
MATH 552 (2023W1) Lecture 18: Fri Oct 20

[ Last lecture: Symmetric pitchfork bifurcation, Theorem 3.2. Fold

bifurcation for maps, Theorem 3.3 ... ]

x �→ f (x,α), x ∈ R1, α ∈ R1, (1)

If f (x,α) satisfies

f (p00,α0) = p00 (fixed point), (FM.0.i)

µ0 = fx(p
0
0,α0) = 1 (bifurcation), (FM.0.ii)

a = fα(p
0
0,α0) �= 0 (transversality), (FM.1)

b = 1
2fxx(p

0
0,α0) �= 0 (nondegeneracy), (FM.2)

then the family (‡) has a fold bifurcation for maps.

Theorem 3.3. If f : R1 × R1 → R1 is C3 in an open set containing

(p00,α0) and satisfies the four conditions (FM.0.i)–(FM.2), then the

family of maps

x �→ f (x,α) at (p00,α0)

has a fold bifurcation, locally topologically equivalent to the normal

form

y �→ y + a β + b y2 at (0, 0).



Local dynamics of y �→ y + aβ + by2 at (0, 0), in the case a > 0, b < 0:

Exercise. Study the other three cases of a �= 0, b �= 0 for the normal

form.
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Families of maps (‡) can also have transcritical bifurcations and

symmetric pitchfork bifurcations associated with a critical multi-

plier of the linearization µ0 = +1. Like the fold bifurcations for 1-

dimensional maps, the transcritical and symmetric pitchfork bifurcations

for 1-dimensional maps behave essentially like discrete-time analogues of

the corresponding bifurcations for 1-dimensional vector fields.

In the case µ0 = −1, the associated generic bifurcation for a 1-dimensional

map has no continuous-time analogue in a 1-dimensional vector field.

The flip bifurcation for 1-dimensional maps

Here we consider the resulting bifurcation in a 1-parameter family of

1-dimensional maps when the critical multiplier of the linearization at the

nonhyperbolic fixed point is µ0 = −1. Consider again a family

x �→ f (x,α), x ∈ R1, α ∈ R1, (‡)

where f is sufficiently smooth near a point (p00,α0) ∈ R1×R1. If f (x,α)

satisfies

(fixed point), (PD.0.i)

(bifurcation), (PD.0.ii)
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then x = p00 is a fixed point for α = α0, and it is nonhyperbolic. In this

case the implicit function theorem can be used (even if the fixed point is

nonhyperbolic – Exercise) to solve

to obtain a locally unique smooth solution x = p0(α) with p0(α0) = p00, a

smooth curve (α, p0(α)) of fixed points (i.e.

f (p0(α),α) = p0(α)

for all α near α0) through (α0, p
0
0), so the number of fixed points does not

change locally if we vary α near α0. (It turns out though, that generically

its topological type changes.)

For α = α0 the linearization at p00, namely u �→ µ0 u = −u, has

2-cycles, so we are going to look for 2-cycles in the nonlinear map for

α near α0. To make this (ultimately) easier, we first make coordinate

changes, that do not change the dynamics but will eventually make explicit
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calculations possible. We first change coordinates with a shift

x = p0(α) + u (I)

so that for any α (near α0), u = 0 corresponds to the fixed point x = p0(α)

and the family (‡) is transformed

and becomes

(‡.I.a)

where the α-dependent coefficients are

µ(α) =

f̂2(α) =

f̂3(α) =

Note that (‡.I.a) has fixed point u = 0, i.e. f̂ (0,α) = 0, for all α near α0.
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We assume a (generic) transversality condition

−a = (*)

which implies that the linearized stability of the fixed point p0(α) changes,

as α increases through α0, because the value of the multiplier µ(α) passes

through µ(α0) = −1 with nonzero “speed” with respect to α, i.e. transver-

sally. Using an equivalent (Exercise) but more useful (in applications)

expression for µ�(α0), we assume

−a = (transversality).

(PD.1)

We write (‡.I.a) as

where the α-dependent coefficients have Taylor expansions

µ(α) =

f̂2(α) =

f̂3(α) =
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Now we write (‡.I.a) as

and make another coordinate change to “simplify” the Taylor expansion.

A smooth “near-identity” coordinate change of the form

u = (II)

can be found, with a specific choice of α-dependent coefficient h2(α)

(Exercise, see HW4), so that in the transformed family the linearization

is unchanged, and the quadratic Taylor coefficient in the state variable

(i.e. the coefficient of v2) is “removed” for all α, and the transformed

family then has the form

v �→ (‡.II.a)

If this specific choice of h2(α) is made, then it turns out (Exercise,

see HW4) that the new cubic coefficient g3(α), in the transformed family,
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becomes, at leading order in α,

g3(α0) = f̂3(α0) +
�
f̂2(α0)

�2
= − b.

We now assume that g3(α0) = −b does not vanish, but we express it in

terms of the original family of maps (‡):

− b = (nondegeneracy)

(PD.2)

Thus the family of maps (‡) is locally smoothly conjugate (and therefore

locally topologically equivalent) to

(‡.II.b)

It then can be proved that the higher-order terms in (‡.II.b) can be “trans-

formed away” with some suitable changes of parameter and state variables

(homeomorphisms)

β = p(α) = α− α0 + · · · ,

y = h(v,α) = v + · · · ,

and as a consequence of the analysis of the normal form, the family of

maps (‡) has a flip bifurcation (or period doubling bifurcation) at

(p00,α0):
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Theorem 3.4. If f : R1 × R1 → R1 is C4 in an open set contain-

ing (p00,α0) and satisfies the four conditions (PD.0.i)–(PD.2), then the

family

x �→ f (x,α) at (p00,α0)

has a flip (or period doubling) bifurcation, locally topologically equiv-

alent to the normal form

y �→ −y − a βy − b y3 at (0, 0).

The topological normal form is

η �→ −η − γ η ∓ η3.

A bit more work is needed to show the existence and stability of bifur-

cating 2-cycles. The second iterate of (‡),

x �→ f 2(x,α) = f (f (x,α),α)

is locally topologically equivalent to the second iterate of the normal form
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which can be seen, by explicit calculation (Exercise), to have bifurcating

nonzero fixed points. These nonzero fixed points for the second iterate

correspond to points on the orbits of nontrivial 2-cycles for the normal

form. Their stability depends on the sign of b.
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