
MATH 552 (2023W1) Lecture 29: Mon Nov 20

[ Last lecture: ... two-dimensional homoclinic (saddle-loop, Andronov-

Leontovich) bifurcation ... ]

A 1-parameter family of 2-dimensional vector fields

ẋ = f (x, α), x ∈ R2, α ∈ R1. (4.1)

with

f (p00, α0) = 0 (equilibrium), (SL.0.i)

A0 = fx(p
0
0, α0) has eigenvalues λ10 < 0 < λ20

(hyperbolic saddle), (SL.0.ii)

ẋ = f (x, α0) has an orbit Γ = {x0(t)} that is homoclinic to p00

(bifurcation). (SL.0.iii)

The implicit function theorem, coordinate changes, 2-stage Poincaré map.

1st stage, near the hyperbolic saddle equilibrium, approximate the flow

with linear flow to get an approximate map

∆(ξ0, α) ≈ ε1+(λ10/λ20) ξ
−λ10/λ20
0 .

So far, in the analysis of the 2nd stage, near the homoclinic orbit,

Q( · , α) : Π→ Σ, (η, ε) 7→ (ε, ξ1), ξ1 = Q(η, α)



for −ε < η < ε (notice, η is allowed to be zero or negative). η = 0

corresponds to the initial value (y1(0), y2(0)) = (0, ε) ∈ W u(0, α):

β(α) = Q(0, α)

For all α near α0, β(α) is a split function (“A-L version”) that measures

the signed distance, measured along the oriented cross-section Σ, from

W s(0, α) (branch 1) to W u(0, α) (branch 1), and the Taylor expansion of

β(α) about α0 is

β(α) = a · (α− α0) + O(|α− α0|2),

where we assume a generic condition holds,

a = β′(α0) 6= 0. (transversality) (SL.1)

=====

From the theory of ODEs, we know Q(η, α) is as smooth as the family of

vector fields that generates it, so assuming (4.1) is smooth, we can make

a Taylor expansion of Q, about η = 0 for any fixed α

then expand the α-dependent coefficients about α = α0
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What can we know about the Taylor coefficient Qη(0, α0) ?

For α = α0 in particular, we know Q( · , α0) : R1 → R1 must be a local

diffeomorphism, smoothly invertible, and thus at η = 0

Furthermore, ODE theory says that orbits cannot cross

and therefore

Thus we know Q(η, α) must have a Taylor expansion of the form

with Qη(0, α0) > 0.
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The family of Poincaré maps. Now we compose P = Q ◦∆, i.e.

Assume another generic condition holds

or equivalently,

σ0 = λ10 + λ20 = div(f (p00, α0)) 6= 0 (nondegeneracy) (SL.2)

where div(f ) = ∂f1
∂x1

+ ∂f2
∂x2

= tr(fx), which is practical to verify in the

original family (4.1).

It has been proved, under our five assumptions, that for all sufficiently

small ε > 0, the approximations we made do in fact determine the dy-

namics of the family of Poincaré maps.
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Theorem 4.1. (Andronov & Leontovich) If f : R2 × R1 → R2 is

C2 and satisfies the five conditions (SL.0.i)–(SL.2), then (4.1) has a

family of Poincaré maps that is locally topologically equivalent to

ξ 7→ β + b ξ−λ10/λ20, ξ > 0, at (0, 0),

where b is a positive constant. In particular, for all α sufficiently near

α0 there is an open neighbourhood U of Γ ∪ {p00} in R2, in which a

unique limit cycle Lβ for (4.1) bifurcates from Γ∪ {p00} for α on only

one side of α0. If σ0 < 0, then Lβ exists only for β > 0 and is stable,

while if σ0 > 0, then Lβ exists only for β < 0 and is unstable.

Notice that the “saddle quantity” σ0 in (SL.2) is computed directly from

the original vector field (4.1) with α = α0.

The defined split function β = β(α) = a (α−α0) +O(|α−α0|2) changes

sign as α increases past α0. The sign of the coefficient a in (SL.1) can

be deduced from numerical experiments, by observing how the homoclinic

orbit Γ splits, as α increases past α0. There is also an analytic way to

verify (SL.1), see the textbook p. 211.
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Exercise. Work out what happens in the case σ0 > 0.

