
MATH 552 (2023W1) Lecture 22: Mon Oct 30

[ Last lecture: ... Poincaré normal forms ... ]

Example 3.B (“Hopf point” normal form), summary.

dx

dt
= f (x), x ∈ R2, (3.B.0)

with an equilibrium,

f (p0) = 0,

that is nonhyperbolic,

A = fx(p
0) has eigenvalues λ1,2 = ±i ω, ω > 0,

a “Hopf point” equilibrium.

After five coordinate changes, we get the “cubic” Poincaré normal form

(i.e. up to order 3) of (3.B.0), expressed in polar coordinates

dr

dt
= b r3 + O(r4),

dθ

dt
= ω + O(r2)

(3.B.5)

where b is some real number. Now a theorem says we can “ignore” the

higher order terms and determine the correct dynamics, up to local topo-

logical equivalence. Stability or instability of the equilibrium depends on

the sign of the cubic normal form coefficient b.
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Projection method for computation of the cubic normal form coefficient b

In Example 3.B, we skip transformations (II)–(III) with some linear alge-

bra.

For two complex vectors

p =

 p1

p2

 , q =

 q1

q2

 ∈ C2

we define their inner product (note our convention where to put the

complex conjugation!) as

〈 p, q 〉 = p̄1q1 + p̄2q2.

If A is a 2× 2 matrix of complex constants, we define its adjoint matrix

A∗ by

〈A∗p, q 〉 = 〈 p,Aq 〉 for all p, q ∈ C2

Exercise. A∗ = Āᵀ (and therefore A∗ = Aᵀ for a real matrix).

The projection method: first, find an eigenvector q ∈ C2, for the eigen-

value λ1 = i ω, ω > 0

Aq = λ1 q, q 6= 0,

Then, find an adjoint eigenvector p ∈ C2,

A∗ p = λ̄1 p, p 6= 0.
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Exercise. It follows that

〈 p, q̄ 〉 = 0, 〈 p, q 〉 6= 0.

Normalize p so that

〈 p, q 〉 = 1.

Now, any u ∈ R2 is expressed uniquely as u = z1 q + z̄1 q̄, i.e. u1

u2

 = z1

 q1

q2

 + z̄1

 q̄1

q̄2


where (Exercise)

z1 = 〈 p, u 〉

(z1q is the projection of u onto span{q} ).

Put u = z1 q + z̄1 q̄ (i.e. uj = z1qj + z̄1q̄j, j = 1, 2) in the Taylor

expansion (3.B.1) to get

and then taking the inner product with the adjoint eigenvector p (i.e.

taking the projection of the ODE (3.B.1) onto the eigenvector direction

span{q} ), recalling the exercise above and the normalization of p, we get
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Exercise. (long!) Find explicitly the h(2), h(3) in (IV) that transforms

(3.B.3) into (3.B.4), then determine the complex cubic normal form coef-

ficient c1 in terms of the complex coefficients gjk in (3.B.3).

The result of this exercise is important:

b = Re(c1) = Re

(
1

2
g21 +

i

2ω
g20 g11

)
(∗∗)
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The Hopf bifurcation for 2-dimensional vector fields

A Hopf bifurcation is the generic bifurcation of limit cycles in a

family of vector fields, where at a critical parameter value, the lineariza-

tion at an equilibrium has a pair of purely imaginary eigenvalues i.e. an

equilibrium is a “Hopf point”.

Consider a smooth 1-parameter family of 2-dimensional vector fields

ẋ = f (x, α), x ∈ R2, α ∈ R1. (3.4.0)

and assume there exist p00 ∈ R2 and α0 ∈ R1 such that

f (p00, α0) = 0 (equilibrium), (H.0.i)

and

A0 = fx(p
0
0, α0) has eigenvalues± i ω0, ω0 > 0 (bifurcation).

(H.0.ii)

(Equivalently, tr(A0) = 0 and det(A0) = ω2
0 > 0.) So for α = α0, x = p00

is an equilibrium that is a nonhyperbolic “Hopf point”.

Exercise. Apply the implicit function theorem, to obtain a locally

defined, locally unique, smooth curve (p0(α), α) of equilibria through

(p00, α0).
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For each α, linearize at the equilibrium p0(α): the resulting 2× 2 real

matrix

A(α) = fx(p
0(α), α)

depends smoothly on α, and at α = α0 the eigenvalues ±i ω0 are simple,

so for all α sufficiently near α0, A(α) has eigenvalues

λ1(α) = µ(α) + iω(α), λ2(α) = µ(α)− iω(α),

where µ(α), ω(α) are real-valued, smooth, and satisfy

µ(α0) = 0, ω(α0) = ω0 > 0.

