
MATH 552 (2023W1) Lecture 27: Fri Nov 10

[ Last lecture: ... centre manifold theory ... ]

The projection method and local bifurcations in n dimensions

Example: the fold bifurcation for vector fields in n dimensions, continued.

Consider the family

ẋ = f (x, α), x ∈ Rn, α ∈ R1 (3.9)

with state space dimension n ≥ 2, and assume

f (0, α0) = 0 (equilibrium), (F.0.i’)

and

A0 = fx(0, α0) has a simple eigenvalue 0 and all other eigenvalues

have nonzero real parts (bifurcation). (F.0.ii’)

Let q ∈ Rn be an eigenvector corresponding to the simple eigenvalue 0

A0 q = 0, q 6= 0,

then for α = α0 the centre subspace is

T c = span{q}

thus every vector x(t) in T c for any t has the form

u(t) q, u ∈ R1.



To find this scalar u(t) easily, we find the normalized adjoint eigenvector

p ∈ Rn

Aᵀ
0 p = 0, 〈p, q〉 = 1.

=====

Then we can use p to project any vector x(t) ∈ Rn onto T c: it can be

proved (using the Fredholm Alternative Theorem, Appendix B, p.6) that

any x(t) ∈ Rn can be uniquely decomposed as

x(t) = u(t) q + y(t), u(t) ∈ R1, y(t) ∈ Rn, (3.10)

with

and

Write (3.9) at α = α0 in the form

ẋ = A0 x + 1
2B0 [x, x]︸ ︷︷ ︸
f (2)(x,α0)

+O(‖x‖3) (3.11)

where

B0 [ · , · ] : Rn × Rn → Rn

is a symmetric bilinear function or map (linear in each of the two slots),
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the i-th component of B0 [v, w] ∈ Rn is

B0,i [v, w] =

n∑
j=1

n∑
k=1

∂2fi
∂xj∂xk

(0, α0) vj wk, for v, w ∈ Rn.

Substituting (3.10) into (3.11) and taking the inner product with the ad-

joint eigenvector p, we get essentially the u-component of (3.7) in the

reduced system of Theorem 3.8
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Since y ∈ T su, the representation of the local centre manifold as a graph

in this setup is

and so we have

u̇ = 〈 p, 12B0 [q, q] 〉︸ ︷︷ ︸
b

u2 + O(|u|3), u ∈ R1

which represents (3.9) with α = α0, restricted to the local centre manifold.

In n dimensions, the conditions (F.1) and (F.2) for a fold bifurcation in

Theorem 3.1 are replaced by

a = 〈 p, fα(0, α0) 〉 6= 0 (transversality), (F.1’)

b = 〈 p, 12B0 [q, q] 〉 6= 0 (nondegeneracy). (F.2’)

Exercise. Analyze Example 3.E using the projection method and the

four conditions (F.0.i’)–(F.2’), to verify there is a fold bifurcation.
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The Hopf bifurcation in Rn can be treated similarly, but it’s somewhat

more complicated, because in the calculation of the normal form coef-

ficient at order 3, the Taylor expansion of the centre manifold function

y = V (z1, z̄1) = O(‖(z1, z̄1)‖2) interacts with the Poincaré normal form

calculations (see pp. 177–180 in the textbook).
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4. Topics in Global Dynamics and Bifurcations

Homoclinic orbits

Suppose a vector field

ẋ = f (x), x ∈ Rn.

has an equilibrium p0 ∈ Rn. An orbit Γ = {x0(t)}t∈R is called homo-

clinic to p0 if Γ 6= {p0}, limt→∞ x
0(t) = p0 and limt→−∞ x

0(t) = p0.

