

MATH 552 (2023W1) Lecture 29: Mon Nov 20

[**Last lecture:** ... two-dimensional homoclinic (saddle-loop, Andronov-Leontovich) bifurcation ...]

A 1-parameter family of 2-dimensional vector fields

$$\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^2, \quad \alpha \in \mathbb{R}^1. \quad (4.1)$$

with

$$f(p_0^0, \alpha_0) = 0 \quad (\text{equilibrium}), \quad (\text{SL.0.i})$$

$A_0 = f_x(p_0^0, \alpha_0)$ has eigenvalues $\lambda_{10} < 0 < \lambda_{20}$

(hyperbolic saddle), (SL.0.ii)

$\dot{x} = f(x, \alpha_0)$ has an orbit $\Gamma = \{x^0(t)\}$ that is homoclinic to p_0^0

(bifurcation). (SL.0.iii)

The implicit function theorem, coordinate changes, 2-stage Poincaré map.
 1st stage, near the hyperbolic saddle equilibrium, approximate the flow
 with linear flow to get an approximate map

$$\Delta(\xi_0, \alpha) \approx \varepsilon^{1+(\lambda_{10}/\lambda_{20})} \xi_0^{-\lambda_{10}/\lambda_{20}}.$$

So far, in the analysis of the 2nd stage, near the homoclinic orbit,

$$Q(\cdot, \alpha) : \Pi \rightarrow \Sigma, \quad (\eta, \varepsilon) \mapsto (\varepsilon, \xi_1), \quad \xi_1 = Q(\eta, \alpha)$$

for $-\varepsilon < \eta < \varepsilon$ (notice, η is allowed to be zero or negative). $\eta = 0$ corresponds to the initial value $(y_1(0), y_2(0)) = (0, \varepsilon) \in W^u(0, \alpha)$:

$$\beta(\alpha) = Q(0, \alpha)$$

For all α near α_0 , $\beta(\alpha)$ is a **split function** (“A-L version”) that measures the *signed* distance, measured along the *oriented* cross-section Σ , *from* $W^s(0, \alpha)$ (branch 1) *to* $W^u(0, \alpha)$ (branch 1), and the Taylor expansion of $\beta(\alpha)$ about α_0 is

$$\beta(\alpha) = a \cdot (\alpha - \alpha_0) + O(|\alpha - \alpha_0|^2),$$

where we assume a generic condition holds,

$$a = \beta'(\alpha_0) \neq 0. \quad (\text{transversality}) \quad (\text{SL.1})$$

=====

From the theory of ODEs, we know $Q(\eta, \alpha)$ is as smooth as the family of vector fields that generates it, so assuming (4.1) is smooth, we can make a Taylor expansion of Q , about $\eta = 0$ for any fixed α

then expand the α -dependent coefficients about $\alpha = \alpha_0$

What can we know about the Taylor coefficient $Q_\eta(0, \alpha_0)$?

For $\alpha = \alpha_0$ in particular, we know $Q(\cdot, \alpha_0) : \mathbb{R}^1 \rightarrow \mathbb{R}^1$ must be a local diffeomorphism, smoothly invertible, and thus at $\eta = 0$

Furthermore, ODE theory says that orbits cannot cross

and therefore

Thus we know $Q(\eta, \alpha)$ must have a Taylor expansion of the form

with $Q_\eta(0, \alpha_0) > 0$.

The family of Poincaré maps. Now we compose $P = Q \circ \Delta$, i.e.

Assume another generic condition holds

or equivalently,

$$\sigma_0 = \lambda_{10} + \lambda_{20} = \operatorname{div}(f(p_0^0, \alpha_0)) \neq 0 \quad (\text{nondegeneracy}) \quad (\text{SL.2})$$

where $\operatorname{div}(f) = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = \operatorname{tr}(f_x)$, which is practical to verify in the original family (4.1).

It has been proved, under our five assumptions, that for all sufficiently small $\varepsilon > 0$, the approximations we made do in fact determine the dynamics of the family of Poincaré maps.

Theorem 4.1. (Andronov & Leontovich) *If $f : \mathbb{R}^2 \times \mathbb{R}^1 \rightarrow \mathbb{R}^2$ is C^2 and satisfies the five conditions (SL.0.i)–(SL.2), then (4.1) has a family of Poincaré maps that is locally topologically equivalent to*

$$\xi \mapsto \beta + b \xi^{-\lambda_{10}/\lambda_{20}}, \quad \xi > 0, \quad \text{at } (0, 0),$$

where b is a positive constant. In particular, for all α sufficiently near α_0 there is an open neighbourhood U of $\Gamma \cup \{p_0^0\}$ in \mathbb{R}^2 , in which a unique limit cycle L_β for (4.1) bifurcates from $\Gamma \cup \{p_0^0\}$ for α on only one side of α_0 . If $\sigma_0 < 0$, then L_β exists only for $\beta > 0$ and is stable, while if $\sigma_0 > 0$, then L_β exists only for $\beta < 0$ and is unstable.

Notice that the “saddle quantity” σ_0 in (SL.2) is computed directly from the original vector field (4.1) with $\alpha = \alpha_0$.

The defined split function $\beta = \beta(\alpha) = a(\alpha - \alpha_0) + O(|\alpha - \alpha_0|^2)$ changes sign as α increases past α_0 . The sign of the coefficient a in (SL.1) can be deduced from numerical experiments, by observing how the homoclinic orbit Γ splits, as α increases past α_0 . There is also an analytic way to verify (SL.1), see the textbook p. 211.

