MATH 552 (2023W1) Lecture 24: Fri Nov 3

| Last lecture: ... Hopf bifurcation ... |

Example 3.C, continued. Brusselator chemical reaction model

T1=7—T1 —oza:1+a:%x2
(3.C.0)
To = QT — 33%332
We suppose v > 0 is fixed, and treat a as the bifurcation parameter.

Family of equilibria can be found explicitly (Exercise),

«
1 =pl(a) =7, x2=p5a)= S

The first coordinate change

o)
Ty =7+u, To=_+ U (I)
Y
transforms (3.C.0) into
u1 a — 1 72 (3] 1 8% 2 2
U2 —a  —? U2 —1 i

A\ 7

or



By linear stability analysis, it is easy to verify that (3.C.0) satisfies (H.0.1)

and (H.0.ii) with

1+ ~2
ap =1+ p8(% . ) wo =1,

where v > 0.

It is also easy to verify (H.1):

Now, to verify (H.2): put o = a9 = 1 + 42 in (3.C.1),

Solve (carefully!) Agq =ivq, Alp=—ivyp, (p,q) =1



Put u = z21q + 214, l.e.

in (3.C.1), take the inner product with p to get

Expand in powers of z; and z;



identify the three important coefficients

and find the cubic normal form coefficient



By Theorem 3.6, the dynamics of (3.C.0) at (pj, ) can be deduced

from the normal form system in polar coordinates

so there are bifurcating stable limit cycles for (3.C.0) if a > 1 + 2, at

least for o sufficiently near 1 + ~2.



A schematic (AUTO-style) one-parameter local branching diagram (show-
ing max and min values of 29(¢) on the limit cycle that exists for o >

1+ %)

A two-parameter bifurcation diagram in the (v, y)-plane with local phase

portraits for (3.C.0), and for a near 1 + ~*:

To study branches of limit cycles for a farther from the bifurcation value,

typically need numerical computation, e.g. AUTO or MatCont.
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Centre manifolds

Centre manifold theory is applied, to a vector field or a map, to locally
“reduce” the dynamical system to a dynamical system in a lower state
space dimension. The theory is easily adapted to families of vector fields
or maps. With centre manifold theory, we can analyze local bifurcations

(fold, Hopf, etc.) in an n-dimensional system, even if n is large.

We summarize the theory for a vector field
= f(x), r € R" (3.5)

(the theory for a map is similar). At a nonhyperbolic equilibrium pV,
the n x n matrix A = f,(p") has a centre subspace T of dimension
ny > 0, and there is a smooth, locally invariant local centre manifold

£ (p") with the same dimension ng. More precisely, there is the following

theorem:



Theorem 3.7. (Local Centre Manifold) If f : R" — R" is C?
(p > 1) in an open set containing p°, if f(p°) =0, and if A = f.(p")
has ng > 0 etgenvalues Aj, counting multiplicities, with Re \; = 0,
then there exists a CP submanifold W¢ (p") in R, of dimension ny,
that is locally invariant for (3.5), contains p°, and is tangent to the
centre subspace at p°. Moreover, there is an open neighbourhood U of
p" in R", such that if a solution z(t) for (3.5) satisfies x(t) € U for all

t >0 [for allt <0, then x(t) — W[

loc

(p°) as t — +o0 [as t — —o0].



We develop a method for using the centre manifold theorem (the Re-
duction Principle) to determine dynamics restricted to a local centre mani-
fold. Suppose the centre, stable and unstable subspaces of the linearization

A = f,.(p") have dimensions
dim7T=ng, dimT°=n_, dimT"=n_,

respectively, with 0 < ng <n, 0 <ny =n_+n, <n, ng+ny = n.
Let

Tsu — s D T
be the stable-unstable subspace. Then we have

R"=Tq T, dim T = ng, dim7T%" = n4,

and there exists a corresponding coordinate shift (I) and linear change
of coordinates (II), from = € R" to (u,v) € R™ x R"* so that in
the new coordinates (u,v) the equilibrium is the origin (0,0) and the
linearization of the vector field at the equilibrium has a block-diagonal

form (for example, real normal form),

U B O u g(u,v)
— i : (u,v) € R"™ x R"™*,

v O C v h(u,v)
(3.6)



where

and both nonlinear functions

g R x R™ — R

B R x R™ — R™
are locally defined at the origin (u,v) = (0,0), are C? and O(||(u,v)[|?)
(if p > 2).

In these coordinates, the local centre manifold can be represented as

the graph of a C? function

where

is defined and smooth in an open neighbourhood of v = 0 in R™, and
V(u) = O(||ul]?) (i.e. V(0) =0 and V,(0) = 0). The dynamics restricted

to W¢E

¢ (p") essentially determine the local dynamics of the full system:
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