MATH 552 (2023W1) Lecture 16: Mon Oct 16

| Last lecture: ... Lyapunov functions. Families of dynamical systems.
Topological equivalence of families ... |
Similarly, we can define topological equivalence and local topological equiv-

alence for two families of maps,
r— f(z, ), reR", aeR",

and

y— gy, B), yeR", B eR™

From now on, we focus on one-parameter families of systems, m = 1.

The fold bifurcation for 1-dimensional vector fields

Suppose f : R!' x R!' — R! is locally defined and smooth near a
point (py, ag) € R! x R, and consider the one-parameter family of one-

dimensional vector fields
T = f(z,a), reRY aeRL (1)

For a local bifurcation, we look for an equilibrium pj) that is nonhyperbolic

for some specific parameter value «q. In a one-dimensional vector field,



there is only one way for an equilibrium to be nonhyperbolic: Ay = 0,

where \g = f,.(p), ap) is the eigenvalue of the 1 x 1 linearization

é;:fﬂé’(p&&())ga €€R1-

The two conditions
(equilibrium), (F.0.1)

(bifurcation), (F.0.ii)

give, for @ = g, an equilbrium for (T) that: i) exists by (F.0.i), and
ii) is nonhyperbolic by (F.0.ii). At this point, we only have a suspected
bifurcation, since the phase portrait near a nonhyperbolic equilibrium is,
typically, sensitive to arbitrarily small perturbations of the vector field
f(z, ap). We need to verify and specify this sensitivity.

For any fixed «, expanding f(z, ) in a one-variable Taylor series about

Py, we have

Then, letting o vary and expanding each a-dependent coefficient about

ap, and using (F.0.1) and (F.0.ii), we have



and we see that f.(p), a) = O(|a — ag).
For a fold bifurcation (also known as a saddle-node bifurcation), we

require that two additional “generic” conditions hold:
(transversality), (F.1)

(nondegeneracy). (F.2)

|Given any family (1) that satisfies the equalities (F.0.i) and (F.0.ii), the
inequalities (F.1) and (F.2) are satisfied “generically” — roughly speaking,
if we choose an “arbitrary” family (T) that already satisfies (F.0.i) and
(F.0.ii), then it is “highly probable” (in some sense that can be made
mathematically rigourous, but is not worth taking the time to cover the

required background) that it also satisfies (F.1) and (F.2) ]

To simplify subsequent notation, assume (without loss of generality)

p8:0, oy = 0.

Then, expanding f(x, ) in a two-variable Taylor series at (pJ, cig) = (0, 0)
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and using the four conditions (F.0.i)—(F.2), the family () is

Then equilibria are obtained by solving f(x, a) = 0 with the implicit func-
tion theorem to get a locally unique smooth curve of equilibria parametrized
by a, for all x sufficiently near 0, as follows:

Equation for equilbria:
0= f(z,a) =aa+bz®+ O(la]* + |a||z] + |2]*),
where f is smooth. We have a known solution, by (F.0.i), to perturb from:
£(0,0) = 0.

We have, by (F.1),
a= f,(0,0) #0

so we can use the implicit function theorem to solve for a in terms of x,

a locally unique and smooth solution

with



agreeing with the known solution. We have
f(z,a’(x))=0  for all z near 0,
so we can expand in a Taylor series
(z) = ap +alx+ad 2 + O(|z]?),
substitute into the equation just above, and find the coefficients oz? (Exercise)

a=a'(x)=0+0x+ (— g) z° + O(|z]?).

More generally we have for 1 o sufficiently near pj,

b
o= alz) = ag— = (z = p) >+ Ol — 1)) ).

Notice that
(2)
sgn(a — ) =sgn | ——

a

for z # p) and z near py.



If we are careful, we can now solve (Exercise)

for  in terms of « see that there are two branches of equilibria if o # ay

Since f is continuous, in a sufficiently small open neighbourhood of (p), ap),
f can only change sign along the curve where f = 0, i.e. along the curve
a = a'(z). In the complementary regions f must have a definite sign

(e.g. for the case a > 0, b < 0):

Then we can draw the local phase portrait for the 2-dimensional system

a=10

T = f(z,q)



(e.g. for the case a > 0, b < 0)

and the local branching diagram (e.g. for the case a > 0, b < 0)

and the local bifurcation diagram (for the case a > 0, b < 0)

To make local topological equivalence of families rigourous, we should
construct local homeomorphisms p, h(-, a) and prove that they do what
is required (see the textbook p. 80 if you are interested). Here, we only

state the theorem summarizing this work.
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Theorem 3.1. If f : R! x R! = R! is C? in an open set containing a
point (py, @) and satisfies the four conditions (F.0.1)—(F.2), then the

family of vector fields

dx

E - f(xa Oé), at (pga Ck()),

has a fold bifurcation, locally topologically equivalent to the normal

form famaly of vector fields

d
d—z —af+by*, at (0,0).

After the higher-order terms have been “transformed away” with suit-
able homeomorphisms (a continuously invertible change of parameters and
a parametrized family of continuously invertible changes of state variables),
the dynamics of the normal form are easily determined with explicit cal-

culations.

Exercise. Draw the local branching and bifurcation diagrams for the

other three cases of a # 0, b # 0.

By rescaling the state variable y, and rescaling and possibly changing
the sign of the parameter 3, the normal form above can be expressed

(Exercise) even more simply as

dn 2
— =~ + n.
s Y n

8



The textbook calls this the topological normal form of the fold bi-

furcation.

Notice that in (1), the Taylor series terms of order
Ol — agl * + Ja — aw|z — pp| + & — pp|”)

do not qualitatively affect the local dynamics, near (p, ag). As long as
a # 0 and b # 0, the original family (}) is locally topologically equivalent
to the normal form tamily of vector fields which is obtained essentially by
discarding (or “truncating”) the specified higher-order terms in the Taylor

series.

INOTE: Which specific terms are considered “higher-order” and there-

fore can be “ignored” depends on the bifurcation being studied!]



