
MATH 552 (2023W1) Lecture 30: Wed Nov 22

[ Last lecture: ... two-dimensional homoclinic (saddle-loop, Andronov-

Leontovich) bifurcation ]

A 1-parameter family of 2-dimensional vector fields

ẋ = f (x, α), x ∈ R2, α ∈ R1. (4.1)

with

f (p00, α0) = 0 (equilibrium), (SL.0.i)

A0 = fx(p
0
0, α0) has eigenvalues λ10 < 0 < λ20

(hyperbolic saddle), (SL.0.ii)

ẋ = f (x, α0) has an orbit Γ = {x0(t)} that is homoclinic to p00

(bifurcation). (SL.0.iii)

For all α near α0, β(α) is a split function (“A-L version”) that measures

the signed distance, measured along the oriented cross-section Σ, from

W s(0, α) (appropriate branch) to W u(0, α) (appropriate branch), and we

assume a generic condition holds,

a = β′(α0) 6= 0. (transversality) (SL.1)



Finally, assume the generic condition

σ0 = λ10 + λ20 = div(f (p00, α0)) 6= 0 (nondegeneracy) (SL.2)

where div(f ) = ∂f1
∂x1

+ ∂f2
∂x2

= tr(fx).

Theorem 4.1. (Andronov & Leontovich) If f : R2 × R1 → R2 is

C2 and satisfies the five conditions (SL.0.i)–(SL.2), then (4.1) has a

family of Poincaré maps that is locally topologically equivalent to

ξ 7→ β + b ξ−λ10/λ20, ξ > 0, at (0, 0),

where b is a positive constant. In particular, for all α sufficiently near

α0 there is an open neighbourhood U of Γ ∪ {p00} in R2, in which a

unique limit cycle Lβ for (4.1) bifurcates from Γ∪ {p00} for α on only

one side of α0. If σ0 < 0, then Lβ exists only for β > 0 and is stable,

while if σ0 > 0, then Lβ exists only for β < 0 and is unstable.

Exercise. Work out what happens in the case σ0 > 0.

=====

If α→ α0 from the appropriate side of α0, then three things happen:

(i) β → 0, (ii) the limit cycle Lβ approaches the separatrix cycle Γ∪{p00},

and (iii) the period of Lβ approaches infinity.
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Melnikov’s method

Melnikov’s method is a global perturbation method for detecting homo-

clinic solutions. In its most basic form, we perturb from a 2-dimensional

Hamiltonian vector field that has a homoclinic solution, to analytically

determine if a nearby non-Hamiltonian system has a homoclinic solution

(or not). The basic method has been generalized to a variety of settings.

We start with a 2-dimensional Hamiltonian vector field (the “unper-

turbed” system) that is generated by a Hamiltonian functionH : R2 → R,

ẋ = f0(x), x ∈ R2, (4.5)

where

f0(x) =

 f10(x1, x2)

f20(x1, x2)

 , f10 =
∂H

∂x2
, f20 = − ∂H

∂x1
,

and we assume

(4.5) has a hyperbolic saddle equilibrium p00,

and an orbit Γ = {x0(t)} homoclinic to p00,

limt→±∞ x
0(t) = p00.

(M.0)
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Now we consider a family of “perturbed” 2-dimensional systems of

nonautonomous, periodic ODEs

ẋ = f (t, x, α) = f0(x) + αf1(x, ωt), t ∈ R, x ∈ R2, α ∈ R1, (4.6)

where ω = 2π/T0 > 0 is fixed, α is a parameter near 0, and f is periodic

in t with period T0 > 0

f (t + T0, x, α) = f (t, x, α) for all t, x, α,

and so f1 is periodic in ωt with period 2π

f1(x, ωt + 2π) = f1(x, ωt) for all t, x.

Denote the unique solution x(t) of (4.6) that satisfies the initial condi-

tion

x(t0) = x0 ∈ R2,

by

x(t) = ϕ(t, t0, x0, α) ∈ R2.

Recall from the basic existence-uniqueness-smoothness Theorem 2.1, that

ϕ(t, t0, x0, α) is smooth in all its variables. We will have occasion to study
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the derivative with respect to the parameter Θ(t) = ϕα(t, t0, x0, α) (see

HW 2 problem 1(b)).

