MATH 552 (2023W1) Lecture 27: Fri Nov 10

| Last lecture: ... centre manifold theory ... ]
The projection method and local bifurcations in n dimensions
Example: the fold bifurcation for vector fields in n dimensions, continued.

Consider the family
= f(r,a), zeR" acR (3.9)
with state space dimension n > 2, and assume
f(0,a9) =0 (equilibrium), (F.0.1)
and
Ay = f2(0, o) has a simple eigenvalue 0 and all other eigenvalues

have nonzero real parts (bifurcation). (F.0.ii")

Let ¢ € R" be an eigenvector corresponding to the simple eigenvalue 0
Agpq=0, q#0,
then for @ = o the centre subspace is
T = span{q}
thus every vector x(t) in T for any ¢ has the form

u(t)q, u€ R



To find this scalar u(t) easily, we find the normalized adjoint eigenvector
p e R"

Alp=0, (p,q) =1

Then we can use p to project any vector z(t) € R" onto T it can be
proved (using the Fredholm Alternative Theorem, Appendix B, p.6) that

any x(t) € R" can be uniquely decomposed as
o(t) =u(t)q+y(t), ult) ER', y(t) ER", (3.10)

with

and

Write (3.9) at a = g in the form

& = Ayx + 1By [z, 2] +O(||z||%) (3.11)
—_—
F@)(z,00)
where
By, ]:R"xR" —R"

is a symmetric bilinear function or map (linear in each of the two slots),
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the i-th component of By [v, w] € R™ is

n a Z
By [v,w] = ZZ@ /i (0, ) vj wy, for v,w € R™

o x 0y,
Substituting (3.10) into (3.11) and taking the inner product with the ad-

joint eigenvector p, we get essentially the u-component of (3.7) in the

reduced system of Theorem 3.8



Since y € T*", the representation of the local centre manifold as a graph

in this setup is

and so we have

w={p,3Bolg.q]) v+ O(ul’), ueR
b

which represents (3.9) with o = v, restricted to the local centre manifold.
In n dimensions, the conditions (F.1) and (F.2) for a fold bifurcation in

Theorem 3.1 are replaced by
a=(p, fa(0,a0)) #0  (transversality), (F.17)

b= (p,3Bolq,q]) #0  (nondegeneracy). (F.27)

Exercise. Analyze Example 3.E using the projection method and the

four conditions (F.0.1")—(F.27), to verify there is a fold bifurcation.



The Hopf bifurcation in R" can be treated similarly, but it’s somewhat
more complicated, because in the calculation of the normal form coef-
ficient at order 3, the Taylor expansion of the centre manifold function
y = V(z1,21) = O(||(21, 21)||?) interacts with the Poincaré normal form

calculations (see pp. 177-180 in the textbook).



4. Topics in Global Dynamics and Bifurcations

Homoclinic orbits

Suppose a vector field
T = f(z), xe&R"

has an equilibrium p® € R™. An orbit I' = {2°(t) };cr is called homo-

clinic to p" if T' # {p°}, limy_,o0 2°(t) = p° and lim;_, o 2%(¢) = p.

A homoclinic orbit to a hyperbolic equilibrium is structurally unstable:

if there is a vector field with such a homoclinic orbit, then there exist
arbitrarily small perturbations of the vector field such that the perturbed
vector field in some open neighbourhood U, of I' U {p"}, is not topolog-
ically equivalent to the original vector field, in particular, the perturbed

vector field has no homoclinic orbit.
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The homoclinic bifurcation for 2-dimensional vector fields

Homoclinic orbits are often associated with other dynamics of interest
(“homoclinic phenomena”). As an introductory example, we summarize
a bifurcation analysis near a homoclinic orbit I' for a family of vector
fields in R?. For the unperturbed system, this orbit is homoclinic to
a hyperbolic saddle point pj. The homoclinic orbit together with the
equilibrium, T'U{ p§ }, is sometimes called a “saddle loop”, or “separatrix
loop”, or “separatrix cycle”.

Consider a 1-parameter family of 2-dimensional vector fields
= f(z,a), z€R’ acR. (4.1)
Suppose there exist pj € R?, ay € R such that
f(ph,a0) =0 (equilibrium), (SL.0.1)

Ay = f.(ph, ap) has eigenvalues Ajg < 0 < Ao

(hyperbolic saddle), (SL.0.ii)

@ = f(x, ) has an orbit I' = {z"(¢)} that is homoclinic to p|
(bifurcation). (SL.0.iii)
Thus for @ = ay, (4.1) has a hyperbolic saddle equilibrium p) and there

is a homoclinic orbit I' = {z"(#)} , with limy . 2°(t) = p). Generically,
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for a@ # ay, v near vy, there is no homoclinic orbit for (4.1) in some open
neighbourhood U (fixed in R?, for different o) of T'U { p) }. We would
like to know if anything of interest happens for (4.1), in U, if a # .
By the now familiar arguments (e.g. HW 3), the implicit function theo-
rem can be used to solve f(x,a) = 0, to obtain a unique, locally defined,

smooth solution

giving a smooth curve (p’(«a), a) of isolated equilibria through the point
(p), cp) in R? x R,

And, since the eigenvalues of A are simple, the matrix of the lineariza-
tion A(a) = f.(p(r), @) has real eigenvalues \j(a), Ao(cr) that depend

smoothly on o near ayg, with Aj(ag) = Ajo, 7 = 1,2, and thus by continuity

and pY(a) remains a hyperbolic saddle equilibrium, for all o sufficiently
near . So, locally (i.e. in a sufficiently small open neighbourhood of pY),
“nothing much happens” when « is perturbed from «ay. Globally, it might

be more interesting.



As mentioned above, condition (SL.0.iii) is structurally unstable: gener-

ically the stable and unstable manifolds of p"(a) will “split” for o # ay.

The usual coordinate shift
r=p’(a) +u (T)
transforms (4.1) into
= f(p"(a) +u,0) = f(u,a) (42)

where now f (0,a) =0, i.e. u = 0 is always the equilibrium, for all a near
Q.

Then a linear coordinate change

u="T(a)v (IT)
transforms (4.2) into
(0
L = (4.3)
()



so that the linearization is in real normal form (i.e. diagonal) for all « near

ap , and the nonlinear terms are

In these v-coordinates, the stable subspace 1T is the vi-axis and the un-
stable subspace T" is the vy-axis (for all @ near «y), and there exist local
stable and unstable manifolds W (0, «), W (0, «) tangent at the origin

loc loc

to 1%, T respectively.

Then, there exists (see the textbook p. 203 for a proof) a global change

of coordinates (a diffeomorphism, a “local linearization”)

v = H(y,a) )
that transforms (4.3) into
Y
= (4.4)
Y2

where now in the y-coordinates, the local stable and unstable manifolds
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actually coitncide with intervals of the new coordinate axes near the origin,

for all o sufficiently close to ay

with

for all (2, ) near (0, o),

for all (y1, ) near (0, ).
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