
MATH 552 (2023W1) Lecture 24: Fri Nov 3

[ Last lecture: ... Hopf bifurcation ... ]

Example 3.C, continued. Brusselator chemical reaction model

ẋ1 = γ − x1 − αx1 + x21x2

ẋ2 = αx1 − x21x2
(3.C.0)

We suppose γ > 0 is fixed, and treat α as the bifurcation parameter.

Family of equilibria can be found explicitly (Exercise),

x1 = p01(α) = γ, x2 = p02(α) =
α

γ
.

The first coordinate change

x1 = γ + u1, x2 =
α

γ
+ u2 (I)

transforms (3.C.0) into u̇1

u̇2

 =

 α− 1 γ2

−α −γ2


︸ ︷︷ ︸

A(α)

 u1

u2

+

 1

−1

(α
γ
u21 + 2γ u1u2 + u21u2

)

(1)

or

u̇ = A(α)u + f̂ (2)(u, α) + f̂ (3)(u, α). (3.C.1)



By linear stability analysis, it is easy to verify that (3.C.0) satisfies (H.0.i)

and (H.0.ii) with

α0 = 1 + γ2, p00 =

(
γ ,

1 + γ2

γ

)
ω0 = γ,

where γ > 0.

=====

It is also easy to verify (H.1):

Now, to verify (H.2): put α = α0 = 1 + γ2 in (3.C.1),

Solve (carefully!) A0 q = iγ q, Aᵀ
0 p = −iγ p, 〈 p, q 〉 = 1:
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Put u = z1q + z̄1q̄, i.e.

in (3.C.1), take the inner product with p to get

Expand in powers of z1 and z̄1
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identify the three important coefficients

and find the cubic normal form coefficient
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By Theorem 3.6, the dynamics of (3.C.0) at (p00, α0) can be deduced

from the normal form system in polar coordinates

so there are bifurcating stable limit cycles for (3.C.0) if α > 1 + γ2, at

least for α sufficiently near 1 + γ2.
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A schematic (Auto-style) one-parameter local branching diagram (show-

ing max and min values of x02(t) on the limit cycle that exists for α >

1 + γ2)

A two-parameter bifurcation diagram in the (α, γ)-plane with local phase

portraits for (3.C.0), and for α near 1 + γ2:

To study branches of limit cycles for α farther from the bifurcation value,

typically need numerical computation, e.g. Auto or MatCont.
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Centre manifolds

Centre manifold theory is applied, to a vector field or a map, to locally

“reduce” the dynamical system to a dynamical system in a lower state

space dimension. The theory is easily adapted to families of vector fields

or maps. With centre manifold theory, we can analyze local bifurcations

(fold, Hopf, etc.) in an n-dimensional system, even if n is large.

We summarize the theory for a vector field

ẋ = f (x), x ∈ Rn (3.5)

(the theory for a map is similar). At a nonhyperbolic equilibrium p0,

the n × n matrix A = fx(p
0) has a centre subspace T c of dimension

n0 > 0, and there is a smooth, locally invariant local centre manifold

W c
loc(p

0) with the same dimension n0. More precisely, there is the following

theorem:
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Theorem 3.7. (Local Centre Manifold) If f : Rn → Rn is Cp

(p ≥ 1) in an open set containing p0, if f (p0) = 0, and if A = fx(p
0)

has n0 > 0 eigenvalues λj, counting multiplicities, with Re λj = 0,

then there exists a Cp submanifold W c
loc(p

0) in Rn, of dimension n0,

that is locally invariant for (3.5), contains p0, and is tangent to the

centre subspace at p0. Moreover, there is an open neighbourhood U of

p0 in Rn, such that if a solution x(t) for (3.5) satisfies x(t) ∈ U for all

t ≥ 0 [for all t ≤ 0], then x(t)→ W c
loc(p

0) as t→ +∞ [as t→ −∞].
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We develop a method for using the centre manifold theorem (the Re-

duction Principle) to determine dynamics restricted to a local centre mani-

fold. Suppose the centre, stable and unstable subspaces of the linearization

A = fx(p
0) have dimensions

dimT c = n0, dimT s = n−, dimT u = n+,

respectively, with 0 < n0 < n, 0 < n± , n− + n+ < n, n0 + n± = n.

Let

T su = T s ⊕ T u

be the stable-unstable subspace. Then we have

Rn = T c ⊕ T su, dimT c = n0, dimT su = n±,

and there exists a corresponding coordinate shift (I) and linear change

of coordinates (II), from x ∈ Rn, to (u, v) ∈ Rn0 × Rn±, so that in

the new coordinates (u, v) the equilibrium is the origin (0, 0) and the

linearization of the vector field at the equilibrium has a block-diagonal

form (for example, real normal form), u̇

v̇

 =

 B O

O C


 u

v

 +

 g(u, v)

h(u, v)

 , (u, v) ∈ Rn0 × Rn±,

(3.6)
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where

and both nonlinear functions

g : Rn0 × Rn± → Rn0

h : Rn0 × Rn± → Rn±

are locally defined at the origin (u, v) = (0, 0), are Cp and O(‖(u, v)‖2)

(if p ≥ 2).

In these coordinates, the local centre manifold can be represented as

the graph of a Cp function

where

is defined and smooth in an open neighbourhood of u = 0 in Rn0, and

V (u) = O(‖u‖2) (i.e. V (0) = 0 and Vu(0) = 0). The dynamics restricted

to W c
loc(p

0) essentially determine the local dynamics of the full system:
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