MATH 552 (2023W1) Lecture 10: Fri Sep 29

[Last lecture: ... linearization at cycles for flows and maps, Poincaré
maps ...]
Vector field

&= f(z)

Cycle Ly = {p°(t)}, with least period Ty > 0.
Choose a point p) = p"(0) on the cycle.
Choose a cross-section Y at p).

Now, choose an inital value xy in >, and solve the initial value problem
for ¢ = f(x), ©(0) = xy, to generate the unique maximally defined solu-
tion z(t) = ¢'(x). By continuity of solutions with respect to the initial
value (Theorem 2.1), if xq is sufficiently near pY, then x(t) = ¢'(zg) will
first return to 3 at some instant of time T'(xg) > 0, the “first return

time”, near the period Ty of the cycle (in fact, T(p)) = Tp).



Define the Poincaré map P : X — X by

Therefore, pY is a fixed point of P. If the vector field f is CP, then the
Poincaré map P is a local C? diffeomorphism, with a domain that is an

open set U in ¥ that contains pj (i.e. U is relatively open in 3).

To make explicit calculations, it is often convenient to define some

smooth local coordinates &€ = (£1,...,&,-1) € R" 1 on X,

Arranging for £ = 0 € R"! to correspond to o = p) € ¥, we can express



the Poincaré map in coordinate form as

now with a fixed point 0 € R*~!. Notice we are using the same symbol
P to denote both the Poincaré map as we originally defined it, and the

expression of that map in a particular coordinate system.

The stability of a cycle {p°(#)} for the flow corresponds to the stability
of the fixed point for the Poincaré map. Linearized stability of the fixed
point is determined by the multipliers (eigenvalues) py, ..., f,—1 of the
linearization of the Poincaré map at its fixed point £ = 0, the (n — 1) x
(n — 1) matrix P¢(0). These multipliers can be shown to be independent
of the choice of the point p) on the cycle, of the choice of the cross-section
3 at pJ), and of the choice of the coordinates £ on . In fact, the following

can be proved:

Theorem 2.4. The nontrivial Floguet multipliers of the continuous-
time linearization 1 = f,.(p"(t)) u, of the flow of & = f(x) at the cycle
{p"(t) }ier in R™, are the same as the multipliers of the linearization
n — P:(0)n, of the Poincaré map & — P(&) at the corresponding fized

point 0 in R"71.



Thus, a cycle for a flow is hyperbolic if and only if the corresponding fixed
point for a Poincaré map is hyperbolic.

Example 2.C. (See Example 2.B.)

T1 =21 — WLy — l’:f — :le%,

: 2 3
Ty = WT1 + Ty — T|To — Ty,

where w > 0 is fixed.

Recall in Example 2.B we found a cycle for this system

p'(t) = (1(t), 25(t)) = (cos(wt), sin(wt)).

Now we construct a Poincaré map for this cycle. Choose a point on the

cycle

and a cross-section

Exercise. Verify that ¥ is indeed a cross-section.



We define a coordinate & € R! for ¥, by

so that & = 0 corresponds to the intersection of the cycle and the cross-
section. Next, we have to solve the initial value problem with initial value

parametrized by &;. This is most easily done in polar coordinates: solve

The explicit solution (Exercise) is

which in rectangular coordinates is

In polar coordinates, the cross-section X is represented by

so the time of first return is the time it takes for 6(¢) to go from 0 to 27,

which 1s



(independent of xy, due to the simplicity of this example). Then the

Poincaré map in rectangular coordinates is

which is easily seen to belong to Y. The coordinate representation of this

Poincaré map is

We could plot a staircase diagram and phase portrait for P

recalling that & = 0 corresponds to the point where the cycle intersects
the cross-section.
For a linearized stability analysis, we can explicitly compute the deriva-

tive (Exercise) of the Poincaré map P (in the coordinate representation)



and we can verify we get the same value as the nontrivial Floquet multiplier

in Example 2.B, as guaranteed by Theorem 2.4.

Example 2.D. (The Poincaré map, the implicit function theorem, and
continuity of eigenvalues can establish the existence and linearization of a
“perturbed” periodic solution.)

Consider a forced, damped nonlinear oscillator
i+ 80 —u+u’ = e cos(wt), (2.D.1)

where §, w are given (fixed) positive parameters and € is a small pertur-

bation parameter.

The standard conversion to a 2-dimensional first-order (nonautonomous)

periodic system is obtained by letting x1 = u, 9 = u to get

and then we convert to a 3-dimensional first-order autonomous system

with the simple trick of letting # = wt (mod 27) in St:



and the phase space X = R? x S' is a 3-dimensional manifold.

When ¢ = 0, observe that the original, second-order nonautonomous
ODE (2.D.1) has three constant (and therefore trivially periodic) solutions
u’(t,0) = 0,+1,—1. In the 3-dimensional representation (2.D.3), these

correspond to three cycles

But, when € # 0, none of these are solutions (Exercise: verify! ) Using
a Poincaré map, we can show that all three periodic solutions u’(¢, 0), that
exist for € = 0, “persist” as O(|e])-close periodic solutions u’(t, €) for all
e # 0 with |e| sufficiently small.

To show this persistence, define a “global” cross-section

Let us focus on one of the cycles when € = 0,

(the analysis for the other two cycles is very similar). For any initial
condition in ¥ we solve (at least in principle, the solution exists) the

initial value problem for (2.D.3) with initial condition



