
MATH 552 (2023W1) Lecture 26: Wed Nov 8

[ Last lecture: Centre manifold theory ... ]

Example 3.D, continued. Using centre manifold theory to determine

local behaviour (e.g. stability) at the origin (a nonhyperboli equilibrium),

for

ẋ1 = x31 − x1x2,

ẋ2 = −x2 + 2x21,

x = (x1, x2) ∈ R2.

Equilibrium (0, 0), nonhyperbolic (eigenvalues 0, −1).

u = x1, v = x2

 u̇

v̇

 =

 0 0

0 −1


 u

v

 +

 u3 − uv

2u2

 .

u = V (u) = v2 u
2 + O(|u|3); v2 = 2

By Theorem 3.8 (Reduction Principle), locally topologically equivalent at

(0, 0) to u̇

v̇

 =

 0 0

0 −1


 u

v

 +

 u3 − u [ 2u2 + O(|u|3) ]

0

 ,

or



=====

The phase portrait of the original system (there is a Z2-equivariance under

(u, v) 7→ (−u, v) and this implies the flow is reflection-symmetric about

the v-axis)

(careful numerical simulation can give a more accurate picture if desired).

In this example, simply ignoring the nonlinear centre manifold (put

v = 0 in the u̇ equation, the so-called “tangent space approximation”,

which sometimes works but is not guaranteed to) would give the wrong

stability prediction.
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To analyze local bifurcations in families of n-dimensional vector fields

ẋ = f (x, α), x ∈ Rn, α ∈ Rm

we can simply apply centre manifold theory (Theorems 3.7, 3.8 etc.) to

the extended vector field α̇

ẋ

 =

 0

f (x, α)

 , x̃ = (α, x) ∈ Rm+n.

Similarly, we can analyze local bifurcations in families of n-dimensional

maps

x 7→ f (x, α), x ∈ Rn, α ∈ Rm

by considering the extended map α̇

ẋ

 7→
 α

f (x, α)

 , x̃ = (α, x) ∈ Rm+n.

Example 3.E. Local bifurcation analysis for the family

ẋ1 = α + α(x1 + 2x2)− x21 + x1x2 − 2x22,

ẋ2 = −2x2 + x21

(x1, x2) ∈ R2, α ∈ R1

Notice that for α = α0 = 0, the point (x1, x2) = p00 = (0, 0) is an

equilibrium, and it is nonhyperbolic (eigenvalues 0, −2).
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Write the family in R2 as an extended vector field in R3

with equilibrium (α, x1, x2) = (0, 0, 0). The eigenvalues of the 3-dimensional

system at the origin are clearly 0, 0, −2, i.e. 0 is an eigenvalue of multi-

plicity 2. Moreover, the linearization at the equilibrium is already in the

block-diagonal form that appears in Theorem 3.8.

In the extended system at the origin we have

centre subspace = T̃ c = (α, x1)-plane = (u1, u2)-plane,

stable-unstable subspace = stable subspace = T̃ su = x2-axis = v-axis

with dimensions

dim(T̃ c) = 2, dim(T̃ su) = 1
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In the notation of Theorem 3.8 we let

g(u, v) =

 0

u1u2 + 2u1v − u22 + u2v − 2v2

 ∈ R2,

h(u, v) = u22 ∈ R1,

and the local centre manifold W̃ c
loc(0, 0, 0) is expressed as

But before finding coefficients explicitly, look ahead to see which coef-

ficients are likely to be needed: the reduced equation will be
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and the second component (the first component is trival) is

Now review Theorem 3.1 (the fold bifurcation theorem). By Theorem 3.1,

none of the higher order terms affect the qualitative dynamics; the family

is locally topologically equivalent to

So in this example, none of the Taylor expansion coefficients of v = V (u)

are needed explicitly, and the extended system in R3 is locally topologically
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equivalent to

u̇1 = 0

u̇2 = u1 − u22

v̇ = −2v

which is easy enough to analyze explicitly, the 3-dimensional phase por-

trait looks like

and taking 2-dimensional slices {u1 = constant} of the 3-dimensional

phase portrait we get

The actual local centre manifold for the original extended system would

typically have some curvature, but the phase portraits above are correct,

up to local topological equivalence. For example, typical actual phase

portraits for the original system might be something like
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The projection method and local bifurcations in n dimensions

Consider the family

ẋ = f (x, α), x ∈ Rn, α ∈ R1 (3.9)

and assume

f (0, α0) = 0 (equilibrium), (F.0.i’)

(a coordinate shift may already have been applied so that the origin is the

equilibrium in these coordinates), and A0 = fx(0, α0) is nonhyperbolic .

To apply Theorem 3.8, it is not always efficient to block-diagonalize A0

if n is large and n0 = dim T c is small. Instead, a projection method

can be more efficient (and can be generalized to infinite-dimensional state

spaces).
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Example: the fold bifurcation for vector fields in n dimensions.

Suppose n ≥ 2, and, in addition to (F.0.i’), assume

A0 = fx(0, α0) has a simple eigenvalue 0 and all other eigenvalues

have nonzero real parts (bifurcation). (F.0.ii’)

We have the analogues, in n dimensions, of (F.0.i) and (F.0.ii) from Theo-

rem 3.1, and we expect that generically we would have a fold bifurcation.

To verify there is indeed a fold bifurcation, we use the projection method.

Let q ∈ Rn be an eigenvector corresponding to the simple eigenvalue 0

then for α = α0 the centre subspace is

thus every vector in T c has the form u q ∈ Rn, for some u ∈ R1. To find

this scalar u easily, we find the normalized adjoint eigenvector p ∈ Rn

Then we can use p to project any vector x onto T c: it can be proved (using

the Fredholm Alternative Theorem, Appendix B, p.6) that any x ∈ Rn

can be uniquely decomposed as

x = u q + y, u ∈ R1, y ∈ Rn, (3.10)
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with

and

Write (3.9) at α = α0 in the form

ẋ = A0 x + 1
2B0 [x, x]︸ ︷︷ ︸
f (2)(x,α0)

+O(‖x‖3) (3.11)

where

B0 [ · , · ] : Rn × Rn → Rn

is a symmetric bilinear function or map (linear in each of the two slots),

the i-th component of B0 [v, w] ∈ Rn is

B0,i [v, w] =

n∑
j=1

n∑
k=1

∂2fi
∂xj∂xk

(0, α0) vj wk, for v, w ∈ Rn.

Substituting (3.10) into (3.11) and taking the inner product with the ad-

joint eigenvector p, we get essentially the u-component of (3.7) in the

reduced system of Theorem 3.8
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