
MATH 552 (2023W1) Lecture 16: Mon Oct 16

[ Last lecture: ... Lyapunov functions. Families of dynamical systems.

Topological equivalence of families ... ]

Similarly, we can define topological equivalence and local topological equiv-

alence for two families of maps,

x 7→ f (x, α), x ∈ Rn, α ∈ Rm,

and

y 7→ g(y, β), y ∈ Rn, β ∈ Rm.

From now on, we focus on one-parameter families of systems, m = 1.

The fold bifurcation for 1-dimensional vector fields

Suppose f : R1 × R1 → R1 is locally defined and smooth near a

point (p00, α0) ∈ R1 × R1, and consider the one-parameter family of one-

dimensional vector fields

ẋ = f (x, α), x ∈ R1, α ∈ R1. (†)

For a local bifurcation, we look for an equilibrium p00 that is nonhyperbolic

for some specific parameter value α0. In a one-dimensional vector field,



there is only one way for an equilibrium to be nonhyperbolic: λ0 = 0,

where λ0 = fx(p
0
0, α0) is the eigenvalue of the 1× 1 linearization

ξ̇ = fx(p
0
0, α0) ξ, ξ ∈ R1.

The two conditions

(equilibrium), (F.0.i)

(bifurcation), (F.0.ii)

give, for α = α0, an equilbrium for (†) that: i) exists by (F.0.i), and

ii) is nonhyperbolic by (F.0.ii). At this point, we only have a suspected

bifurcation, since the phase portrait near a nonhyperbolic equilibrium is,

typically, sensitive to arbitrarily small perturbations of the vector field

f (x, α0). We need to verify and specify this sensitivity.

For any fixed α, expanding f (x, α) in a one-variable Taylor series about

p00, we have

Then, letting α vary and expanding each α-dependent coefficient about

α0, and using (F.0.i) and (F.0.ii), we have
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and we see that fx(p
0
0, α) = O(|α− α0|).

For a fold bifurcation (also known as a saddle-node bifurcation), we

require that two additional “generic” conditions hold:

(transversality), (F.1)

(nondegeneracy). (F.2)

[Given any family (†) that satisfies the equalities (F.0.i) and (F.0.ii), the

inequalities (F.1) and (F.2) are satisfied “generically” – roughly speaking,

if we choose an “arbitrary” family (†) that already satisfies (F.0.i) and

(F.0.ii), then it is “highly probable” (in some sense that can be made

mathematically rigourous, but is not worth taking the time to cover the

required background) that it also satisfies (F.1) and (F.2).]

To simplify subsequent notation, assume (without loss of generality)

p00 = 0, α0 = 0.

Then, expanding f (x, α) in a two-variable Taylor series at (p00, α0) = (0, 0)
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and using the four conditions (F.0.i)–(F.2), the family (†) is

Then equilibria are obtained by solving f (x, α) = 0 with the implicit func-

tion theorem to get a locally unique smooth curve of equilibria parametrized

by x, for all x sufficiently near 0, as follows:

Equation for equilbria:

0 = f (x, α) = aα + b x2 + O(|α|2 + |α||x| + |x|3),

where f is smooth. We have a known solution, by (F.0.i), to perturb from:

f (0, 0) = 0.

We have, by (F.1),

a = fα(0, 0) 6= 0

so we can use the implicit function theorem to solve for α in terms of x,

a locally unique and smooth solution

α = α0(x),

with

α0(0) = 0,
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agreeing with the known solution. We have

f (x, α0(x)) = 0 for all x near 0,

so we can expand in a Taylor series

α0(x) = α0
0 + α0

1 x + α0
2 x

2 + O(|x|3),

substitute into the equation just above, and find the coefficients α0
j (Exercise)

α = α0(x) = 0 + 0x +

(
− b

a

)
x2 + O(|x|3).

More generally we have for l x sufficiently near p00,

α = α0(x) = α0 −
b

a
(x− p00) 2 + O(|x− p00| 3).

Notice that

sgn(α− α0) = sgn

(
− b

a

)
for x 6= p00 and x near p00.
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If we are careful, we can now solve (Exercise)

for x in terms of α see that there are two branches of equilibria if α 6= α0

Since f is continuous, in a sufficiently small open neighbourhood of (p00, α0),

f can only change sign along the curve where f = 0, i.e. along the curve

α = α0(x). In the complementary regions f must have a definite sign

(e.g. for the case a > 0, b < 0):

Then we can draw the local phase portrait for the 2-dimensional system

α̇ = 0

ẋ = f (x, α)
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(e.g. for the case a > 0, b < 0)

and the local branching diagram (e.g. for the case a > 0, b < 0)

and the local bifurcation diagram (for the case a > 0, b < 0)

To make local topological equivalence of families rigourous, we should

construct local homeomorphisms p, h(·, α) and prove that they do what

is required (see the textbook p. 80 if you are interested). Here, we only

state the theorem summarizing this work.
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Theorem 3.1. If f : R1×R1 → R1 is C3 in an open set containing a

point (p00, α
0) and satisfies the four conditions (F.0.i)–(F.2), then the

family of vector fields

dx

dt
= f (x, α), at (p00, α0),

has a fold bifurcation, locally topologically equivalent to the normal

form family of vector fields

dy

ds
= a β + b y2, at (0, 0).

After the higher-order terms have been “transformed away” with suit-

able homeomorphisms (a continuously invertible change of parameters and

a parametrized family of continuously invertible changes of state variables),

the dynamics of the normal form are easily determined with explicit cal-

culations.

Exercise. Draw the local branching and bifurcation diagrams for the

other three cases of a 6= 0, b 6= 0.

By rescaling the state variable y, and rescaling and possibly changing

the sign of the parameter β, the normal form above can be expressed

(Exercise) even more simply as

dη

ds
= γ ± η2.
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The textbook calls this the topological normal form of the fold bi-

furcation.

Notice that in (†), the Taylor series terms of order

O(|α− α0| 2 + |α− α0||x− p00| + |x− p00| 3)

do not qualitatively affect the local dynamics, near (p00, α0). As long as

a 6= 0 and b 6= 0, the original family (†) is locally topologically equivalent

to the normal form family of vector fields which is obtained essentially by

discarding (or “truncating”) the specified higher-order terms in the Taylor

series.

[NOTE: Which specific terms are considered “higher-order” and there-

fore can be “ignored” depends on the bifurcation being studied!]
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