MATH 552 (2023W1) Lecture 20: Wed Oct 25

| Last lecture: ... flip (period doubling) bifurcation for maps. Poincaré
normal forms ... |

Consider

with

E.g. if n = 2, Taylor expansion about x = 0 is
i=Azx+ fPz)+0(|z]?), zeR?

where A = f,(0) is the (Jacobian) matrix of first order partial derivatives
evaluated at 0 and f®)(x) denotes the vector field of second-order terms

in the Taylor expansion about 0,
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We see that f?)(x) belongs to the set, which we call Hy, of vector fields

whose components are homogeneous polynomials in x = (x1, x2) of order



We can write any such f®)(z) as

which shows that the set Hs is actually a vector space, of dimension 6

(when n = 2), with basis

and with this basis we can represent f?)(x) € Hj by the vector

Similarly, in R” with n = 3,4, ..., if fis C™' with m =2,3,..., by

Taylor’s theorem with remainder, we can make a Taylor expansion of
= f(z), x€R" with f(0)=0
at the equilibrium 0 € R"

i=Ax+ fP@)+ fO@) +- -+ )+ O(lz|"),  (33)



where Az = f,(0)x is the linearization of the vector field at the equi-
librium, and for & = 2.3,...,m each f%* belongs to Hj, the finite-
dimensional vector space of all vector fields from R" into R" whose com-
ponents are homogeneous polynomials of order k.

(To simplify Poincaré normal form calculations in practice, it is usual
to choose coordinates x so that A is in real or Jordan normal form.) We
start by “simplifying” the order £ = 2 terms. Introduce a “near-identity”

coordinate change (a local diffeomorphism) of the form
z=y+h®(y)

where h?) € Hy. E.g. if n =2

Applying any such coordinate change, we get

then solving for y



and expanding

and expanding further, keeping explicitly all terms up to order 2

we see the linearization is unchanged in the new coordinates and the vector

field (3.3) is transformed into the (locally smoothly equivalent) vector field

g = Ay — (Lah?)(y) + () + Olly]I*),
where for any integer k > 2, L4 : H, — Hj. is defined by
k k k
(Lah)(y) = BP(y) Ay — ARP(y).

Exercise. Verify that L4 : H, — Hy, and is a linear operator (we can
find a matrix representation of L4 with respect to any basis for Hy).

For k = 2, we find the range L4(H>) and choose a complementary
subspace Hy in Hy (not necessarily unique, and not always useful to take

the orthogonal complement of L 4(H>)) so that

Hy, = L4(H,) ® H,.



Relative to any specific complementary subspace Ha, every f2) € Hy has

a unique decomposition

fO0) =92 + ), ¢ e Li(Hy), r? e H,.

Then since ¢? belongs to the range L A(Hs), there exists some specific
h'?) € H, such that the coordinate change “removes” this component of

f@) that lies in the range,

and therefore transforms (3.3) into
g =Ay+ry) + Oyl (3.4)

In this way the vector field (3.3) is “simplified” into (3.4) by a coordinate
change that “removes” as many coefficients of order 2 as possible. The
term 7?)(y) (it might be zero) is said to contain the resonant terms

of order 2, and we say the vector field has been put into Poincaré

normal form up to order 2. We also say that (3.4) is the Poincaré
normal form of (3.3) up to order 2.
By induction, one can show that as long as f is smooth enough, the

vector field (3.3) can be transformed into Poincaré normal form up to any

finite order m, m > 2.



Theorem 3.5. If f : R" — R" is O™ (m > 2) in an open set

containing 0 and f(0) = 0, then there ezists a coordinate change
c=y+hP0) + --+r"y), MWeH, k=2 m,

that transforms the Taylor expansion of f at the equilibrium 0, up to

order m

into the (locally smoothly equivalent) Poincaré normal form, up to

order m
g =Ay+rP(y)+ -+ )+o(ly|™h), W e H,, k=2 ,m,

where each F) contains the resonant terms of order k, k=2,--- ,m.

A similar method exists for n-dimensional maps (e.g. HW4 problem
2(b), n = 1). Then the methods can be modified slightly for families of

n-dimensional vector fields or maps (e.g. HW4 problem 2(c)).



Example 3.B. (This example is used later in the analysis of the Hopf

bifurcation.) Consider a 2-dimensional vector field
i = f(r), z€R (3.B.0)

We assume f is smooth (C* will turn out to be enough), and assume

p’ € R? is an equilibrium, i.e.
f(") =o.
In addition, we assume that the 2 x 2 matrix of the linearization
A= f.(p") has eigenvalues \; = iw, Ay = —iw,

where w > 0. So the equilibrium p° is nonhyperbolic, a so-called “Hopf
point” or “linear centre”. We will analyze the nonlinear dynamics near
this equilibrium using Poincaré normal form theory.

But first, we prepare: we make an initial coordinate change, a shift
r=p"+u (T)
that transforms (3.B.0) into
a=fu)=Au+ fOu)+ fOu) + O(lulh), f* e H, (3B1)

where f(u) = f(p* +u) — f(p°) = f(p" + u).
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Next we transform the entire nonlinear equation so the linear part is in

41
real normal form. Find an eigenvector q = € C?, Aq = iwq, and
q2
make the coordinate change
This transforms (3.B.1) into
where
. 0 —w
R=T"AT =
w 0

It turns out the Poincaré normal form calculations will be simpler if the
linear part is in Jordan normal form, which is diagonal. So we complexify

(think of v € C?) and make the coordinate change



that transforms (3.B.2) into the form

where

B A0 . .
J=U "RU = (A1 = iw, Ay = —iw)

0 Ao

Now (after some preparation) we use the Poincaré normal form theory.

By Theorem 3.5, there exists a coordinate change (diffeomorphism)

that transforms (3.B.3) into the (smoothly equivalent) Poincaré normal

form up to order 3 (or the “cubic normal form”)

We find the resonant terms r? and r® explicitly, starting with (2. A
convenient basis for the vector space of second order terms Hs is

and dim HQ = 0.