A homoclinic orbit to a hyperbolic equilibrium is structurally unstable:

if there is a vector field with such a homoclinic orbit, then there exist

arbitrarily small perturbations of the vector field such that the perturbed

vector field in some open neighbourhood U , of Γ ∪ {p0}, is not topolog-

ically equivalent to the original vector field, in particular, the perturbed

vector field has no homoclinic orbit.
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The homoclinic bifurcation for 2-dimensional vector fields

Homoclinic orbits are often associated with other dynamics of interest

(“homoclinic phenomena”). As an introductory example, we summarize

a bifurcation analysis near a homoclinic orbit Γ for a family of vector

fields in R2. For the unperturbed system, this orbit is homoclinic to

a hyperbolic saddle point p00. The homoclinic orbit together with the

equilibrium, Γ∪{ p00 }, is sometimes called a “saddle loop”, or “separatrix

loop”, or “separatrix cycle”.

Consider a 1-parameter family of 2-dimensional vector fields

ẋ = f (x, α), x ∈ R2, α ∈ R1. (4.1)

Suppose there exist p00 ∈ R2, α0 ∈ R1 such that

f (p00, α0) = 0 (equilibrium), (SL.0.i)

A0 = fx(p
0
0, α0) has eigenvalues λ10 < 0 < λ20

(hyperbolic saddle), (SL.0.ii)

ẋ = f (x, α0) has an orbit Γ = {x0(t)} that is homoclinic to p00

(bifurcation). (SL.0.iii)

Thus for α = α0, (4.1) has a hyperbolic saddle equilibrium p00 and there

is a homoclinic orbit Γ = {x0(t)} , with limt→±∞ x
0(t) = p00. Generically,
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for α 6= α0, α near α0, there is no homoclinic orbit for (4.1) in some open

neighbourhood U (fixed in R2, for different α) of Γ ∪ { p00 }. We would

like to know if anything of interest happens for (4.1), in U , if α 6= α0.

By the now familiar arguments (e.g. HW 3), the implicit function theo-

rem can be used to solve f (x, α) = 0, to obtain a unique, locally defined,

smooth solution

giving a smooth curve (p0(α), α) of isolated equilibria through the point

(p00, α0) in R2 × R1.

And, since the eigenvalues of A0 are simple, the matrix of the lineariza-

tion A(α) = fx(p
0(α), α) has real eigenvalues λ1(α), λ2(α) that depend

smoothly on α near α0, with λj(α0) = λj0, j = 1, 2, and thus by continuity

and p0(α) remains a hyperbolic saddle equilibrium, for all α sufficiently

near α0. So, locally (i.e. in a sufficiently small open neighbourhood of p00),

“nothing much happens” when α is perturbed from α0. Globally, it might

be more interesting.
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As mentioned above, condition (SL.0.iii) is structurally unstable: gener-

ically the stable and unstable manifolds of p0(α) will “split” for α 6= α0.

The usual coordinate shift

x = p0(α) + u (I)

transforms (4.1) into

u̇ = f (p0(α) + u, α) = f̂ (u, α) (4.2)

where now f̂ (0, α) = 0, i.e. u = 0 is always the equilibrium, for all α near

α0.

Then a linear coordinate change

u = T (α) v (II)

transforms (4.2) into

 v̇1

v̇2

 = (4.3)
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so that the linearization is in real normal form (i.e. diagonal) for all α near

α0 , and the nonlinear terms are

In these v-coordinates, the stable subspace T s is the v1-axis and the un-

stable subspace T u is the v2-axis (for all α near α0), and there exist local

stable and unstable manifolds W s
loc(0, α), W u

loc(0, α) tangent at the origin

to T s, T u respectively.

Then, there exists (see the textbook p. 203 for a proof) a global change

of coordinates (a diffeomorphism, a “local linearization”)

v = H(y, α) (III)

that transforms (4.3) into ẏ1

ẏ2

 = (4.4)

where now in the y-coordinates, the local stable and unstable manifolds
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actually coincide with intervals of the new coordinate axes near the origin,

for all α sufficiently close to α0

with

for all (y2, α) near (0, α0),

for all (y1, α) near (0, α0).
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