MATH 552 (2023W1) Lecture 22: Mon Oct 30

| Last lecture: ... Poincaré normal forms ... |

Example 3.B (“Hopf point” normal form), summary.

dx_

with an equilibrium,

that is nonhyperbolic,
A= f.(p") has eigenvalues A5 = Fiw, w > 0,

a “Hopf point” equilibrium.
After five coordinate changes, we get the “cubic” Poincaré normal form

(i.e. up to order 3) of (3.B.0), expressed in polar coordinates

dr
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where b is some real number. Now a theorem says we can “ignore” the
higher order terms and determine the correct dynamics, up to local topo-
logical equivalence. Stability or instability of the equilibrium depends on

the sign of the cubic normal form coefficient b.



Projection method for computation of the cubic normal form coefficient b

In Example 3.B, we skip transformations (IT)—(III) with some linear alge-
bra.

For two complex vectors

P1 q1
p= , g = e C?

P2 q2

we define their inner product (note our convention where to put the

complex conjugation!) as

(p,q) = D11 + P2go.
If Aisa 2 x 2 matrix of complex constants, we define its adjoint matrix
A* by

(A*p,q) = (p,Aq) for all p,q € C*
Exercise. A* = AT (and therefore A* = AT for a real matrix).
The projection method: first, find an eigenvector ¢ € C?, for the eigen-

value A\ = tw, w >0

Ag=Xgq, q#0,
Then, find an adjoint eigenvector p € C?,

A'p=X\p, p#0.
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Exercise. It follows that

Normalize p so that
(p.q) =1

Now, any u € R? is expressed uniquely as u = z; ¢ + 21 G, i.c.

Uy qi B a1
=z + 21
U2 g2 42
where (Exercise)
21 = <p7 U>

(21¢ is the projection of u onto span{q} ).
Put w = 219+ 21 q (ie. uj = 219, + 21q;, 7 = 1,2) in the Taylor

expansion (3.B.1) to get

and then taking the inner product with the adjoint eigenvector p (i.e.
taking the projection of the ODE (3.B.1) onto the eigenvector direction

span{q} ), recalling the exercise above and the normalization of p, we get
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Exercise. (long!) Find explicitly the h®), h®) in (IV) that transforms
(3.B.3) into (3.B.4), then determine the complex cubic normal form coef-
ficient ¢; in terms of the complex coefficients g;; in (3.B.3).

The result of this exercise is important:

1 1
b = Re(c1) = Re (5 921 + o, 920 911) €




The Hopf bifurcation for 2-dimensional vector fields

A Hopf bifurcation is the generic bifurcation of limit cycles in a
family of vector fields, where at a critical parameter value, the lineariza-
tion at an equilibrium has a pair of purely imaginary eigenvalues i.e. an

equilibrium is a “Hopf point”.

Consider a smooth 1-parameter family of 2-dimensional vector fields
&= f(z,a), reR? aeRL (3.4.0)

and assume there exist pjj € R* and oy € R such that

f(pg, ag) =0 (equilibrium), (H.0.1)
and
Ao = f.(ph, ap) has eigenvalues + i wy, wy > 0 (bifurcation).
(H.0.ii)

(Equivalently, tr(Ag) = 0 and det(A4gy) = wi > 0.) So for a = ap, = = p}
is an equilibrium that is a nonhyperbolic “Hopf point”.
Exercise. Apply the implicit function theorem, to obtain a locally

defined, locally unique, smooth curve (p’(a),a) of equilibria through

(p87 Oé()).



