MATH 552 (2023W1) Lecture 13: Wed Oct 11

| Last lecture: ... Poincaré maps. Stable and unstable sets. Local
stable and unstable manifolds (at hyperbolic equilibria or fixed points) |
Global invariant manifolds:

If an equilibrium or fixed point p° is hyperbolic, then letting all states

S

loc (p ! ) evolve

belonging to the positively invariant local stable manifold

backwards in time we recover the stable set W*(p"), and similarly let-

u

ting all states in the negatively invariant local unstable manifold 1" (p")

evolve forwards in time we recover W*(p"). This implies that W*(p") and
WU (p®) are not just invariant sets, but also are locally C? submanifolds.
For this reason (if p' is a hyperbolic equilibrium or fixed point) the sta-
ble and unstable sets W*(p?) and W*(p") are usually referred to as the
(global) stable and unstable manifolds of p’, respectively. They

are important features of the dynamics.

Introduction to Hamiltonian systems

With additional structure in a vector field, it is often easier to determine
global properties of the corresponding flow. We consider a vector field in
the even-dimensional state space R?*, generated by a real-valued C"*!

(r > 1) Hamiltonian (function) H with domain in R*. Let ¢ =



(q1,---,q5) € R® p=(p1,...,ps) € R°. The Hamiltonian system
i = f(z), xcR*
generated by the Hamiltonian H : R* — R has the form

¢=Hy(q,p), p=—Hyqp) (2:8)
where 7 = (q,p) € R® x R® = R%,
Exercise. Show that if x(t) = (q(¢),p(t)) is a solution of (2.8), then
YL H(z(t)) =0, i.e. H(x(t)) = constant.

So in a Hamiltonian system, all solutions x(t) remain on level sets of
the Hamiltonian function H(x) = constant. This property (often called
“conservation of energy”) makes determining the global phase portrait

especially easy in the case of s = 1 (one “degree of freedom”).

Example 2.F. An unforced undamped nonlinear oscillator
i —u+u = 0. (2.F.1)

Let 21 = u (= q) (“position”), zo = @ (= p) (“momentum”), and write

the equation as an equivalent 2-dimensional, autonomous system

jjl = X2,
(2F.2)

.fg = I —LU:I).
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We first find equilibria: 2o = 0 and z; — 23 = 0

Calculate the linearizations at each of the three equilibria and find (Exercise)

that

By Theorem 2.2, (0,0) is in fact for the nonlinear system an unstable hy-
perbolic saddle and, by Theorem 2.5 and its consequences, it has stable
and unstable manifolds. But Theorem 2.2 does not apply to (£1,0) so
we cannot yet jump to any conclusions about their stability and local
dynamics, we need more analysis.

In some prerequisite course you might plot nullclines and the direction

field (Exercise)

but, while useful, this is not yet enough to determine (up to local topo-
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logical equivalence) the dynamics near (+1,0).
Now we use the (observed) fact that the system is Hamiltonian, gener-

ated by

(check), so orbits of the sytem remain on the level sets

1,2 1,2 1.4 __
5T5 — 5%7 + 7% = constant

To help see what these level sets look like, first plot the “potential energy”

Yy = H(Cﬁl,O)

Then, observe that for any constant z; = 29, the graph of y = H (29, 25) =

%x% + constant is a parabola

These two plots (may) help to visualize the graph of the surface y =
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H(xy1,x9) in 3 dimensions

and (the main goal) to plot the level curves

The orbits must remain on these level curves, and be oriented consistent

with the direction field, so the global phase portrait is



The Hamiltonian analysis confirms that (0,0) is a saddle, and now we
see that (41,0) are at local minima of the Hamiltonian function H and
therefore are locally topologically equivalent to centres for a linear system
but occurring in a nonlinear system, i.e. “nonlinear centres”. So they are
Lyapunov stable but not asymptotically stable.

Caution: in general, purely imaginary eigenvalues for the linearization
do not always imply a nonlinear centre! This example is a Hamiltonian
system, which is both “nongeneric” and “structurally unstable”.

We also note that W#((0,0)) N W*((0,0)) # {(0,0)}, there are two

“homoclinic” orbits.



Example 2.G. The undamped planar pendulum.

Newton’s 2nd law and rescaling time gives
¢ +sin(¢)=0, ¢eS (2.G.1)

Let v = ¢ € R and rewrite (2.G.1) as a vector field in a 2-dimensional

manifold

6=,

i = —sin(),
where x = (¢, v) belongs to the cylinder X = S! x R,

(2.G.2)

Equilibria: solve

and we find there are precisely two equilibria in X



Linearized stability (Exercise):

p[l] iS
p?Q] 1S

Nullclines and direction field (Exercise):

We observe that (2.G.2) is a Hamiltonian system:

where
H(p,v) = 5v° — cos(¢)

so we should study the level sets H(¢,v) = constant.



