
MATH 552 (2023W1) Lecture 11: Wed Oct 4

[ Last lecture: ...Poincaré maps... ]

Example 2.D, continued. Recall the nonautonomous 2nd-order ODE

ü + δ u̇− u + u3 = ε cos(ωt), (2.D.1)

or the equivalent, autonomous 3-dimensional system of 1st-order ODEs

ẋ1 = x2

ẋ2 = x1 − δx2 − x31 + ε cos(θ)

θ̇ = ω

(2.D.3)

for x̃ = (x1, x2, θ) belonging to the 3-dimensional manifold X = R2× S1.

When ε = 0, (2.D.1) has three constant (and therefore trivially periodic)

solutions u0(t, 0) ≡ 0,+1,−1.

“Global” cross-section

Σ = {x̃ = (x1, x2, θ) ∈ X : (x1, x2) ∈ R2, θ = 0 (mod 2π)}

One of the three cycles when ε = 0 is

p00(t, 0) = (0, 0, ωt (mod 2π))

For any initial condition in Σ

x̃0 = (ξ1, ξ2, 0 (mod 2π))



we solve (at least in principle, the solution exists) the initial value problem

for (2.D.3) and there exists a solution of the form

The time of first return is constant

so

and a coordinate representation of the Poincaré map is

where (ξ1, ξ2) = (0, 0) ∈ R2 corresponds to the point (0, 0, 0 (mod 2π)) ∈

X where, when ε = 0, the cycle intersects the cross-section Σ.
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For ε = 0, we already know (ξ1, ξ2) = (0, 0) is a fixed point of the Poincaré

map

We will show that this fixed point “persists”, at least for small ε 6= 0, i.e.

P has a unique fixed point, when ε 6= 0, that is O(|ε|)-close to the fixed

point that exists when ε = 0. To show this, we use a standard pertur-

bation argument using the (multivariable) Implicit Function Theorem

(Appendix A).
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Let ξ =

 ξ1

ξ2

 ∈ R2, define F : R2 × R1 → R2, by

so that to find a fixed point of P (·, ε) we solve, equivalently,

Then F is smooth near (0, 0) ∈ R2 × R1,

so to apply the implicit function theorem (Appendix A) we need to check

that the 2× 2 matrix Fξ(0, 0) is nonsingular, i.e.

i.e. the 2× 2 matrix Pξ(0, 0) does not have a multiplier µj(0) = 1.

We find the multipliers of Pξ(0, 0), by computing the Floquet multipli-

ers of the variational equation about the cycle. Set ε = 0 and linearize

the autonomous system (2.D.3) in X about the cycle (0, 0, ωt (mod 2π))

Exercise: let x1 = 0 + u1, x2 = 0 + u2, θ = ωt + u3 and linearize in

(u1, u2, u3) ) to get the variational equation
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or 
u̇1

u̇2

u̇3

 =





u1

u2

u3

 .

Conveniently, when ε = 0 this variational equation is actually autonomous

so in this special case the principal matrix is

and the monodromy matrix at t0 = 0 is

so for ε = 0 the Floquet multipliers (i.e. the eigenvalues of M(T0, 0)) are

where λ1, λ2 are the eigenvalues of

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This 2× 2 matrix has determinant ∆ so we immediately know

and therefore the nontrivial Floquet multipliers (which are the same as

the multipliers/eigenvalues of Pξ(0, 0)) satisfy

and thus Fξ(0, 0) is indeed nonsingular.

Now, we have checked that the implicit function theorem applies, and

we conclude that F (ξ, ε) = 0 has a unique locally defined smooth solution,

a unique map ξ0 : R1 → R2 defined and smooth for all ε ∈ R1 sufficiently

close to 0 with ξ0(0) = 0 ∈ R2, such that F (ξ0(ε), ε) = 0, i.e. ξ0(ε) is a

fixed point for the Poincaré map P (·, ε),

P (ξ0(ε), ε) = ξ0(ε) for all ε sufficiently close to 0

Since ξ0(ε) is smooth and ξ0(0) = 0, we know that ξ0(ε) = O(|ε|). (This

justifies a formal expansion ξ0(ε) = ξ01 ε + ξ02 ε
2 + · · · using only positive

integer powers of ε.)
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We can also use a continuity argument to find the multipliers of the

linearization, at least accurately enough to determine the topological type

of the fixed point. Since the 2×2 matrix Pξ(ξ
0(ε), ε) depends continuously

on ε near ε = 0, it can be proved that the multipliers µj(ε), j = 1, 2 of

the matrix depend continuously on ε near 0 (in fact the dependence of

the multipliers is smooth, because the dependence of the matrix is smooth

and the multipliers are distinct ; but in general if it is possible that the

multipliers could be multiple and the real normal form could be not a

diagonal matrix, the dependence of the multipliers can only be assumed

to be continuous). Only assuming continuous dependence of multipliers

on ε is enough to conclude that

and for ε 6= 0 (ε near 0) the fixed point has the topological type of an

orientation-preserving (unstable) saddle, the same as for ε = 0. Thus the

corresponding cycle Lε = { p0(t, ε) = (x01(t, ε), x
0
2(t, ε), ωt (mod 2π)) }t∈R

for (2.D.3), with initial condition p0(0, ε) = (ξ0(ε), 0 (mod 2π)), has the

corresponding topological type (it is hyperbolic and unstable).

7



We can conclude that for all ε sufficiently close to 0, the original forced

oscillator (2.D.1) has a unique (2π/ω)-periodic solution u0(t, ε) that is

O(|ε|)-close to the unperturbed solution u0(t, 0) ≡ 0, depending smoothly

on ε, so we could expand in a power series in ε to find approximations.

Moreover, this periodic solution is unstable, of saddle type.

Exercise: Perform a similar analysis for the periodic solution u0(t, 0) ≡

1, under the perturbation ε 6= 0 (it also persists as a (2π/ω)-periodic

solution u0(t, ε) = 1 + O(|ε|), but it is stable, of sink type). Of course

u0(t, 0) ≡ −1 can be analyzed in the same way.

8



Arguments of this type (using the implicit function theorem and con-

tinuity of eigenvalues or multipliers on parameters) are standard to show

that hyperbolic equilibria, fixed points, or cycles are locally “structurally

stable”: for all sufficiently small perturbations to the system, the per-

turbed system is locally topologically equivalent to the unperturbed sys-

tem. For more complicated invariant sets, if they are hyperbolic by some

appropriate definition, local structural stability can be shown using essen-

tially the same arguments.
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