MATH 552 (2022W1) Lecture 15: Fri Oct 13

| Last lecture: ... Hamiltonian functions. Lyapunov functions ...
Example 2.H, continued. The damped planar pendulum.

o= v,
v= —dv —sin(¢p),

r=(p,v)€ES' xR =X (2.H.2)

where 0 > 0 is a constant.
Equilibria, linearized stability, nullclines and direction field.

Global Lyapunov function

with

L<0 inallofX.
Exercise. Show that, if z(t) = (¢(t),v(t)) is a nonconstant solution,
then g(t) = L(x(t)) is a strictly decreasing function of ¢ (i.e. t; <ty =

g(t1) > g(t2)) (even if v(ty) = 0 for some isolated t).

Then, by the exercise, all orbits that are not equilibria “move strictly

downhill” on the global “contour map” of L.

It is helpful to locate the (global) stable and unstable manifolds Ws(p?Q])

and W(pY,), of the hyperbolic saddle equilibrium p,, relative to the
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level sets of L. In 2 dimensions, the stable manifold of a hyperbolic saddle
equilibrium sometimes forms a “separatrix” that separates regions in the

flow that have different qualitative behaviour as t — oc.

Also, if 0 < 0 < 1, then it is helpful to realize that by Theorem 2.1, for

all finite t, the orbits of (2.H.2) stay O(6)-close to the orbits of the 6 =0

system (2.G.2) which, recall, remain on the level sets of L.

Exercise. Determine and carefully sketch Ws(p?l]), the (global) stable

manifold of the hyperbolic sink equilibrium p([)l].



Unlike Hamiltonian functions, Lyapunov functions need not be restricted
to even-dimensional systems.

Example 2.1I. Consider the (famous) Lorenz system
T = o (2 — 71),
CE:Q =rry — Ty — Ir1x3, (211)

T3 = 1179 — [ X3,
for = (w1, 29, 23) € R where o, r, 8 are positive constants. Notice
that the origin 0 = (0,0,0) is an equilibrium in R?.
Exercise. Show by linearized stability analysis that 0 is stable, if 0 <
r < 1 (i.e. locally stable).
We can use a Lyapunov function to show 0 is globally stable, if 0 < r < 1.

Define

for all z € R3.

Exercise. Show that if 0 < r < 1 and if  # 0, then L(x) < 0.

Since the level sets of L are a continuous family of concentric ellipsoids
about the origin 0 € R?, the result of this exercise implies that 0 is
globally asymptotically stable, if 0 < r < 1, i.e. every orbit approaches 0
as t — 0o, and hence (Exercise) 0 is globally stable if 0 < r < 1.
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3. One-Parameter Local Bifurcations

Families of dynamical systems

In this chapter we study local topological changes in dynamical systems
(vector fields/flows or maps), near equilibria or fixed points or cycles, that
may occur if a system is perturbed a small amount. We can control the
size of perturbations by varying parameters in a smoothly parametrized
famaly of dynamical systems.

If an equilibrium, fixed point or cycle is hyperbolic, then under all
sufficiently small perturbations of the system, such as a small change in
parameter values, the system near the equilibrium, fixed point or cycle
does not change up to local topological equivalence (see e.g. HW 3, prob-
lem 3). If a system does not change topologically under all sufficiently
small perturbations, it is said to be structurally stable (or “persistent” or
“robust” ).

So if we want to see topological changes under perturbations, we should
consider systems that are not structurally stable. The simplest cases in-

volve monhyperbolic equilibria or fixed points.

Example 3.A. (See HW 2, problem 3.)  f: R! x R! = R!,

&= f(z,0) =z — *
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oo = 0 s a bifurcation value, there is a local bifurcation at pj = 0 (which

is a nonhyperbolic equilibrium for a = av).

Phase portrait of 2-dimensional extended (o, x) system

Branching diagram (or bifurcation diagram)



Bifurcation diagram (or bifurcation set): a “parametric portrait” in pa-

rameter space together with corresponding phase portraits in state space.

Now consider m-parameter families of n-dimensional vector fields
T = f(x,a), reR", aeR",

where f : R" x R™ — R" is smooth. Here, the x-values are in n-
dimensional state space R" and the a-values are in m-dimensional param-
eter space R™. For each fixed o, we have a vector field (or autonomous
ODE) in R", and as « varies, the vector field changes smoothly. But the
flow or phase portrait may change in some important way. A parame-
ter value qq is a bifurcation value if, for every open neighbourhood
of ap in R™, there is always some «; in that neighbourhood such that
T = f(r,ap) and & = f(x,aq) are not topologically equivalent. A bi-
furcation diagram (or bifurcation set) is a parametric portrait (a

stratification of the parameter space induced by topological equivalence in



the state space), together with the corresponding phase portraits in state
space. A branching diagram (or bifurcation diagram) is a diagram in
parameter-state space R"” x R” showing branches of equilibria x = p%.] (c)
(or cycles) and their stability (not so practical if m > 1 orn > 1). A
local bifurcation is a bifurcation where the topological non-equivalence
occurs in some (perhaps sufficently small) open neighbourhood of a point
(typically an equilibrium) in state space R™. All these definitions can be

adjusted if the state space is an n-dimensional manifold X, but for local

bifurcations we may as well assume the state space is R".

Similar definitions are made for smooth m-parameter families of n-

dimensional maps
r— f(x,a), reR", «oeR™

Topological equivalence of families

We compare smooth families of dynamical systems and define more
precisely what we mean when we say families have “qualitatively the same”

dynamics for corresponding parameter values.



Two families of vector fields

Ccil—f = f(z, a), reR" «aeR™, (3.1)
and

dy n m

Ezg(?ﬁﬁ): yER ) BER ) (32)

are defined to be topologically equivalent if there is a homeomor-
phism of parameter variables p : R — R™ [ = p(a), and a family of
homeomorphisms of state variables h(-, a) : R" — R", y = h(x, ), that
map the orbits of (3.1) for parameter values o onto the orbits of (3.2) for
parameter values 8 = p(«), preserving the orientation of time. The two
families are locally topologically equivalent if p or A(-, ) are local homeo-
morphisms, defined on open subsets of R™ and R", respectively (typicially,

on some sufficiently small open neighbourhoods of specific points).



Similarly, we can define topological equivalence and local topological

equivalence for two families of maps,
r— fx,a), reR", «aeR™,

and

y— gy, B), y e R", B eR™

From now on in this chapter, we focus on one-parameter families of

systems, m = 1.



