
MATH 552 (2023W1) Lecture 25: Mon Nov 6

[ Last lecture: ... 2-dim Hopf bifurcation (example). ]

Centre manifolds

Centre manifold theory is applied, to a vector field or to a map, to locally

“reduce” the dynamical system to a dynamical system in a lower state

space dimension. The theory is easily adapted to families of vector fields

or maps. With centre manifold theory, we can analyze local bifurcations

(fold, Hopf, etc.) in an n-dimensional system, even if n is large.

We summarize the theory for a vector field

ẋ = f (x), x ∈ Rn (3.5)

(the theory for a map is similar). At a nonhyperbolic equilibrium p0,

the n × n matrix A = fx(p
0) has a centre subspace T c of dimension

n0 > 0, and there is a smooth, locally invariant local centre manifold

W c
loc(p

0) with the same dimension n0. More precisely, there is the following

theorem:



Theorem 3.7. (Local Centre Manifold) If f : Rn → Rn is Cp

(p ≥ 1) in an open set containing p0, if f (p0) = 0, and if A = fx(p
0)

has n0 > 0 eigenvalues λj, counting multiplicities, with Re λj = 0,

then there exists a Cp submanifold W c
loc(p

0) in Rn, of dimension n0,

that is locally invariant for (3.5), contains p0, and is tangent to the

centre subspace at p0. Moreover, there is an open neighbourhood U of

p0 in Rn, such that if a solution x(t) for (3.5) satisfies x(t) ∈ U for all

t ≥ 0 [for all t ≤ 0], then x(t)→ W c
loc(p

0) as t→ +∞ [as t→ −∞].
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We now develop a method (Reduction Principle) for using the centre

manifold theorem (3.7) to determine dynamics restricted to a local cen-

tre manifold. Suppose the centre, stable and unstable subspaces of the

linearization A = fx(p
0) have dimensions

dimT c = n0, dimT s = n−, dimT u = n+,

respectively, with 0 < n0 < n, 0 < n± , n− + n+ < n, n0 + n± = n.

Let

T su = T s ⊕ T u

be the stable-unstable subspace. Then we have

Rn = T c ⊕ T su, dimT c = n0, dimT su = n±,

and there exists a corresponding coordinate shift (I) and linear change

of coordinates (II), from x ∈ Rn, to (u, v) ∈ Rn0 × Rn±, so that in

the new coordinates (u, v) the equilibrium is the origin (0, 0) and the

linearization of the vector field at the equilibrium has a block-diagonal

form (for example, real normal form), u̇

v̇

 =

 B O

O C


 u

v

 +

 g(u, v)

h(u, v)

 , (u, v) ∈ Rn0 × Rn±,

(3.6)
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where

and both nonlinear functions

g : Rn0 × Rn± → Rn0

h : Rn0 × Rn± → Rn±

are locally defined at the origin (u, v) = (0, 0), are Cp and O(‖(u, v)‖2)

(if p ≥ 2).

In these coordinates, the local centre manifold can be represented as

the graph of a Cp function

where

is defined and smooth in an open neighbourhood of u = 0 in Rn0, and

V (u) = O(‖u‖2) (i.e. V (0) = 0 and Vu(0) = 0). The dynamics restricted

to W c
loc(p

0) essentially determine the local dynamics of the full system:
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Theorem 3.8. (Reduction Principle) Under the above hypotheses,

(3.6)at (0, 0) is locally topologically equivalent to u̇

v̇

 =

 B O

O C


 u

v

 +

 g(u, V (u))

0

 at (0, 0). (3.7)

If there is more than one local centre manifold, then all the resulting

systems (3.7) with the different V are locally smoothly equivalent.

In order to find V (u), we note that local invariance of the centre mani-

fold implies v(t) = V (u(t)) for all local solutions (u(t), v(t)) of (3.6) with

v(0) = V (u(0)), and therefore by differentiating and using (3.6) we find

that V (u) must satisfy the first-order differential equation

C V (u) + h(u, V (u)) = Vu(u) [B u + g(u, V (u)) ]. (3.8)

Note that the nonlinear term h(u, v) in (3.6) is required for the reduction to

(3.7), even though it is absent from (3.7) . We may use Taylor expansion

to find an approximate solution for (3.8). Then the first component of

(3.7),

u̇ = B u + g(u, V (u)), u ∈ Rn0
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represents the local dynamics restricted to the centre manifold W c
loc(p

0)

(projected onto the centre subspace). It is a good idea to consider this

last equation before calculating any Taylor expansion coefficients of V (u)

explicitly, to see which specific coefficients are likely to be needed. It

would be a mistake not to calculate all of the coefficients that affect the

local dynamics, while it would be inefficient to calculate more coefficients

than are needed.

Example 3.D. Use centre manifold theory to determine local behaviour

(e.g. stability) at the origin (an equilibrium), for

ẋ1 = x31 − x1x2,

ẋ2 = −x2 + 2x21,

x = (x1, x2) ∈ R2.

Equilibrium: (0, 0) (no coordinate shift needed)

Linearization at equilibrium: has matrix

(already in form required for Theorem 3.8, no linear change of coordinates
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needed)

Find local centre manifold W c
loc((0, 0)), as v = V (u) (Taylor expansion)

Local invariance: (u(0), v(0)) ∈ W c
loc ⇒ solution (u(t), v(t)) ∈ W c

loc,

at least for t belonging to some open interval that contains t = 0

a nonlinear DE for V (u). We know V (u) = O(|u|2), expand

with coefficients v2, v3, etc. and get

We can solve for as many coefficients as we like, but how many will be

enough?

The reduced equation will be
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so if (1− v2) 6= 0 then its sign will be enough to determine the sign of u̇,

for all sufficiently small u. Start by just finding one coefficient v2, and if

v2 6= 1, that is all we need.

Find the coefficient v2: substitute the Taylor expansion for V (u) into

the equation for local invariance.

At order u2:

thus the reduced equation (representing the flow restricted to W c
loc) is

By Theorem 3.8 (Reduction Principle) the original system is locally topo-

logically equivalent at (0, 0) to
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The phase portrait of the original system (there is a Z2-equivariance under

(u, v) 7→ (−u, v) and this implies the flow is reflection-symmetric about

the v-axis)

(careful numerical simulation can give a more accurate picture if desired).

In this example, simply ignoring the nonlinear centre manifold (put

v = 0 in the u̇ equation, the so-called “tangent space approximation”,

which sometimes works but is not guaranteed to) would give the wrong

stability prediction.
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To analyze local bifurcations in families of n-dimensional vector fields

ẋ = f (x, α), x ∈ Rn, α ∈ Rm

we can simply apply centre manifold theory (Theorems 3.7, 3.8 etc.) to

the extended vector field α̇

ẋ

 =

 0

f (x, α)

 , x̃ = (α, x) ∈ Rm+n.

Similarly, we can analyze local bifurcations in families of n-dimensional

maps

x 7→ f (x, α), x ∈ Rn, α ∈ Rm

by considering the extended map α̇

ẋ

 7→
 α

f (x, α)

 , x̃ = (α, x) ∈ Rm+n.
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