are given (fixed) positive parameters and ε is a small pertur-

bation parameter.

The standard conversion to a 2-dimensional first-order (nonautonomous)

periodic system is obtained by letting x1 = u, x2 = u̇ to get

and then we convert to a 3-dimensional first-order autonomous system

with the simple trick of letting θ = ωt (mod 2π) in S1:
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and the phase space X = R2 × S1 is a 3-dimensional manifold.

When ε = 0, observe that the original, second-order nonautonomous

ODE (2.D.1) has three constant (and therefore trivially periodic) solutions

u0(t, 0) ≡ 0,+1,−1. In the 3-dimensional representation (2.D.3), these

correspond to three cycles

But, when ε 6= 0, none of these are solutions (Exercise: verify! ) Using

a Poincaré map, we can show that all three periodic solutions u0(t, 0), that

exist for ε = 0, “persist” as O(|ε|)-close periodic solutions u0(t, ε) for all

ε 6= 0 with |ε| sufficiently small.

To show this persistence, define a “global” cross-section

Let us focus on one of the cycles when ε = 0,

(the analysis for the other two cycles is very similar). For any initial

condition in Σ we solve (at least in principle, the solution exists) the

initial value problem for (2.D.3) with initial condition
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