MATH 552 (2023W1) Lecture 29: Mon Nov 20

| Last lecture: ... two-dimensional homoclinic (saddle-loop, Andronov-
Leontovich) bifurcation ... ]

A 1-parameter family of 2-dimensional vector fields

= f(z,a), v€R* acR. (4.1)
with

f(py, o) =0 (equilibrium), (SL.0.i)

Ag = f.(py, ) has eigenvalues Ajg < 0 < Agg

(hyperbolic saddle), (SL.0.i1)
@ = f(z,ap) has an orbit I' = {2°(¢)} that is homoclinic to pj
(bifurcation). (SL.0.iii)

The implicit function theorem, coordinate changes, 2-stage Poincaré map.
Ist stage, near the hyperbolic saddle equilibrium, approximate the flow

with linear flow to get an approximate map

A&, a) = 1+ (A10/A20) 50—/\10/&0.

So far, in the analysis of the 2nd stage, near the homoclinic orbit,

Q( '7&) L= 2 (7775) = (6751)7 &1 = Q(ﬁ?a)



for —e < m < e (notice, n is allowed to be zero or negative). n = 0

corresponds to the initial value (y1(0), y2(0)) = (0,¢€) € W*(0, a):

6(05) - Q(07 O‘)

For all o near oy, B(«) is a split function (“A-L version” ) that measures

the signed distance, measured along the oriented cross-section X, from
W#(0, «) (branch 1) to W*(0, ) (branch 1), and the Taylor expansion of

B(a) about ay is
Bla) =a-(a—ag) + O(Ja — agl),
where we assume a generic condition holds,

a= [ (ap) #0. (transversality) (SL.1)

From the theory of ODEs, we know Q(n, ) is as smooth as the family of
vector fields that generates it, so assuming (4.1) is smooth, we can make

a Taylor expansion of (), about n = 0 for any fixed «

then expand the a-dependent coefficients about a = «y



What can we know about the Taylor coefficient @,(0, o) 7
For o = ay in particular, we know Q( -, ag) : Rt — R must be a local

diffeomorphism, smoothly invertible, and thus at n =0

Furthermore, ODE theory says that orbits cannot cross

and therefore

Thus we know Q(7, &) must have a Taylor expansion of the form

with QW(()? CY()) > 0.



The family of Poincaré maps. Now we compose P = () o A, ie.

Assume another generic condition holds

or equivalently,
00 = Ao + Moo = div(f(ph, ap)) # 0 (nondegeneracy)  (SL.2)

where div(f) = g—ﬂ + g—g = tr(f;), which is practical to verify in the
original family (4.1).
It has been proved, under our five assumptions, that for all sufficiently

small € > 0, the approximations we made do in fact determine the dy-

namics of the family of Poincaré maps.



Theorem 4.1. (Andronov & Leontovich) If f: R? x R! — R? is
C? and satisfies the five conditions (SL.0.i)~(SL.2), then (4.1) has a

family of Poincaré maps that is locally topologically equivalent to
Ermr BHbe Moo >0, at (0,0),

where b is a positive constant. In particular, for all o sufficiently near
g there is an open neighbourhood U of T U {py} in R?, in which a
unique limit cycle Lg for (4.1) bifurcates from T'U{p)} for a on only
one side of ay. If oy <0, then Lg exists only for 8 > 0 and is stable,

while if o9 > 0, then Lg exists only for 8 < 0 and is unstable.

Notice that the “saddle quantity” o in (SL.2) is computed directly from

the original vector field (4.1) with av = «v.

The defined split function 8 = B(a) = a (o — ap) + O(Ja — ap|?) changes
sign as « increases past «g. The sign of the coefficient a in (SL.1) can
be deduced from numerical experiments, by observing how the homoclinic

orbit I' splits, as « increases past . There is also an analytic way to

verify (SL.1), see the textbook p. 211.



Exercise. Work out what happens in the case gy > 0.

If a = ag from the appropriate side of «, then three things happen:
(i) B — 0, (ii) the limit cycle Lg approaches the separatrix cycle T'U{p]},

and (iii) the period of Lg approaches infinity.
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Melnikov’s method

Melnikov’s method is a global perturbation method for detecting homo-
clinic solutions. In its most basic form, we perturb from a 2-dimensional
Hamiltonian vector field that has a homoclinic solution, to analytically
determine if a nearby non-Hamiltonian system has a homoclinic solution
(or not). The basic method has been generalized to a variety of settings.

We start with a 2-dimensional Hamiltonian vector field (the “unper-

turbed” system) that is generated by a Hamiltonian function H : R* — R,

&= folx), xeR% (4.5)
where
fro(z1, 22) OH OH
folz) = ; f102877 f20:_8?’
fao(z1, x2) 2 L

and we assume

(4.5) has a hyperbolic saddle equilibrium py),

and an orbit I' = {2°(¢)} homoclinic to py, (M.O)

limy 400 2°(t) = Y.



Now we consider a family of “perturbed” 2-dimensional systems of

nonautonomous, periodic ODEs
= f(t,x,a) = folx) +afi(z,wt), teR, zcR* acR, (4.6)

where w = 27 /Ty > 0 is fixed, « is a parameter near 0, and f is periodic

in ¢t with period Ty > 0
ft+Tp,z,a) = f(t,z,a) forallt, x, ,
and so fi is periodic in wt with period 27
filz,wt + 2m) = fi(z,wt) forallt, x.

Denote the unique solution x(t) of (4.6) that satisfies the initial condi-
tion
x(ty) = o € R?,
by
z(t) = @(t, ty, 79, a) € R?
Recall from the basic existence-uniqueness-smoothness Theorem 2.1, that

©(t, to, To, ) is smooth in all its variables. We will have occasion to study
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the derivative with respect to the parameter ©(t) = @, (t, to, xo, a) (see
HW 2 problem 1(b)).

Defining a new variable 6 = wt, we write the family of 2-dimensional
nonautonomous differential equations (4.6) as a family of 3-dimensional

autonomous differential equations, or vector fields (see Examples 2.D-E),
(/j;' pu—
. (4.7)
O =

Define a global cross-section for (4.7) for all a (near 0)

and we study the family of 2-dimensional Poincaré maps for (4.7),

The unique solution of (4.7) that satisfies the initial condition
z(0) = (2(0), 6(0)) = (xp, 0 (mod 27) ) € X
IS
z(t) = (p(t, 0,20, ) , wt (mod 27) ) € X

and the natural coordinate representation of the Poincaré map is



For the unperturbed av = 0 system, the Poincaré map P( -, 0) just hap-
pens to be the time-(27 /w) (stroboscopic) map for the 2-dimensional flow
©(t,0,20,0), of the unperturbed autonomous Hamiltonian system (4.5),
therefore P(-,0) has a hyperbolic saddle fixed point (p, 0 (mod 27)) €
20, whose 1-dimensional stable and unstable manifolds intersect, and hap-

pen to coincide along the smooth curve I'y x {0 (mod 27) } in ¥.
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Then, taking points in > as initial values at ¢ = 0 for (4.7),-0, the hy-
perbolic saddle fixed point (pY, 0 (mod 27)) for the 2-dimensional Poincaré
map P(-,0) in ¥y generates a (27 /w)-periodic hyperbolic limit cycle
Lo = {p(t,0) = (p, wt (mod 2)) },er for the 3-dimensional vector field
(4.7)a=0 in X, and the 2-dimensional (global) stable and unstable mani-
folds W[‘f and Wé‘ of Ly intersect, and happen to coincide along a smooth

2-dimensional homoclinic manifold g=TyxS'in X.
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