MATH 552 (2023W1) Lecture 12: Fri Oct 6

| Last lecture: ...Poincaré maps... |

Example 2.D, continued.

i+ 60U —u+u® = e cos(wt), (2.D.1)
or, equivalently,
T1 = X9
dy = 21 — 09 — T} + £ cos(h) (2.D.3)
f=w

Poincaré map

1'1(271'/(,(), 517 527 5)

1‘2(271'/(,(.), 517 527 8)

P:RZXRléRza P(glaglag):

has, for € = 0, a fixed point at the origin in R*:

0
P(0,0,0) =

0
For € #£ 0, close to 0, we showed, by carefully using the implicit function
theorem, that P(-,¢) still has a fixed point in R?, and it is O(|e])-close
to the origin. (For € = 0, the variational equation is autonomous so it is

much easier to find Floquet multipliers.)



We also used a continuity argument to find the multipliers of the lin-
earization, at least accurately enough to determine the topological type of
the fixed point: Since the 2 x 2 matrix P¢(£°(¢), €) depends continuously
on € near € = 0, it can be proved that the multipliers p;(e), 7 = 1,2 of
the matrix depend at least continuously on € near 0 (in fact, the depen-
dence of the multipliers is smooth, because the dependence of the matrix
is smooth and the multipliers are distinct). Only assuming continuous

dependence of multipliers on ¢ is enough to conclude that
pi(e), po(e)are both real, 0 < pi(e) < 1 < us(e),

and for ¢ # 0 (e sufficiently near 0) the fixed point has the topological type
of an orientation-preserving (unstable) saddle, the same as for e = 0. Thus
the corresponding cycle L. = { p'(¢, €) = (2{(t, €), 25(t, &), wt (mod 27)) }ser
for (2.D.3), with initial condition p°(0,¢) = (£°(€), 0 (mod 27)), has the

corresponding topological type (it is hyperbolic and unstable).



We therefore conclude that for all ¢ sufficiently close to 0, the origi-
nal forced oscillator (2.D.1) has a unique (27 /w)-periodic solution u’(¢, €)
that is O(|e])-close to the unperturbed solution u°(,0) = 0, depending
smoothly on €, so we could expand in a power series in € to find approxi-

mations. Moreover, this periodic solution is unstable, of saddle type.

Exercise: Perform a similar analysis for the periodic solution u’(¢,0) =
1, under the perturbation € # 0 (it also persists as a (27 /w)-periodic
solution u’(t,e) = 1 + O(Je]), but it is stable, of sink type). Of course

u’(t,0) = —1 can be analyzed in the same way.

Arguments of this type (using the implicit function theorem and conti-
nuity of eigenvalues or multipliers on parameters) are standard, to show
that hyperbolic equilibria, fixed points, or cycles are locally “structurally
stable”: for all sufficiently small perturbations to the system, the per-
turbed system is locally topologically equivalent to the unperturbed sys-
tem. For more complicated invariant sets, if they are hyperbolic by some
appropriate definition, local structural stability can be shown using essen-

tially the same arguments.



Introduction to invariant manifolds

If S is an invariant set for a flow or for a map, then its stable set
W#(S) is the set of all states whose orbits approach S in forward time,

e.g. for a flow

while its unstable set W"(S) is the set of all states whose orbits ap-
proach S in backward time. Both the stable set and the unstable set are
themselves (Exercise) invariant sets.

Local invariant manifolds at hyperbolic equilibria or fived points:

If S = {p"} and p is a hyperbolic equilibrium, we have further results.

Theorem 2.5 (Local stable and unstable manifolds for flows). If f is
CP (p > 1) and p° is a hyperbolic equilibrium for © = f(x), then
the intersections of W*(p°) and W*(p") with a sufficiently small open
neighbourhood of p° contain C? submanifolds W§ (p°) and W} (p°) of
dimensions n_ = dim1” and n, = dimT", respectively.

