MATH 552 (2023W1) Lecture 11: Wed Oct 4

| Last lecture: ...Poincaré maps... |

Example 2.D, continued. Recall the nonautonomous 2nd-order ODE
i+ 80 —u+u’ = e cos(wt), (2.D.1)

or the equivalent, autonomous 3-dimensional system of 1st-order ODEs

T1 = X9
9 = 21 — 09 — T} + £ cos(h) (2.D.3)
0 =uw

for Z = (x1, 19, 0) belonging to the 3-dimensional manifold X = R? x S!.
When € = 0, (2.D.1) has three constant (and therefore trivially periodic)
solutions u’(¢,0) = 0, +1, —1.

“Global” cross-section
Y ={% = (21,29,0) € X : (z1,72) € R? 6 =0(mod 2r)}
One of the three cycles when € = 0 is
po(t,0) = (0,0, wt (mod 27))
For any initial condition in X

To = (&1, 82,0 (mod 2m))



we solve (at least in principle, the solution exists) the initial value problem

for (2.D.3) and there exists a solution of the form

The time of first return is constant

SO

and a coordinate representation of the Poincaré map is

where (&1, &) = (0,0) € R? corresponds to the point (0,0,0 (mod 27)) €

X where, when € = 0, the cycle intersects the cross-section X..



For e = 0, we already know (£, &) = (0, 0) is a fixed point of the Poincaré

map

We will show that this fixed point “persists”, at least for small € # 0, i.e.
P has a unique fixed point, when € # 0, that is O(|e|)-close to the fixed
point that exists when € = 0. To show this, we use a standard pertur-

bation argument using the (multivariable) Implicit Function Theorem

(Appendix A).



§
Let € = | *' | € R2, define F: R2 x R! — R2, by
$

so that to find a fixed point of P(-, €) we solve, equivalently,

Then F is smooth near (0,0) € R? x R,

so to apply the implicit function theorem (Appendix A) we need to check

that the 2 x 2 matrix F¢(0,0) is nonsingular, i.e.

i.e. the 2 x 2 matrix FP¢(0,0) does not have a multiplier x;(0) = 1.

We find the multipliers of F¢(0,0), by computing the Floquet multipli-
ers of the variational equation about the cycle. Set € = 0 and linearize
the autonomous system (2.D.3) in X about the cycle (0,0, wt (mod 27))
Exercise: let £1 = 04+ uy, v9 = 0+ w9, 0 = wt 4+ u3 and linearize in

(w1, u9, u3) ) to get the variational equation



or
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Conveniently, when € = 0 this variational equation is actually autonomous

so in this special case the principal matrix is

and the monodromy matrix at £y = 0 is

so for € = 0 the Floquet multipliers (i.e. the eigenvalues of M (T}, 0)) are

where A1, Ay are the eigenvalues of



This 2 x 2 matrix has determinant A so we immediately know

and therefore the nontrivial Floquet multipliers (which are the same as

the multipliers/eigenvalues of FP¢(0,0)) satisfy

and thus F¢(0,0) is indeed nonsingular.

Now, we have checked that the implicit function theorem applies, and
we conclude that (£, ) = 0 has a unique locally defined smooth solution,
a unique map &Y : R! — R? defined and smooth for all € € R! sufficiently
close to 0 with £Y(0) = 0 € R?, such that F('(e),e) = 0, i.e. £(e) is a

fixed point for the Poincaré map P(-,¢),
P(&%(e),e) = €%e) for all e sufficiently close to 0

Since £Y(¢) is smooth and £°(0) = 0, we know that £'(e) = O(|e|). (This
justifies a formal expansion £'(g) = & e + &Y% + - -+ using only positive

integer powers of ¢.)



We can also use a continuity argument to find the multipliers of the
linearization, at least accurately enough to determine the topological type
of the fixed point. Since the 2x 2 matrix P (£°(¢), €) depends continuously
on € near € = 0, it can be proved that the multipliers p;(e), 7 = 1,2 of
the matrix depend continuously on € near 0 (in fact the dependence of
the multipliers is smooth, because the dependence of the matrix is smooth
and the multipliers are distinct; but in general if it is possible that the
multipliers could be multiple and the real normal form could be not a
diagonal matrix, the dependence of the multipliers can only be assumed
to be continuous). Only assuming continuous dependence of multipliers

on ¢ is enough to conclude that

and for € # 0 (e near 0) the fixed point has the topological type of an
orientation-preserving (unstable) saddle, the same as for ¢ = 0. Thus the
corresponding cycle L. = { p°(t, ) = (2{(t, ), 25(¢, €), wt (mod 27)) }ier
for (2.D.3), with initial condition p"(0,e) = (£%(€),0 (mod 27)), has the

corresponding topological type (it is hyperbolic and unstable).



We can conclude that for all € sufficiently close to 0, the original forced
oscillator (2.D.1) has a unique (27 /w)-periodic solution u’(t, e) that is
O(|e|)-close to the unperturbed solution u"(¢, 0) = 0, depending smoothly
on g, so we could expand in a power series in € to find approximations.

Moreover, this periodic solution is unstable, of saddle type.

Exercise: Perform a similar analysis for the periodic solution u’(¢,0) =
1, under the perturbation € # 0 (it also persists as a (27 /w)-periodic
solution u’(t,e) = 1 + O(Je]), but it is stable, of sink type). Of course

u’(t,0) = —1 can be analyzed in the same way.



Arguments of this type (using the implicit function theorem and con-
tinuity of eigenvalues or multipliers on parameters) are standard to show
that hyperbolic equilibria, fixed points, or cycles are locally “structurally
stable”: for all sufficiently small perturbations to the system, the per-
turbed system is locally topologically equivalent to the unperturbed sys-
tem. For more complicated invariant sets, if they are hyperbolic by some
appropriate definition, local structural stability can be shown using essen-

tially the same arguments.