Defining a new variable θ = ωt, we write the family of 2-dimensional

nonautonomous differential equations (4.6) as a family of 3-dimensional

autonomous differential equations, or vector fields (see Examples 2.D–E),

ẋ =

θ̇ =

(4.7)

Define a global cross-section for (4.7) for all α (near 0)

and we study the family of 2-dimensional Poincaré maps for (4.7),

The unique solution of (4.7) that satisfies the initial condition

x̃(0) = (x(0) , θ(0) ) = ( x0 , 0 (mod 2π) ) ∈ Σ0

is

x̃(t) = (ϕ(t, 0, x0, α) , ωt (mod 2π) ) ∈ X

and the natural coordinate representation of the Poincaré map is
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For the unperturbed α = 0 system, the Poincaré map P ( · , 0) just hap-

pens to be the time-(2π/ω) (stroboscopic) map for the 2-dimensional flow

ϕ(t, 0, x0, 0), of the unperturbed autonomous Hamiltonian system (4.5),

therefore P ( · , 0) has a hyperbolic saddle fixed point (p00, 0 (mod 2π)) ∈

Σ0, whose 1-dimensional stable and unstable manifolds intersect, and hap-

pen to coincide along the smooth curve Γ0 × { 0 (mod 2π) } in Σ0.

6



Then, taking points in Σ0 as initial values at t = 0 for (4.7)α=0, the hy-

perbolic saddle fixed point (p00, 0 (mod 2π)) for the 2-dimensional Poincaré

map P ( · , 0) in Σ0 generates a (2π/ω)-periodic hyperbolic limit cycle

L̃0 = { p̃(t, 0) = (p00, ωt (mod 2π)) }t∈R for the 3-dimensional vector field

(4.7)α=0 in X , and the 2-dimensional (global) stable and unstable mani-

folds W̃ s
0 and W̃ u

0 of L̃0 intersect, and happen to coincide along a smooth

2-dimensional homoclinic manifold Γ̃0 = Γ0 × S1 in X .
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For the perturbed system, for all α 6= 0 sufficiently near 0, the hy-

perbolic saddle fixed point (p00, 0 (mod2π)) ∈ Σ0 for the 2-dimensional

Poincaré map P (·, 0) persists as a fixed point (p0(α), 0 (mod2π)) ∈ Σ0

for the perturbed Poincaré map P (·, α) with p0(α) = p00 +O(|α|), and it

remains a saddle point for P (·, α) with 1-dimensional stable and unstable

subspaces. Furthermore, in Σ0, the 1-dimensional local stable and unsta-

ble manifolds W s
0,loc and W u

0,loc, of (p00, 0 (mod2π)) for the 2-dimensional

Poincaré map P (·, 0), persist as 1-dimensional local stable and unstable

manifolds W s
α,loc and W u

α,loc, of (p0(α), 0 (mod2π)) for P (·, α), and W s
α,loc

and W u
α,loc are O(|α|)-close to their α = 0 counterparts (e.g. Example

2.D, implicit function theorem, continuity of multipliers with respect to

the parameter).
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Now taking points in the 2-dimensional cross-section Σ0 as initial val-

ues at t = 0 for the 3-dimensional vector field (4.7), it follows that the

hyperbolic limit cycle L̃0, of saddle type, for persists in X , as a hyperbolic

limit cycle L̃α = {p̃0(t, α) = (p0(t, α), ωt (mod 2π))}, also of saddle type,

with p0(t, α) = p00 + O(|α|). It also follows that the 2-dimensional local

stable and unstable manifolds W̃ s
0,loc and W̃ u

0,loc, for L̃0, also persist in X ,

as local stable and unstable manifolds W̃ s
α,loc and W̃ u

α,loc, for L̃α, and these

invariant manifolds also remain O(|α|)-close to their α = 0 counterparts

W̃ s
0,loc and W̃ u

0,loc.
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We define the 2-dimensional vector field

f⊥0 (x) =

 −f20(x1, x2)
f10(x1, x2)

 ,

which is orthogonal to the unperturbed 2-dimensional (Hamiltonian) vec-

tor field f0, and oriented.

Define a Melnikov integral

Mα(θ, 0) =

∫ +∞

−∞
〈 f⊥0 (x0(t)), f1(x

0(t), ωt + θ) 〉 dt

=

∫ +∞

−∞
〈 η(t), fα(t + θ/ω, x0(t), 0) 〉 dt,

(4.8)

where 〈 · , · 〉 denotes the usual inner product in R2, and η(t) = f⊥0 (x0(t)).

Theorem 4.2. (Melnikov’s Method – Periodic Perturbations)

If, in (4.7), f0 : R2 → R2 and f1 : R2 × R1 → R2 are C2, with f1(x, ·)

periodic in its last variable with period 2π, and the two conditions

(M.0) and

Mα(θ0, 0) = 0, Mαθ(θ0, 0) 6= 0 for some θ0 ∈ S1, (M.1)
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are true, then there is an open neighbourhood Ũ of Γ̃0 ∪ L̃0 in X,

such that for all α 6= 0 sufficiently near 0, the stable and unstable

manifolds W̃ s
α and W̃ u

α for (4.7) have transversal intersections in Ũ .

Furthermore, if Mα(θ, 0) 6= 0 for all θ ∈ S1, then for all α 6= 0

sufficiently near 0, W̃ s
α and W̃ u

α do not intersect in Ũ .
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