For computational convenience, recall

µ(α) = Re(λ1(α)) = 1
2 tr(A(α)),

for all α sufficiently near α0. We assume that for α increasing through α0,

the eigenvalues cross the imaginary axis with nonzero “speed”:

a = µ′(α0) = 1
2

d
dα tr(A(α))

∣∣
α=α0

6= 0 (transversality), (H.1)

so that the linearized stability (and topological type) of the equilibrium

p0(α) changes, as α increases through α0.

Now we begin a sequence of (α-dependent smooth families of) coordi-

nate changes analogous to the coordinate changes we made in Example
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3.B, in an effort to reduce the problem to one where explicit calculations

are possible to determine the dynamics. Similar ideas to modify coor-

dinate changes, for a system to a family of systems, are used in HW4

problem 2(b)(c). Make the first coordinate change (actually, a family of

coordinate changes)

x = p0(α) + u (I)

to transform the family (3.4.0) into the family

u̇ = f̂ (u, α), (3.4.1)

where

f̂ (u, α) = f (p0(α) + u, α)− f (p0(α), α) = f (p0(α) + u, α),

and the equilibrium is now u = 0 for all α near α0, i.e. f̂ (0, α) = 0. A

Taylor expansion in u, up to order 3, has the form

where

is the family of 2× 2 matrices or linearizations, and
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are the families of Taylor expansion terms of orders 2 and 3 in u, with

α-dependent coefficients.

To find the cubic Poincaré normal form coefficient, we use the projection

method again, but modified for families. For all α sufficiently near α0 we

can, at least in principle, find a smoothly parametrized family of complex

eigenvectors q(α) ∈ C2

A(α) q(α) = λ1(α) q(α), q(α) 6= 0

and a smoothly parametrized family of adjoint eigenvectors p(α) ∈ C2

A(α)ᵀ p(α) = λ̄1(α) p(α), p(α) 6= 0

normalized so that

〈 p(α), q(α) 〉 = 1

for all α sufficiently near α0. (NOTE: See below, we normally need to

do this only for α = α0, not for all α in an interval.) Then take the

projection of (3.4.1) onto the eigenvector (family) direction span{q(α)} ,

by putting

u = z1 q(α) + z̄1 q̄(α), u ∈ R2, z1 ∈ C,

and taking the inner product with the adjoint eigenvector p(α), to obtain
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Then, by Poincaré normal form theory (modified for families), there is

a smoothly parametrized family of smooth coordinate changes

z1 = ζ1 + h(2)(ζ1, ζ̄1, α) + h(3)(ζ1, ζ̄1, α), h(k)(·, ·, α) ∈ Hk, k = 2, 3,

(IV)

for all α sufficiently near α0, that transforms (3.4.3) into its Poincaré

normal form up to order 3

ζ̇1 = λ1(α) ζ1 + c1(α) |ζ1|2ζ1 + O(|ζ1|4), ζ1 ∈ C,

In polar coordinates ζ1 = r eiθ this is
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Now expanding in α about α0, the system becomes

If α = α0, notice that (3.4.0) becomes Example 3.B, and we evaluate the

cubic normal form coefficient b with formula (∗∗), Lecture 20. Since (∗∗)

does not depend on any α-derivatives, we could set α = α0 in (3.4.0) to

calculate b (see below). If

b = Re c1(α0) = Re

[
1

2
g21(α0) +

i

ω0

1

2
g20(α0) g11(α0)

]
6= 0

(nondegeneracy),

(H.2)

then the family (3.4.0) has a Hopf bifurcation:

Theorem 3.6. If f : R2 × R1 → R2 is C4 in an open set containing

(p00, α0) and satisfies the four conditions (H.0.i)–(H.2), then the family

dx

dt
= f (x, α) at (p00, α0)

has a Hopf bifurcation, locally topologically equivalent to the normal

form

dy1
ds

= a β y1 − ω0 y2 + b (y21 + y22) y1

dy2
ds

= ω0 y1 + a β y2 + b (y21 + y22) y2

at ((0, 0), 0).
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By rescaling variables and possibly changing the sign of β, we could

obtain the topological normal form with ω0 = 1, a = 1, b = ±1.

In polar coordinates y1 = ρ cos(φ), y2 = ρ sin(φ), the normal form is

dρ

ds
= aβ ρ + b ρ3,

dφ

ds
= ω0,

(ρ, φ) ∈ R+ × S1,

which is used to easily determine the existence and stability of limit cycles

(Exercise). One verifies there exist limit cycles bifurcating from the

equilibrium at β = 0, which are stable or unstable depending on the sign

of b. If b < 0 the Hopf bifurcation is called supercritical; if b > 0 the

Hopf bifurcation is called subcritical.

E.g. if a > 0 and b < 0:
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