If α→ α0 from the appropriate side of α0, then three things happen:

(i) β → 0, (ii) the limit cycle Lβ approaches the separatrix cycle Γ∪{p00},

and (iii) the period of Lβ approaches infinity.
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Melnikov’s method

Melnikov’s method is a global perturbation method for detecting homo-

clinic solutions. In its most basic form, we perturb from a 2-dimensional

Hamiltonian vector field that has a homoclinic solution, to analytically

determine if a nearby non-Hamiltonian system has a homoclinic solution

(or not). The basic method has been generalized to a variety of settings.

We start with a 2-dimensional Hamiltonian vector field (the “unper-

turbed” system) that is generated by a Hamiltonian functionH : R2 → R,

ẋ = f0(x), x ∈ R2, (4.5)

where

f0(x) =

 f10(x1, x2)

f20(x1, x2)

 , f10 =
∂H

∂x2
, f20 = − ∂H

∂x1
,

and we assume

(4.5) has a hyperbolic saddle equilibrium p00,

and an orbit Γ = {x0(t)} homoclinic to p00,

limt→±∞ x
0(t) = p00.

(M.0)
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Now we consider a family of “perturbed” 2-dimensional systems of

nonautonomous, periodic ODEs

ẋ = f (t, x, α) = f0(x) + αf1(x, ωt), t ∈ R, x ∈ R2, α ∈ R1, (4.6)

where ω = 2π/T0 > 0 is fixed, α is a parameter near 0, and f is periodic

in t with period T0 > 0

f (t + T0, x, α) = f (t, x, α) for all t, x, α,

and so f1 is periodic in ωt with period 2π

f1(x, ωt + 2π) = f1(x, ωt) for all t, x.

Denote the unique solution x(t) of (4.6) that satisfies the initial condi-

tion

x(t0) = x0 ∈ R2,

by

x(t) = ϕ(t, t0, x0, α) ∈ R2.

Recall from the basic existence-uniqueness-smoothness Theorem 2.1, that

ϕ(t, t0, x0, α) is smooth in all its variables. We will have occasion to study

8



the derivative with respect to the parameter Θ(t) = ϕα(t, t0, x0, α) (see

HW 2 problem 1(b)).

Defining a new variable θ = ωt, we write the family of 2-dimensional

nonautonomous differential equations (4.6) as a family of 3-dimensional

autonomous differential equations, or vector fields (see Examples 2.D–E),

ẋ =

θ̇ =

(4.7)

Define a global cross-section for (4.7) for all α (near 0)

and we study the family of 2-dimensional Poincaré maps for (4.7),

The unique solution of (4.7) that satisfies the initial condition

x̃(0) = (x(0) , θ(0) ) = ( x0 , 0 (mod 2π) ) ∈ Σ0

is

x̃(t) = (ϕ(t, 0, x0, α) , ωt (mod 2π) ) ∈ X

and the natural coordinate representation of the Poincaré map is
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For the unperturbed α = 0 system, the Poincaré map P ( · , 0) just hap-

pens to be the time-(2π/ω) (stroboscopic) map for the 2-dimensional flow

ϕ(t, 0, x0, 0), of the unperturbed autonomous Hamiltonian system (4.5),

therefore P ( · , 0) has a hyperbolic saddle fixed point (p00, 0 (mod 2π)) ∈

Σ0, whose 1-dimensional stable and unstable manifolds intersect, and hap-

pen to coincide along the smooth curve Γ0 × { 0 (mod 2π) } in Σ0.
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Then, taking points in Σ0 as initial values at t = 0 for (4.7)α=0, the hy-

perbolic saddle fixed point (p00, 0 (mod 2π)) for the 2-dimensional Poincaré

map P ( · , 0) in Σ0 generates a (2π/ω)-periodic hyperbolic limit cycle

L̃0 = { p̃(t, 0) = (p00, ωt (mod 2π)) }t∈R for the 3-dimensional vector field

(4.7)α=0 in X , and the 2-dimensional (global) stable and unstable mani-

folds W̃ s
0 and W̃ u

0 of L̃0 intersect, and happen to coincide along a smooth

2-dimensional homoclinic manifold Γ̃0 = Γ0 × S1 in X .
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