MATH 552 (2023W1) Lecture 25: Mon Nov 6
| Last lecture: ... 2-dim Hopf bifurcation (example). ]

Centre manifolds

Centre manifold theory is applied, to a vector field or to a map, to locally
“reduce” the dynamical system to a dynamical system in a lower state
space dimension. The theory is easily adapted to families of vector fields
or maps. With centre manifold theory, we can analyze local bifurcations

(fold, Hopf, etc.) in an n-dimensional system, even if n is large.

We summarize the theory for a vector field
= f(x), r € R" (3.5)

(the theory for a map is similar). At a nonhyperbolic equilibrium pV,
the n x n matrix A = f,(p") has a centre subspace T of dimension

ny > 0, and there is a smooth, locally invariant local centre manifold

C

£ (p") with the same dimension ng. More precisely, there is the following

theorem:



Theorem 3.7. (Local Centre Manifold) If f : R" — R" is C?
(p > 1) in an open set containing p°, if f(p°) =0, and if A = f.(p")
has ng > 0 etgenvalues Aj, counting multiplicities, with Re \; = 0,
then there exists a CP submanifold W¢ (p") in R, of dimension ny,
that is locally invariant for (3.5), contains p°, and is tangent to the
centre subspace at p°. Moreover, there is an open neighbourhood U of
p" in R", such that if a solution z(t) for (3.5) satisfies x(t) € U for all

t >0 [for allt <0, then x(t) — W[

loc

(p°) as t — +o0 [as t — —o0].



We now develop a method (Reduction Principle) for using the centre
manifold theorem (3.7) to determine dynamics restricted to a local cen-
tre manifold. Suppose the centre, stable and unstable subspaces of the

linearization A = f,(p") have dimensions
dim7T=ng, dimT°=n_, dimT"=n_,

respectively, with 0 < ng <n, 0 <ny =n_+n, <n, ng+ny = n.
Let

Tsu — s D T
be the stable-unstable subspace. Then we have

R"=Tq T, dim T = ng, dim7T%" = n4,

and there exists a corresponding coordinate shift (I) and linear change
of coordinates (II), from = € R" to (u,v) € R™ x R"* so that in
the new coordinates (u,v) the equilibrium is the origin (0,0) and the
linearization of the vector field at the equilibrium has a block-diagonal

form (for example, real normal form),

U B O u g(u,v)
— i : (u,v) € R"™ x R"™*,

v O C v h(u,v)
(3.6)



where

and both nonlinear functions

g R x R™ — R

B R x R™ — R™
are locally defined at the origin (u,v) = (0,0), are C? and O(||(u,v)[|?)
(if p > 2).

In these coordinates, the local centre manifold can be represented as

the graph of a C? function

where

is defined and smooth in an open neighbourhood of v = 0 in R™, and
V(u) = O(||ul]?) (i.e. V(0) =0 and V,(0) = 0). The dynamics restricted

to W¢E

¢ (p") essentially determine the local dynamics of the full system:
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Theorem 3.8. (Reduction Principle) Under the above hypotheses,

(3.6)at (0,0) is locally topologically equivalent to

Aol + gl Viw) at (0,0). (3.7
U O C v 0

If there 1s more than one local centre manifold, then all the resulting

systems (3.7) with the different V' are locally smoothly equivalent.

In order to find V' (u), we note that local invariance of the centre mani-
fold implies v(t) = V(u(t)) for all local solutions (u(t), v(t)) of (3.6) with
v(0) = V(u(0)), and therefore by differentiating and using (3.6) we find

that V (u) must satisfy the first-order differential equation

CV(u)+ h(u,V(u)) =V,(u) | Bu+ g(u, V(u))]. (3.8)

Note that the nonlinear term h(u, v) in (3.6) is required for the reduction to
(3.7), even though it is absent from (3.7) . We may use Taylor expansion
to find an approximate solution for (3.8). Then the first component of
(3.7),

= Bu+g(u,V(u)), u € R™
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represents the local dynamics restricted to the centre manifold W (p")
(projected onto the centre subspace). It is a good idea to consider this
last equation before calculating any Taylor expansion coefficients of V()
explicitly, to see which specific coefficients are likely to be needed. It
would be a mistake not to calculate all of the coefficients that affect the
local dynamics, while it would be inefficient to calculate more coefficients

than are needed.

Example 3.D. Use centre manifold theory to determine local behaviour

(e.g. stability) at the origin (an equilibrium), for
i = x) — 112,

T = (v1,15) € R%
Ty = —332—|—2$%,

Equilibrium: (0,0) (no coordinate shift needed)

Linearization at equilibrium: has matrix

(already in form required for Theorem 3.8, no linear change of coordinates



needed)

Find local centre manifold W ((0,0)), as v = V(u) (Taylor expansion)

loc

Local invariance: (u(0),v(0)) € W[ . = solution (u(t), v(t)) ¢

loc loc)

at least for ¢ belonging to some open interval that contains £ = 0

a nonlinear DE for V' (u). We know V (u) = O(|u]?), expand

with coefficients vy, v3, etc. and get

We can solve for as many coefficients as we like, but how many will be
enough?

The reduced equation will be



so if (1 — wg) # 0 then its sign will be enough to determine the sign of 1,
for all sufficiently small u. Start by just finding one coefficient vy, and if
vy # 1, that is all we need.

Find the coefficient vy: substitute the Taylor expansion for V' (u) into

the equation for local invariance.

At order u?:

C

thus the reduced equation (representing the flow restricted to W ) is

By Theorem 3.8 (Reduction Principle) the original system is locally topo-

logically equivalent at (0,0) to



The phase portrait of the original system (there is a Zs-equivariance under

(u,v) — (—u,v) and this implies the flow is reflection-symmetric about

the v-axis)

(careful numerical simulation can give a more accurate picture if desired).
In this example, simply ignoring the nonlinear centre manifold (put
v = 0 in the u equation, the so-called “tangent space approximation”,

which sometimes works but is not guaranteed to) would give the wrong

stability prediction.



To analyze local bifurcations in families of n-dimensional vector fields
t=f(r,a), z€R" acR"

we can simply apply centre manifold theory (Theorems 3.7, 3.8 etc.) to

the extended vector field
Qv 0
= : T = (a,z) € R™™,
& fz, )
Similarly, we can analyze local bifurcations in families of n-dimensional

maps

r— f(r,a), z€eR" aeR"

by considering the extended map

o : T = (a,z) € R™™,
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