
MATH 552 (2023W1) Lecture 23: Wed Nov 1

[ Last lecture: Projection method. Hopf bifurcation ... ]

ẋ = f (x, α), x ∈ R2, α ∈ R1. (3.4.0)

f (p00, α0) = 0 (equilibrium), (H.0.i)

and

A0 = fx(p
0
0, α0) has eigenvalues± i ω0, ω0 > 0 (bifurcation).

(H.0.ii)

(Equivalently, tr(A0) = 0 and det(A0) = ω2
0 > 0.)

Exercise. The implicit function theorem gives a locally defined, locally

unique, smooth curve (p0(α), α) of equilibria through (p00, α0).

For each α, linearize at the equilibrium p0(α):

A(α) = fx(p
0(α), α)

Assume that for α increasing through α0, the eigenvalues µ(α) ± iω(α)

cross the imaginary axis with nonzero “speed”:

a = µ′(α0) = 1
2

d
dα tr(A(α))

∣∣
α=α0

6= 0 (transversality), (H.1)



Now use the projection method and Poincaré normal form theory (modi-

fied for families) to obtain

ζ̇1 = λ1(α) ζ1 + c1(α) |ζ1|2ζ1 + O(|ζ1|4), ζ1 ∈ C,

or in polar coordinates ζ1 = r eiθ and expanding in α

ṙ = a(α− α0) r + Re c1(α0) r
3 + O(|α− α0|2 r + |α− α0| r3 + r4),

θ̇ = ω0 + O(|α− α0| + r2),

If α = α0, notice that (3.4.0) becomes Example 3.B, and we evaluate the

cubic normal form coefficient b with formula (∗∗), Lecture 22. Since (∗∗)

does not depend on any α-derivatives, we could set α = α0 in (3.4.0) to

calculate b (see below).

=====

Finally, assume

b = Re c1(α0) = Re

[
1

2
g21(α0) +

i

ω0

1

2
g20(α0) g11(α0)

]
6= 0

(nondegeneracy),

(H.2)

then the family (3.4.0) has a Hopf bifurcation:

Theorem 3.6. If f : R2 × R1 → R2 is C4 in an open set containing

(p00, α0) and satisfies the four conditions (H.0.i)–(H.2), then the family

dx

dt
= f (x, α) at (p00, α0)
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has a Hopf bifurcation, locally topologically equivalent to the normal

form

dy1
ds

= a β y1 − ω0 y2 + b (y21 + y22) y1

dy2
ds

= ω0 y1 + a β y2 + b (y21 + y22) y2

at ((0, 0), 0).

By rescaling variables and possibly changing the sign of β, we could

obtain the topological normal form with ω0 = 1, a = 1, b = ±1.

In polar coordinates y1 = ρ cos(φ), y2 = ρ sin(φ), the normal form is

dρ

ds
= aβ ρ + b ρ3,

dφ

ds
= ω0,

(ρ, φ) ∈ R+ × S1,

which is used to easily determine the existence and stability of limit cycles

(HW 3). One verifies there exist limit cycles bifurcating from the equilib-

rium at β = 0, which are stable or unstable depending on the sign of b.

If b < 0 the Hopf bifurcation is called supercritical; if b > 0 the Hopf

bifurcation is called subcritical.

E.g. if a > 0 and b < 0:
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For reference, we summarize here the practical computations to analyze

a Hopf bifurcation in a family of 2-dimensional systems (3.4.0).

1) Find the family of equilibria p0(α) ∈ R2. Linearize at p0(α) and

verify (H.0.i), (H.0.ii) and (H.1). Write the system in the form (3.4.1).

2) To verify (H.2): Put A0 = A(α0) and find a complex eigenvector

q0 6= 0 ∈ C,

A0 q0 = i ω0 q0, q0 =

 q01

q02


and also find the (complex) adjoint eigenvector p0 ∈ C,

Aᵀ
0 p0 = −i ω0 p0, p0 =

 p01

p02

 ∈ C2,

normalized so that

〈 p0, q0 〉 = p̄01q01 + p̄02q02 = 1,

We automatically (you should check) have

〈 p0, q̄0 〉 = p̄01q̄01 + p̄02q̄02 = 0.

Any u ∈ R2 can be written uniquely as

u = z1q0 + z̄1q̄0, z1 = 〈 p0, u 〉 ∈ C
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i.e. in components

u1 = z1q01 + z̄1q̄01,

u2 = z1q02 + z̄1q̄02.

Substitute this into (3.4.1) and take the inner product with the adjoint

eigenvector p0 to obtain the equation for ż1 for α = α0,

ż1 = g(z1, z̄1, α0) = 〈 p0, f̂ (z1q0 + z̄1q̄0, α0) 〉. (3.4.4)

Expand the resulting vector field in (3.4.4) in powers of z1 and z̄1 (treating

z1, z̄1 as independent variables):

where

Identify the coefficients 1
2g20(α0), g11(α0) and 1

2g21(α0), of z21, z1z̄1 and

z21 z̄1, respectively, in this expansion. Calculate the cubic normal form

coefficient b and determine its sign (if, hopefully, b 6= 0).
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Example 3.C. Bulk oscillations in the Brusselator chemical reaction

ẋ1 = γ − x1 − αx1 + x21x2

ẋ2 = αx1 − x21x2
(3.C.0)

We suppose γ > 0 is fixed, and treat α as the bifurcation parameter. The

implicit function theorem is not needed here to find the family of equilibria

p0(α), since the equilibria can be found explicitly (Exercise),

x1 = p01(α) = γ, x2 = p02(α) =
α

γ
.

A coordinate change

x1 = γ + u1, x2 =
α

γ
+ u2 (I)

transforms (3.C.0) into
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or

Linearized stability:

σ(α) = tr(A(α)) = α− 1− γ2, ∆(α) = det(A(α)) = γ2 > 0

so u = 0 has purely imaginary eigenvalues ± i
√

∆(α0) = ± i γ if and

only if

α = α0, where α0 = 1 + γ2.

Thus (3.C.0) satisfies (H.0.i) and (H.0.ii) with

α0 = 1 + γ2, p00 =

(
γ ,

1 + γ2

γ

)
ω0 = γ,

where γ > 0, and it is easy to verify (H.1):
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Now, to verify (H.2): put α = α0 = 1 + γ2 in (3.C.1),

Solve (carefully!) A0 q = iγ q, Aᵀ
0 p = −iγ p, 〈 p, q 〉 = 1:

Put u = z1q + z̄1q̄, i.e.

in (3.C.1), take the inner product with p to get
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Expand in powers of z1 and z̄1

identify the three important coefficients

and find the cubic normal form coefficient
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