MATH 552 (2023W1) Lecture 19: Mon Oct 23

| Last lecture: ... fold bifurcation for maps, Flip bifurcation for maps

]
z— flz,a), 2xeR', aeRl ()

where f is sufficiently smooth near a point (pg,ag) € R x R, Assume
(1) satisfies

f(pg, ap) = p8 (fized point), (PD.0.1)

o = fo(p), a0) = =1 (bifurcation). (PD.0.ii)

Then, by the implicit function theorem, there is a smooth branch x =

py(a) of fixed points,

with p°(ag) = pY), for all o sufficiently near ap.

First change of coordinates (a “shift”)
r=p'(a) +u (D)

so that for any a (near ap), u = 0 corresponds to the fixed point z = p°(«)

and the family (I) is transformed into

A

wrs flu, ) = ple)u+ fola)u® + f(a)u® + O(jul*), (1)



where
pla) = =[1+ala — ag) + O(la — ag|?)].

and we assume

—a = fralpy, ap) + 3 fra(Dl), o) fa(pf), ) # 0 (transversality).
(PD.1)

We make a second coordinate change to “simplify” the Taylor expan-

sion. A smooth “near-identity” coordinate change of the form
u=uv+h?(a)v? (IT)

with a specific choice of a-dependent coefficient hy(a) (Exercise, see
HW4), so that in the transformed family the linearization is unchanged,
and the quadratic Taylor coefficient in the state variable (i.e. the coefficient
of v?) is “removed” for all v, and the transformed (locally topologically

equivalent) family then has the form
v = —v—ala—ag)v—bv* +O(|a—ag)?|v]|+|a—apl|v]*+|v|*). ($.ILb)

where we assume

2

b= frnapo00) + (Sl o))  #£0 (nondegeneracy) (PD.2)



It then can be proved that the higher-order terms in (I.IL.b) can be
“transformed away” with some suitable changes of parameter and state

variables (homeomorphisms)
B=pla)—a—ar+-.

y=hv,a)=v+---,

and (as a consequence of the analysis of the normal form) the family of
maps (1) can be shown to have a flip bifurcation (or period doubling

bifurcation) at (p, ap):

Theorem 3.4. If f : R! x R! — R! is C* in an open set contain-
ing (p), ) and satisfies the four conditions (PD.0.i)~(PD.2), then the
famaly

r > f(z,a) at (p),ap)
has a flip (or period doubling) bifurcation, locally topologically equiv-
alent to the normal form

y— —y—aBy—by’ at (0,0).

The topological normal form is

ne —n—yn F .



A bit more work is needed to show the existence and stability of bifur-

cating 2-cycles. The second iterate of (1),

T = fQ(xa@) - f(f(I,Ck),Ck)

is locally topologically equivalent to the second iterate of the normal form



which can be seen, by explicit calculation (Exercise), to have bifurcating
nonzero fixed points. These nonzero fixed points for the second iterate
correspond to points on the orbits of nontrivial 2-cycles for the normal

form. Their stability depends on the sign of b.



A subtle point: The normal form has symmetry, but the original family
of maps () in general does not. Symmetry is introduced into the lower-
order terms with the transformation (II), then by “transforming away”
higher-order terms we lost some information. This does not affect local

topological equivalence, but is sometimes worth noting.

Local bifurcation diagram for the normal form if a > 0, b < 0

Typical local branching diagram for (1) if a > 0, b < 0

Exercise. Draw diagrams for the other three cases of a # 0, b # 0.



Poincaré normal forms

For vector fields or maps, there is a systematic method to make non-
linear “near-identity” changes of state variables that “simplify” the lower-
order terms of the Taylor expansion at an equilibrium or a fixed point.
Furthermore, the method can be modified to apply to families of vector
fields or maps. (In fact the method was used above, for a family of 1-
dimensional maps at a flip bifurcation.) Here we develop the method for

n-dimensional vector fields.

Consider a smooth vector field
T = f(x), x € R",
and assume f(0) = 0. If n = 2, we have in component form

a1 filz1, o)
T fol@1, o)
where f1(0,0) = 0 and f5(0,0) = 0. A Taylor expansion about the origin

(0,0) has the form



where the a; are the elements of the derivative (2 x 2 matrix) f,(0)

6?f1 afl

ar = a—xl(o O) a9 = 83;‘2 (0 O)
_0f 0fs
as — 8—331(0 O) aqg — axQ (0 O)

and the b; are the second-order Taylor coeflicients

1 9%fy 1 9%*f 1 0*fy

- = —-10,0
b= 5 8x1(0 0 bz 1!1!8x181@(0’0% bs (N2'<9x2( )
1 9%fy 1 9%fy 1 0°fe

by = b
"= 50 o2 a2 00 b5 =g g (0.0), b =G B 3 00

The Taylor expansion can be written more concisely as
i=Az+ fA2)+0(z|P), zecR

where A = f,(0) is the (Jacobian) matrix of first order partial derivatives
evaluated at 0 and f®)(x) denotes the vector field of second-order terms

in the Taylor expansion about 0.

Notice that f)(z) belongs to the set, which we call Hy, of vector fields
whose components are homogeneous polynomials in x = (x1, x2) of order

2. Also notice we can write any such f®(z) as
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x% T1T9 0
0 0 73
which shows that the set H, is actually a vector space, of dimension 6

(when n = 2), with basis

and with this basis we can represent f?)(x) € Hj by the vector

Similarly, in R” with n = 3,4, ..., if fis C"™" withm =2,3,..., by

Taylor’s theorem with remainder, we can make a Taylor expansion of
= f(x), xe€R" with f(0)=0
at the equilibrium 0 € R"
i=Ax+ fP)+ fO) + -+ @) + O[], (3.3)

where Az = f,(0)x is the linearization of the vector field at the equi-

librium, and for & = 2.3,...,m each f%® belongs to Hj, the finite-
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dimensional vector space of all vector fields from R" into R" whose com-
ponents are homogeneous polynomials of order k.

(To simplify Poincaré normal form calculations in practice, it is usual
to choose coordinates « so that A is in real or Jordan normal form.) We
start by “simplifying” the order £ = 2 terms. Introduce a “near-identity”

coordinate change (a local diffeomorphism) of the form
z=y+hy)

where h'?) € Hy. E.g. if n =2

Applying any such coordinate change, we get

then solving for y

and expanding
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