The smooth submanifolds W§ (p") and W} (p°) are tangent at p° to
T;O and T;f), the stable and unstable subspaces of the linearization at

p°, respectively.



Similarly, for hyperbolic fixed points:

Theorem 2.6 (Local stable and unstable manifolds for maps). If f is
CP (p > 1) and p® is a hyperbolic fized point for x — f(x), then
the intersections of W*(p°) and W*(p") with a sufficiently small open
neighbourhood of p° contain C? submanifolds W (p°) and W} (p°) of
dimensions n_ = dim1” and n, = dimT", respectively.

The smooth submanifolds W (p°) and W} (p") are tangent at p" to
T;O and T;f), the stable and unstable subspaces of the linearization at

p°, respectively.



For families of dynamical systems (vector fields/flows, or maps) that
depend smoothly (C? for some p > 1) on parameters a € R™, hyperbolic
equilibria, or hyperbolic fixed points, for all sufficiently small changes in
a persist as families of hyperbolic equilibria, or hyperbolic fixed points,
p"(a) with the same topological type and the families depend smoothly
on parameters (Exercise: how would you prove this? why hyperbolic?).
Moreover, Theorems 2.5 and 2.6 can be extended, to prove that the cor-
responding families of local stable and unstable manifolds W} (p"(«), a)

loc

and W3

5 (p°(a), @) also depend smoothly on parameters.

Example 2.E. (See Example 2.D.)

T = T
Gy = 11 — 0wy — 2] + £ cos(6) (2.D.3)
) =w

for Z = (x1, 12, 0) belonging to the 3-dimensional manifold X = R? x S!.

In Example 2.D. we constructed a family of Poincaré maps P(-,¢) :
R? — R? for (2.D.3), smoothly parametrized by ¢ € R!, based on a
global cross-section Y. We proved that for some interval of e-values about
e = 0, there is a family of fixed points £%(¢) € R?, smoothly parametrized

by ¢, and their topological types are all the same: orientation-preserving

6



saddles (0 < p1(e) < 1 < ps(e)). So the linearizations (2 x 2 matri-
ces) Pe(€Y(e), €) all have 1-dimensional stable subspaces (n_ = 1) and 1-
dimensional unstable subspaces (n, = 1). By Theorem 2.6, for each fixed
e (sufficiently close to 0), the nonlinear Poincaré map P(-,¢) has a 1-
dimensional local stable manifold W7 (£Y(¢), ) and a 1-dimensional local
unstable manifold W} (£%(¢), €). By the extended version of Theorem 2.6,
if & is allowed to vary, then the families W (£%(¢),e) and W} (€%(¢), €)
depend smoothly on the parameter e, and therefore remain O(|e|)-close

to the “unperturbed” invariant manifolds for ¢ = 0.



Now, we use the points in W} (£°(g),e) and W} (£°(g),¢) as initial
values in X for (2.D.3) to generate local stable and unstable 2-dimensional
manifolds W (L., &) and W} (L., ¢) for the “perturbed” cycles L.. As
e varies (near 0), these 2-dimensional manifolds also depend smoothly
on ¢, and therefore remain O(|e|)-close to the “unperturbed” invariant

manifolds for € = 0.



Global invariant manifolds:

If an equilibrium or fixed point p° is hyperbolic, then letting all states
belonging to the positively invariant local stable manifold W (p") evolve
backwards in time we recover the stable set W#(p"), and similarly let-
ting all states in the negatively invariant local unstable manifold W} (p")
evolve forwards in time we recover W*(p"). This implies that TW*(p") and
WU (p®) are not just invariant sets, but also are locally C? submanifolds.
For this reason (if p' is a hyperbolic equilibrium or fixed point) the sta-
ble and unstable sets W*(p") and W*(p) are usually referred to as the
(global) stable and unstable manifolds of p’, respectively. They

are important features of the dynamics.



