
MATH 552 (2023W1) Lecture 20: Wed Oct 25

[ Last lecture: ... flip (period doubling) bifurcation for maps. Poincaré

normal forms ... ]

Consider

ẋ = f (x), x ∈ Rn,

with

f (0) = 0.

E.g. if n = 2, Taylor expansion about x = 0 is

ẋ = Ax + f (2)(x) + O(‖x‖3), x ∈ R2

where A = fx(0) is the (Jacobian) matrix of first order partial derivatives

evaluated at 0 and f (2)(x) denotes the vector field of second-order terms

in the Taylor expansion about 0,

f (2)(x) =

 b1 x
2
1 + b2 x1x2 + b3 x

2
2

b4 x
2
1 + b5 x1x2 + b6 x

2
2

 .

We see that f (2)(x) belongs to the set, which we call H2, of vector fields

whose components are homogeneous polynomials in x = (x1, x2) of order

2.

=====



We can write any such f (2)(x) as

f (2)(x) = b1

 x21

0

 + b2

 x1x2

0

 + · · · + b6

 0

x22

 ,

which shows that the set H2 is actually a vector space, of dimension 6

(when n = 2), with basis

and with this basis we can represent f (2)(x) ∈ H2 by the vector

Similarly, in Rn with n = 3, 4, . . . , if f is Cm+1 with m = 2, 3, . . . , by

Taylor’s theorem with remainder, we can make a Taylor expansion of

ẋ = f (x), x ∈ Rn with f (0) = 0

at the equilibrium 0 ∈ Rn

ẋ = Ax + f (2)(x) + f (3)(x) + · · · + f (m)(x) + O(‖x‖m+1), (3.3)
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where Ax = fx(0)x is the linearization of the vector field at the equi-

librium, and for k = 2, 3, . . . ,m each f (k) belongs to Hk, the finite-

dimensional vector space of all vector fields from Rn into Rn whose com-

ponents are homogeneous polynomials of order k.

(To simplify Poincaré normal form calculations in practice, it is usual

to choose coordinates x so that A is in real or Jordan normal form.) We

start by “simplifying” the order k = 2 terms. Introduce a “near-identity”

coordinate change (a local diffeomorphism) of the form

x = y + h(2)(y)

where h(2) ∈ H2. E.g. if n = 2

Applying any such coordinate change, we get

then solving for ẏ
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and expanding

and expanding further, keeping explicitly all terms up to order 2

we see the linearization is unchanged in the new coordinates and the vector

field (3.3) is transformed into the (locally smoothly equivalent) vector field

ẏ = Ay − (LAh
(2))(y) + f (2)(y) + O(‖y‖3),

where for any integer k ≥ 2, LA : Hk → Hk is defined by

(LAh
(k))(y) = h(k)y (y)Ay − Ah(k)(y).

Exercise. Verify that LA : Hk → Hk, and is a linear operator (we can

find a matrix representation of LA with respect to any basis for Hk).

For k = 2, we find the range LA(H2) and choose a complementary

subspace H̃2 in H2 (not necessarily unique, and not always useful to take

the orthogonal complement of LA(H2)) so that

H2 = LA(H2)⊕ H̃2.
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Relative to any specific complementary subspace H̃2, every f (2) ∈ H2 has

a unique decomposition

f (2)(y) = g(2)(y) + r(2)(y), g(2) ∈ LA(H2), r(2) ∈ H̃2.

Then since g(2) belongs to the range LA(H2), there exists some specific

h(2) ∈ H2 such that the coordinate change “removes” this component of

f (2) that lies in the range,

and therefore transforms (3.3) into

ẏ = Ay + r(2)(y) + O(‖y‖3). (3.4)

In this way the vector field (3.3) is “simplified” into (3.4) by a coordinate

change that “removes” as many coefficients of order 2 as possible. The

term r(2)(y) (it might be zero) is said to contain the resonant terms

of order 2, and we say the vector field has been put into Poincaré

normal form up to order 2. We also say that (3.4) is the Poincaré

normal form of (3.3) up to order 2.

By induction, one can show that as long as f is smooth enough, the

vector field (3.3) can be transformed into Poincaré normal form up to any

finite order m, m ≥ 2.

5



Theorem 3.5. If f : Rn → Rn is Cm+1 (m ≥ 2) in an open set

containing 0 and f (0) = 0, then there exists a coordinate change

x = y + h(2)(y) + · · · + h(m)(y), h(k) ∈ Hk, k = 2, · · · ,m,

that transforms the Taylor expansion of f at the equilibrium 0, up to

order m

ẋ = Ax+f (2)(x)+· · ·+f (m)(x)+O(‖x‖m+1), f k ∈ Hk, k = 2, · · · ,m,

into the (locally smoothly equivalent) Poincaré normal form, up to

order m

ẏ = Ay+r(2)(y)+· · ·+r(m)(y)+O(‖y‖m+1), r(k) ∈ H̃k, k = 2, · · · ,m,

where each r(k) contains the resonant terms of order k, k = 2, · · · ,m.

A similar method exists for n-dimensional maps (e.g. HW4 problem

2(b), n = 1). Then the methods can be modified slightly for families of

n-dimensional vector fields or maps (e.g. HW4 problem 2(c)).
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Example 3.B. (This example is used later in the analysis of the Hopf

bifurcation.) Consider a 2-dimensional vector field

ẋ = f (x), x ∈ R2. (3.B.0)

We assume f is smooth (C4 will turn out to be enough), and assume

p0 ∈ R2 is an equilibrium, i.e.

f (p0) = 0.

In addition, we assume that the 2× 2 matrix of the linearization

A = fx(p
0) has eigenvalues λ1 = iω, λ2 = −iω,

where ω > 0. So the equilibrium p0 is nonhyperbolic, a so-called “Hopf

point” or “linear centre”. We will analyze the nonlinear dynamics near

this equilibrium using Poincaré normal form theory.

But first, we prepare: we make an initial coordinate change, a shift

x = p0 + u (I)

that transforms (3.B.0) into

u̇ = f̂ (u) = Au + f̂ (2)(u) + f̂ (3)(u) + O(‖u‖4), f̂ (k) ∈ Hk, (3.B.1)

where f̂ (u) = f (p0 + u)− f (p0) = f (p0 + u).
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Next we transform the entire nonlinear equation so the linear part is in

real normal form. Find an eigenvector q =

 q1

q2

 ∈ C2, Aq = iωq, and

make the coordinate change

This transforms (3.B.1) into

where

R = T−1AT =

 0 −ω

ω 0


It turns out the Poincaré normal form calculations will be simpler if the

linear part is in Jordan normal form, which is diagonal. So we complexify

(think of v ∈ C2) and make the coordinate change
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that transforms (3.B.2) into the form

where

J = U−1RU =

 λ1 0

0 λ2

 (λ1 = iω, λ2 = −iω)

Now (after some preparation) we use the Poincaré normal form theory.

By Theorem 3.5, there exists a coordinate change (diffeomorphism)

that transforms (3.B.3) into the (smoothly equivalent) Poincaré normal

form up to order 3 (or the “cubic normal form”)

We find the resonant terms r(2) and r(3) explicitly, starting with r(2). A

convenient basis for the vector space of second order terms H2 is

and dim H2 = 6.
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