Exercise. Work out what happens in the case $\sigma_0 > 0$.

If $\alpha \rightarrow \alpha_0$ from the appropriate side of α_0 , then three things happen:

- (i) $\beta \rightarrow 0$, (ii) the limit cycle L_β approaches the separatrix cycle $\Gamma \cup \{p_0^0\}$,
and (iii) the period of L_β approaches infinity.

Melnikov's method

Melnikov's method is a global perturbation method for detecting homoclinic solutions. In its most basic form, we perturb from a 2-dimensional Hamiltonian vector field that has a homoclinic solution, to analytically determine if a nearby non-Hamiltonian system has a homoclinic solution (or not). The basic method has been generalized to a variety of settings.

We start with a 2-dimensional Hamiltonian vector field (the “unperturbed” system) that is generated by a Hamiltonian function $H : \mathbb{R}^2 \rightarrow \mathbb{R}$,

$$\dot{x} = f_0(x), \quad x \in \mathbb{R}^2, \quad (4.5)$$

where

$$f_0(x) = \begin{pmatrix} f_{10}(x_1, x_2) \\ f_{20}(x_1, x_2) \end{pmatrix}, \quad f_{10} = \frac{\partial H}{\partial x_2}, \quad f_{20} = -\frac{\partial H}{\partial x_1},$$

and we assume

(4.5) has a hyperbolic saddle equilibrium p_0^0 ,
 and an orbit $\Gamma = \{x^0(t)\}$ homoclinic to p_0^0 , (M.0)
 $\lim_{t \rightarrow \pm\infty} x^0(t) = p_0^0$.

Now we consider a family of “perturbed” 2-dimensional systems of *nonautonomous, periodic* ODEs

$$\dot{x} = f(t, x, \alpha) = f_0(x) + \alpha f_1(x, \omega t), \quad t \in \mathbb{R}, x \in \mathbb{R}^2, \alpha \in \mathbb{R}^1, \quad (4.6)$$

where $\omega = 2\pi/T_0 > 0$ is fixed, α is a parameter near 0, and f is periodic in t with period $T_0 > 0$

$$f(t + T_0, x, \alpha) = f(t, x, \alpha) \quad \text{for all } t, x, \alpha,$$

and so f_1 is periodic in ωt with period 2π

$$f_1(x, \omega t + 2\pi) = f_1(x, \omega t) \quad \text{for all } t, x.$$

Denote the unique solution $x(t)$ of (4.6) that satisfies the initial condition

$$x(t_0) = x_0 \in \mathbb{R}^2,$$

by

$$x(t) = \varphi(t, t_0, x_0, \alpha) \in \mathbb{R}^2.$$

Recall from the basic existence-uniqueness-smoothness Theorem 2.1, that $\varphi(t, t_0, x_0, \alpha)$ is smooth in all its variables. We will have occasion to study

the derivative with respect to the parameter $\Theta(t) = \varphi_\alpha(t, t_0, x_0, \alpha)$ (see HW 2 problem 1(b)).

Defining a new variable $\theta = \omega t$, we write the family of 2-dimensional nonautonomous differential equations (4.6) as a family of 3-dimensional *autonomous* differential equations, or vector fields (see Examples 2.D–E),

$$\begin{aligned}\dot{x} &= \\ \dot{\theta} &= \end{aligned}\tag{4.7}$$

Define a global cross-section for (4.7) for all α (near 0)

and we study the family of 2-dimensional Poincaré maps for (4.7),

The unique solution of (4.7) that satisfies the initial condition

$$\tilde{x}(0) = (x(0), \theta(0)) = (x_0, 0 \pmod{2\pi}) \in \Sigma_0$$

is

$$\tilde{x}(t) = (\varphi(t, 0, x_0, \alpha), \omega t \pmod{2\pi}) \in X$$

and the natural coordinate representation of the Poincaré map is

For the unperturbed $\alpha = 0$ system, the Poincaré map $P(\cdot, 0)$ just happens to be the time- $(2\pi/\omega)$ (stroboscopic) map for the 2-dimensional flow $\varphi(t, 0, x_0, 0)$, of the unperturbed autonomous Hamiltonian system (4.5), therefore $P(\cdot, 0)$ has a hyperbolic saddle fixed point $(p_0^0, 0 \pmod{2\pi}) \in \Sigma_0$, whose 1-dimensional stable and unstable manifolds intersect, and happen to coincide along the smooth curve $\Gamma_0 \times \{0 \pmod{2\pi}\}$ in Σ_0 .

Then, taking points in Σ_0 as initial values at $t = 0$ for $(4.7)_{\alpha=0}$, the hyperbolic saddle fixed point $(p_0^0, 0 \pmod{2\pi})$ for the 2-dimensional Poincaré map $P(\cdot, 0)$ in Σ_0 generates a $(2\pi/\omega)$ -periodic hyperbolic limit cycle $\tilde{L}_0 = \{ \tilde{p}(t, 0) = (p_0^0, \omega t \pmod{2\pi}) \}_{t \in \mathbb{R}}$ for the 3-dimensional vector field $(4.7)_{\alpha=0}$ in X , and the 2-dimensional (global) stable and unstable manifolds \tilde{W}_0^s and \tilde{W}_0^u of \tilde{L}_0 intersect, and happen to coincide along a smooth 2-dimensional *homoclinic manifold* $\tilde{\Gamma}_0 = \Gamma_0 \times \mathbb{S}^1$ in X .