
MATH 552 (2023W1) Lecture 19: Mon Oct 23

[ Last lecture: ... fold bifurcation for maps, Flip bifurcation for maps

... ]

x 7→ f (x, α), x ∈ R1, α ∈ R1, (‡)

where f is sufficiently smooth near a point (p00, α0) ∈ R1 × R1. Assume

(‡) satisfies

f (p00, α0) = p00 (fixed point), (PD.0.i)

µ0 = fx(p
0
0, α0) = −1 (bifurcation). (PD.0.ii)

Then, by the implicit function theorem, there is a smooth branch x =

p00(α) of fixed points,

f (p0(α), α) = p0(α)

with p0(α0) = p00, for all α sufficiently near α0.

First change of coordinates (a “shift”)

x = p0(α) + u (I)

so that for any α (near α0), u = 0 corresponds to the fixed point x = p0(α)

and the family (‡) is transformed into

u 7→ f̂ (u, α) = µ(α)u + f̂2(α)u2 + f̂3(α)u3 + O(|u|4), (‡.I)



where

µ(α) = −[1 + a(α− α0) + O(|α− α0|2)].

and we assume

− a = fxα(p00, α0) + 1
2 fxx(p

0
0, α0) fα(p00, α0) 6= 0 (transversality).

(PD.1)

We make a second coordinate change to “simplify” the Taylor expan-

sion. A smooth “near-identity” coordinate change of the form

u = v + h(2)(α) v2, (II)

with a specific choice of α-dependent coefficient h2(α) (Exercise, see

HW4), so that in the transformed family the linearization is unchanged,

and the quadratic Taylor coefficient in the state variable (i.e. the coefficient

of v2) is “removed” for all α, and the transformed (locally topologically

equivalent) family then has the form

v 7→ −v−a(α−α0)v−bv3+O(|α−α0|2|v|+|α−α0||v|3+|v|4). (‡.II.b)

where we assume

− b = 1
6fxxx(p

0
0, α0) +

[
1
2fxx(p

0
0, α0)

]2 6= 0 (nondegeneracy) (PD.2)

=====
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It then can be proved that the higher-order terms in (‡.II.b) can be

“transformed away” with some suitable changes of parameter and state

variables (homeomorphisms)

β = p(α) = α− α0 + · · · ,

y = h(v, α) = v + · · · ,

and (as a consequence of the analysis of the normal form) the family of

maps (‡) can be shown to have a flip bifurcation (or period doubling

bifurcation) at (p00, α0):

Theorem 3.4. If f : R1 × R1 → R1 is C4 in an open set contain-

ing (p00, α0) and satisfies the four conditions (PD.0.i)–(PD.2), then the

family

x 7→ f (x, α) at (p00, α0)

has a flip (or period doubling) bifurcation, locally topologically equiv-

alent to the normal form

y 7→ −y − a βy − b y3 at (0, 0).

The topological normal form is

η 7→ −η − γ η ∓ η3.
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A bit more work is needed to show the existence and stability of bifur-

cating 2-cycles. The second iterate of (‡),

x 7→ f 2(x, α) = f (f (x, α), α)

is locally topologically equivalent to the second iterate of the normal form
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which can be seen, by explicit calculation (Exercise), to have bifurcating

nonzero fixed points. These nonzero fixed points for the second iterate

correspond to points on the orbits of nontrivial 2-cycles for the normal

form. Their stability depends on the sign of b.
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A subtle point: The normal form has symmetry, but the original family

of maps (‡) in general does not. Symmetry is introduced into the lower -

order terms with the transformation (II), then by “transforming away”

higher-order terms we lost some information. This does not affect local

topological equivalence, but is sometimes worth noting.

Local bifurcation diagram for the normal form if a > 0, b < 0

Typical local branching diagram for (‡) if a > 0, b < 0

Exercise. Draw diagrams for the other three cases of a 6= 0, b 6= 0.
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Poincaré normal forms

For vector fields or maps, there is a systematic method to make non-

linear “near-identity” changes of state variables that “simplify” the lower-

order terms of the Taylor expansion at an equilibrium or a fixed point.

Furthermore, the method can be modified to apply to families of vector

fields or maps. (In fact the method was used above, for a family of 1-

dimensional maps at a flip bifurcation.) Here we develop the method for

n-dimensional vector fields.

Consider a smooth vector field

ẋ = f (x), x ∈ Rn,

and assume f (0) = 0. If n = 2, we have in component form ẋ1

ẋ2

 =

 f1(x1, x2)

f2(x1, x2)


where f1(0, 0) = 0 and f2(0, 0) = 0. A Taylor expansion about the origin

(0, 0) has the form
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where the aj are the elements of the derivative (2× 2 matrix) fx(0)

a1 =
∂f1
∂x1

(0, 0), a2 =
∂f1
∂x2

(0, 0),

a3 =
∂f2
∂x1

(0, 0), a4 =
∂f2
∂x2

(0, 0),

and the bj are the second-order Taylor coefficients

b1 =
1

2! 0!

∂2f1
∂x21

(0, 0), b2 =
1

1! 1!

∂2f1
∂x1∂x2

(0, 0), b3 =
1

0! 2!

∂2f1
∂x22

(0, 0),

b4 =
1

2! 0!

∂2f2
∂x21

(0, 0), b5 =
1

1! 1!

∂2f2
∂x1∂x2

(0, 0), b6 =
1

0! 2!

∂2f6
∂x22

(0, 0).

The Taylor expansion can be written more concisely as

ẋ = Ax + f (2)(x) + O(‖x‖3), x ∈ R2

where A = fx(0) is the (Jacobian) matrix of first order partial derivatives

evaluated at 0 and f (2)(x) denotes the vector field of second-order terms

in the Taylor expansion about 0.

Notice that f (2)(x) belongs to the set, which we call H2, of vector fields

whose components are homogeneous polynomials in x = (x1, x2) of order

2. Also notice we can write any such f (2)(x) as
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f (2)(x) = b1

 x21

0

 + b2

 x1x2

0

 + · · · + b6

 0

x22

 ,

which shows that the set H2 is actually a vector space, of dimension 6

(when n = 2), with basis

and with this basis we can represent f (2)(x) ∈ H2 by the vector

Similarly, in Rn with n = 3, 4, . . . , if f is Cm+1 with m = 2, 3, . . . , by

Taylor’s theorem with remainder, we can make a Taylor expansion of

ẋ = f (x), x ∈ Rn with f (0) = 0

at the equilibrium 0 ∈ Rn

ẋ = Ax + f (2)(x) + f (3)(x) + · · · + f (m)(x) + O(‖x‖m+1), (3.3)

where Ax = fx(0)x is the linearization of the vector field at the equi-

librium, and for k = 2, 3, . . . ,m each f (k) belongs to Hk, the finite-
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dimensional vector space of all vector fields from Rn into Rn whose com-

ponents are homogeneous polynomials of order k.

(To simplify Poincaré normal form calculations in practice, it is usual

to choose coordinates x so that A is in real or Jordan normal form.) We

start by “simplifying” the order k = 2 terms. Introduce a “near-identity”

coordinate change (a local diffeomorphism) of the form

x = y + h(2)(y)

where h(2) ∈ H2. E.g. if n = 2

Applying any such coordinate change, we get

then solving for ẏ

and expanding
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