
MATH 552 (2023W1) Lecture 12: Fri Oct 6

[ Last lecture: ...Poincaré maps... ]

Example 2.D, continued.

ü + δ u̇− u + u3 = ε cos(ωt), (2.D.1)

or, equivalently,

ẋ1 = x2

ẋ2 = x1 − δx2 − x31 + ε cos(θ)

θ̇ = ω

(2.D.3)

Poincaré map

P : R2 × R1 → R2, P (ξ1, ξ1, ε) =

 x1(2π/ω, ξ1, ξ2, ε)

x2(2π/ω, ξ1, ξ2, ε)


has, for ε = 0, a fixed point at the origin in R2:

P (0, 0, 0) =

 0

0

 .

For ε 6= 0, close to 0, we showed, by carefully using the implicit function

theorem, that P ( · , ε) still has a fixed point in R2, and it is O(|ε|)-close

to the origin. (For ε = 0, the variational equation is autonomous so it is

much easier to find Floquet multipliers.)



We also used a continuity argument to find the multipliers of the lin-

earization, at least accurately enough to determine the topological type of

the fixed point: Since the 2× 2 matrix Pξ(ξ
0(ε), ε) depends continuously

on ε near ε = 0, it can be proved that the multipliers µj(ε), j = 1, 2 of

the matrix depend at least continuously on ε near 0 (in fact, the depen-

dence of the multipliers is smooth, because the dependence of the matrix

is smooth and the multipliers are distinct). Only assuming continuous

dependence of multipliers on ε is enough to conclude that

µ1(ε), µ2(ε) are both real, 0 < µ1(ε) < 1 < µ2(ε),

and for ε 6= 0 (ε sufficiently near 0) the fixed point has the topological type

of an orientation-preserving (unstable) saddle, the same as for ε = 0. Thus

the corresponding cycleLε = { p0(t, ε) = (x01(t, ε), x
0
2(t, ε), ωt (mod 2π)) }t∈R

for (2.D.3), with initial condition p0(0, ε) = (ξ0(ε), 0 (mod 2π)), has the

corresponding topological type (it is hyperbolic and unstable).
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We therefore conclude that for all ε sufficiently close to 0, the origi-

nal forced oscillator (2.D.1) has a unique (2π/ω)-periodic solution u0(t, ε)

that is O(|ε|)-close to the unperturbed solution u0(t, 0) ≡ 0, depending

smoothly on ε, so we could expand in a power series in ε to find approxi-

mations. Moreover, this periodic solution is unstable, of saddle type.

Exercise: Perform a similar analysis for the periodic solution u0(t, 0) ≡

1, under the perturbation ε 6= 0 (it also persists as a (2π/ω)-periodic

solution u0(t, ε) = 1 + O(|ε|), but it is stable, of sink type). Of course

u0(t, 0) ≡ −1 can be analyzed in the same way.

Arguments of this type (using the implicit function theorem and conti-

nuity of eigenvalues or multipliers on parameters) are standard, to show

that hyperbolic equilibria, fixed points, or cycles are locally “structurally

stable”: for all sufficiently small perturbations to the system, the per-

turbed system is locally topologically equivalent to the unperturbed sys-

tem. For more complicated invariant sets, if they are hyperbolic by some

appropriate definition, local structural stability can be shown using essen-

tially the same arguments.
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Introduction to invariant manifolds

If S is an invariant set for a flow or for a map, then its stable set

W s(S) is the set of all states whose orbits approach S in forward time,

e.g. for a flow

while its unstable set W u(S) is the set of all states whose orbits ap-

proach S in backward time. Both the stable set and the unstable set are

themselves (Exercise) invariant sets.

Local invariant manifolds at hyperbolic equilibria or fixed points:

If S = {p0} and p0 is a hyperbolic equilibrium, we have further results.

Theorem 2.5 (Local stable and unstable manifolds for flows). If f is

Cp (p ≥ 1) and p0 is a hyperbolic equilibrium for ẋ = f (x), then

the intersections of W s(p0) and W u(p0) with a sufficiently small open

neighbourhood of p0 contain Cp submanifolds W s
loc(p

0) and W u
loc(p

0) of

dimensions n− = dimT s and n+ = dimT u, respectively.