For each a, linearize at the equilibrium p"(c): the resulting 2 x 2 real

matrix
Ala) = f.(p(a),a)

depends smoothly on «, and at @ = g the eigenvalues 47wy are simple,

so for all a sufficiently near ag, A(«) has eigenvalues
Ai(@) = pla) +iw(a),  Aola) = pla) —iwla),
where pi(), w(a) are real-valued, smooth, and satisfy
plag) =0, wlag) =wy > 0.
For computational convenience, recall
pla) = Re(Ai(a) = 5 tr(A(a)),

for all o sufficiently near ay. We assume that for a increasing through a,

the eigenvalues cross the imaginary axis with nonzero “speed”:
a= (o) =1L tr(A(oz))|a:a0 #0  (transversality), (H.1)

so that the linearized stability (and topological type) of the equilibrium
pY(a) changes, as « increases through ayp.
Now we begin a sequence of (a-dependent smooth families of) coordi-

nate changes analogous to the coordinate changes we made in Example
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3.B, in an effort to reduce the problem to one where explicit calculations
are possible to determine the dynamics. Similar ideas to modify coor-
dinate changes, for a system to a family of systems, are used in HW4
problem 2(b)(c). Make the first coordinate change (actually, a family of
coordinate changes)

z=p'(a) +u (D)
to transform the family (3.4.0) into the family

i = flu,), (3.4.1)

where

flu,a) = fF(P'(@) + u, ) = f(p(@), @) = F(p'(e) + u, ),
and the equilibrium is now u = 0 for all & near ag, i.e. f(0,a) = 0. A

Taylor expansion in u, up to order 3, has the form

where

is the family of 2 x 2 matrices or linearizations, and



are the families of Taylor expansion terms of orders 2 and 3 in u, with
a-dependent coefficients.

To find the cubic Poincaré normal form coefficient, we use the projection
method again, but modified for families. For all a sufficiently near o we
can, at least in principle, find a smoothly parametrized family of complex

eigenvectors ¢(a) € C?

Ala) g(a) = M(a) g(a), qla) #0

and a smoothly parametrized family of adjoint eigenvectors p(a) € C?

normalized so that

(pla), qla)) =1
for all a sufficiently near opg. (NOTE: See below, we normally need to
do this only for a = «g, not for all « in an interval.) Then take the
projection of (3.4.1) onto the eigenvector (family) direction span{q(«)},
by putting

u==zq(a)+zq@), uwek’ zeC,

and taking the inner product with the adjoint eigenvector p(«), to obtain



Then, by Poincaré normal form theory (modified for families), there is

a smoothly parametrized family of smooth coordinate changes

1= Cl + h(2)(C17 517 Oé) + h(3)<C17 517 Oé), h(k)(a " Ck) S Hk:a k= 27 37
(IV)
for all « sufficiently near ag, that transforms (3.4.3) into its Poincaré

normal form up to order 3

(1= M) G +ala) |GG +o(alh), Gec,

In polar coordinates ¢; = r e this is



Now expanding in a about oy, the system becomes

If o = v, notice that (3.4.0) becomes Example 3.B, and we evaluate the
cubic normal form coefficient b with formula (xx), Lecture 20. Since ()
does not depend on any a-derivatives, we could set a = ag in (3.4.0) to

calculate b (see below). If
1 1 1
b=Reci(ag) = Re | 5 gar(an) + — 5 gao(co) gui(cw) | # 0
2 o 2 (H.2)

(nondegeneracy),

then the family (3.4.0) has a Hopf bifurcation:

Theorem 3.6. If f : R? x R! — R? is C* in an open set containing

(p), ) and satisfies the four conditions (H.0.1)~(H.2), then the family

dx

i flx,a) at (pg,ozo)

has a Hopf bifurcation, locally topologically equivalent to the normal

form
dy
d_lzaﬁyl—won—}_b(y%—l—y%)yl
dS at ((0,0),O).
%:w0y1+aﬁy2+b(y%+yg)w
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By rescaling variables and possibly changing the sign of 3, we could
obtain the topological normal form with wy =1, a =1, b = £1.

In polar coordinates y; = p cos(¢), yo = p sin(¢), the normal form is

d

L=aBp+bpt 1
dgb (p7¢)€R+XS7
—— = W,

ds

which is used to easily determine the existence and stability of limit cycles
(Exercise). One verifies there exist limit cycles bifurcating from the
equilibrium at 8 = 0, which are stable or unstable depending on the sign
of b. If b < 0 the Hopf bifurcation is called supercritical; if b > 0 the

Hopf bifurcation is called subcritical.

E.g ifa>0and b < 0:
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