MATH 552 (2023W1) Lecture 18: Fri Oct 20

| Last lecture: Symmetric pitchfork bifurcation, Theorem 3.2. Fold

bifurcation for maps, Theorem 3.3 ... |

r— fx,a), reRL aeR!, (1)

If f(x,a) satisfies

f(ph, ) =p)  (fized point), (FM.0.1)

o = fo(pd,a0) =1 (bifurcation), (FM.0.ii)
a= fu(py,c0) #0  (transversality), (FM.1)
b=1fu(py,a0) #0  (nondegeneracy), (FM.2)

then the family (1) has a fold bifurcation for maps.

Theorem 3.3. If f : R! x R! — R! is C? in an open set containing
(pd, cwg) and satisfies the four conditions (FM.0.i)~(FM.2), then the
famaly of maps

v fz,a) at (pg,a0)
has a fold bifurcation, locally topologically equivalent to the normal
form

y|—>y+a/§’+by2 at (0,0).



Local dynamics of y — y + aB + by* at (0,0), in the case a > 0, b < 0:

Local stiircase c/t'a7 rams [ocal /.oAaSe poﬁ‘ra.i‘fs

l%:j

{ 2=J+dﬂ +6j2

Exercise. Study the other three cases of a # 0, b # 0 for the normal

form.



Families of maps (1) can also have transcritical bifurcations and
symmetric pitchfork bifurcations associated with a critical multi-
plier of the linearization uy = +1. Like the fold bifurcations for 1-
dimensional maps, the transcritical and symmetric pitchfork bifurcations
for 1-dimensional maps behave essentially like discrete-time analogues of

the corresponding bifurcations for 1-dimensional vector fields.

In the case g = —1, the associated generic bifurcation for a 1-dimensional

map has no continuous-time analogue in a 1-dimensional vector field.

The flip bifurcation for 1-dimensional maps

Here we consider the resulting bifurcation in a l-parameter family of
1-dimensional maps when the critical multiplier of the linearization at the

nonhyperbolic fixed point is pyg = —1. Consider again a family
x> f(z,a), zeR', aeR (1)

where f is sufficiently smooth near a point (pj), ag) € R x RL If f(z, a)

satisfies

(fized point), (PD.0.1)

(bifurcation), (PD.0.ii)



then x = pj is a fixed point for a = ap, and it is nonhyperbolic. In this
case the implicit function theorem can be used (even if the fixed point is

nonhyperbolic — Exercise) to solve

to obtain a locally unique smooth solution x = p"(a) with p°(ag) = pj), a

smooth curve (a, p’(a)) of fixed points (i.e.

for all @ near ) through (v, pY), so the number of fixed points does not
change locally if we vary a near «y. (It turns out though, that generically

its topological type changes.)

For @ = ayq the linearization at p), namely u — pou = —u, has
2-cycles, so we are going to look for 2-cycles in the nonlinear map for
a near «p. To make this (ultimately) easier, we first make coordinate

changes, that do not change the dynamics but will eventually make explicit



calculations possible. We first change coordinates with a shift
v =p(a) +u (D

so that for any a (near ag), u = 0 corresponds to the fixed point z = p°(«)

and the family (I) is transformed

and becomes

(1.L.a)

where the a-dependent coefficients are
pla) =
f o) =
faler) =

Note that (1.I.a) has fixed point u = 0, i.e. £(0,a) =0, for all & near ay.
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We assume a (generic) transversality condition

o= "
which implies that the linearized stability of the fixed point p°(«r) changes,
as « increases through ag, because the value of the multiplier u(«) passes
through p(ag) = —1 with nonzero “speed” with respect to a, i.e. transver-

sally. Using an equivalent (Exercise) but more useful (in applications)

expression for p'(ayp), we assume

—a = (transversality).

(PD.1)
We write (1.1.a) as

where the a-dependent coefficients have Taylor expansions



Now we write (1.1.a) as

and make another coordinate change to “simplify” the Taylor expansion.

A smooth “near-identity” coordinate change of the form

can be found, with a specific choice of a-dependent coefficient ho(c)
(Exercise, see HW4), so that in the transformed family the linearization
15 unchanged, and the quadratic Taylor coefficient in the state variable
(i.e. the coefficient of v?) is “removed” for all c, and the transformed

family then has the form

v (1.1La)

If this specific choice of ho(c) is made, then it turns out (Exercise,

see HW4) that the new cubic coefficient g3(a), in the transformed family,



becomes, at leading order in «,

A

. p
g3() = fylag) + [ f2(a0>] __y
We now assume that gs(ag) = —b does not vanish, but we express it in

terms of the original family of maps (I):

—b= (nondegeneracy)
(PD.2)
Thus the family of maps (1) is locally smoothly conjugate (and therefore

locally topologically equivalent) to

(£.ILb)

It then can be proved that the higher-order terms in (1.I1.b) can be “trans-
formed away” with some suitable changes of parameter and state variables

(homeomorphisms)
B=pla)=a—oag+---,
y=hv,a)=v+---,
and as a consequence of the analysis of the normal form, the family of

maps (1) has a flip bifurcation (or period doubling bifurcation) at

(p87 CVO):



Theorem 3.4. If f : R! x R! — R! is C* in an open set contain-
ing (p), ) and satisfies the four conditions (PD.0.1))~(PD.2), then the
family

r i f(z,a) at (p),ap)
has a flip (or period doubling) bifurcation, locally topologically equiv-
alent to the normal form

y— —y—aBy—by’ at (0,0).

The topological normal form is
N =N =0 F .

A bit more work is needed to show the existence and stability of bifur-

cating 2-cycles. The second iterate of (1),

x = fz(xvo‘) - f(f<$7a>7a>

is locally topologically equivalent to the second iterate of the normal form



which can be seen, by explicit calculation (Exercise), to have bifurcating
nonzero fixed points. These nonzero fixed points for the second iterate
correspond to points on the orbits of nontrivial 2-cycles for the normal

form. Their stability depends on the sign of b.
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