The smooth submanifolds W s
loc(p

0) and W u
loc(p

0) are tangent at p0 to

T s
p0

and T u
p0

, the stable and unstable subspaces of the linearization at

p0, respectively.
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Similarly, for hyperbolic fixed points:

Theorem 2.6 (Local stable and unstable manifolds for maps). If f is

Cp (p ≥ 1) and p0 is a hyperbolic fixed point for x 7→ f (x), then

the intersections of W s(p0) and W u(p0) with a sufficiently small open

neighbourhood of p0 contain Cp submanifolds W s
loc(p

0) and W u
loc(p

0) of

dimensions n− = dimT s and n+ = dimT u, respectively.

The smooth submanifolds W s
loc(p

0) and W u
loc(p

0) are tangent at p0 to

T s
p0

and T u
p0

, the stable and unstable subspaces of the linearization at

p0, respectively.
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For families of dynamical systems (vector fields/flows, or maps) that

depend smoothly (Cp for some p ≥ 1) on parameters α ∈ Rm, hyperbolic

equilibria, or hyperbolic fixed points, for all sufficiently small changes in

α persist as families of hyperbolic equilibria, or hyperbolic fixed points,

p0(α) with the same topological type and the families depend smoothly

on parameters (Exercise: how would you prove this? why hyperbolic?).

Moreover, Theorems 2.5 and 2.6 can be extended, to prove that the cor-

responding families of local stable and unstable manifolds W s
loc(p

0(α), α)

and W s
loc(p

0(α), α) also depend smoothly on parameters.

Example 2.E. (See Example 2.D.)

ẋ1 = x2

ẋ2 = x1 − δx2 − x31 + ε cos(θ)

θ̇ = ω

(2.D.3)

for x̃ = (x1, x2, θ) belonging to the 3-dimensional manifold X = R2× S1.

In Example 2.D. we constructed a family of Poincaré maps P ( · , ε) :

R2 → R2 for (2.D.3), smoothly parametrized by ε ∈ R1, based on a

global cross-section Σ. We proved that for some interval of ε-values about

ε = 0, there is a family of fixed points ξ0(ε) ∈ R2, smoothly parametrized

by ε, and their topological types are all the same: orientation-preserving
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saddles (0 < µ1(ε) < 1 < µ2(ε)). So the linearizations (2 × 2 matri-

ces) Pξ(ξ
0(ε), ε) all have 1-dimensional stable subspaces (n− = 1) and 1-

dimensional unstable subspaces (n+ = 1). By Theorem 2.6, for each fixed

ε (sufficiently close to 0), the nonlinear Poincaré map P ( · , ε) has a 1-

dimensional local stable manifold W s
loc(ξ

0(ε), ε) and a 1-dimensional local

unstable manifold W u
loc(ξ

0(ε), ε). By the extended version of Theorem 2.6,

if ε is allowed to vary, then the families W s
loc(ξ

0(ε), ε) and W u
loc(ξ

0(ε), ε)

depend smoothly on the parameter ε, and therefore remain O(|ε|)-close

to the “unperturbed” invariant manifolds for ε = 0.
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Now, we use the points in W s
loc(ξ

0(ε), ε) and W u
loc(ξ

0(ε), ε) as initial

values in Σ for (2.D.3) to generate local stable and unstable 2-dimensional

manifolds W̃ s
loc(Lε, ε) and W̃ u

loc(Lε, ε) for the “perturbed” cycles Lε. As

ε varies (near 0), these 2-dimensional manifolds also depend smoothly

on ε, and therefore remain O(|ε|)-close to the “unperturbed” invariant

manifolds for ε = 0.
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Global invariant manifolds:

If an equilibrium or fixed point p0 is hyperbolic, then letting all states

belonging to the positively invariant local stable manifold W s
loc(p

0) evolve

backwards in time we recover the stable set W s(p0), and similarly let-

ting all states in the negatively invariant local unstable manifold W u
loc(p

0)

evolve forwards in time we recover W u(p0). This implies that W s(p0) and

W u(p0) are not just invariant sets, but also are locally Cp submanifolds.

For this reason (if p0 is a hyperbolic equilibrium or fixed point) the sta-

ble and unstable sets W s(p0) and W u(p0) are usually referred to as the

(global) stable and unstable manifolds of p0, respectively. They

are important features of the dynamics.
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