MATH 552 (2023W1) Lecture 30: Wed Nov 22

| Last lecture: ... two-dimensional homoclinic (saddle-loop, Andronov-
Leontovich) bifurcation |

A 1-parameter family of 2-dimensional vector fields

i = f(r,a), vc€R* acR. (4.1)
with

f(ph,a0) =0 (equilibrium), (SL.0.1)

Ay = f.(ph, ap) has eigenvalues Ajg < 0 < Ao

(hyperbolic saddle), (SL.0.ii)

@ = f(x, ) has an orbit I' = {z"(¢)} that is homoclinic to p)
(bifurcation). (SL.0.iii)
For all a near ap, f(«) is a split function (“A-L version”) that measures
the signed distance, measured along the oriented cross-section X, from

W#(0, ) (appropriate branch) to W"(0, a) (appropriate branch), and we

assume a generic condition holds,

a = ['(ag) # 0. (transversality) (SL.1)



Finally, assume the generic condition
00 = Ao + Moo = div(f(ph, ap)) # 0 (nondegeneracy)  (SL.2)

where div(f) = 200 4 92 — (£,).
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Theorem 4.1. (Andronov & Leontovich) If f: R? x R! — R? is
C? and satisfies the five conditions (SL.0.i)~(SL.2), then (4.1) has a

family of Poincaré maps that s locally topologically equivalent to
Err Brbe Moo >0, at (0,0),

where b is a positive constant. In particular, for all o sufficiently near
g there is an open neighbourhood U of T U {py} in R?, in which a
unique limit cycle Lg for (4.1) bifurcates from T'U{p)} for a on only
one side of ay. If oy <0, then Lg exists only for 8 > 0 and is stable,

while if o9 > 0, then Lg exists only for 8 < 0 and is unstable.

Exercise. Work out what happens in the case oy > 0.

If a = ag from the appropriate side of a, then three things happen:
(i) B — 0, (ii) the limit cycle Lg approaches the separatrix cycle T'U{p]},

and (iii) the period of Lg approaches infinity.



Melnikov’s method

Melnikov’s method is a global perturbation method for detecting homo-
clinic solutions. In its most basic form, we perturb from a 2-dimensional
Hamiltonian vector field that has a homoclinic solution, to analytically
determine if a nearby non-Hamiltonian system has a homoclinic solution
(or not). The basic method has been generalized to a variety of settings.

We start with a 2-dimensional Hamiltonian vector field (the “unper-

turbed” system) that is generated by a Hamiltonian function H : R* — R,

&= folx), xeR% (4.5)
where
fro(z1, 22) OH OH
folz) = ; f102877 f20:_8?’
fao(z1, x2) 2 L

and we assume

(4.5) has a hyperbolic saddle equilibrium py),

and an orbit I' = {2°(¢)} homoclinic to py, (M.O)

limy 400 2°(t) = Y.



Now we consider a family of “perturbed” 2-dimensional systems of

nonautonomous, periodic ODEs
= f(t,x,a) = folx) +afi(z,wt), teR, zcR* acR, (4.6)

where w = 27 /Ty > 0 is fixed, « is a parameter near 0, and f is periodic

in ¢t with period Ty > 0
ft+Tp,z,a) = f(t,z,a) forallt, x, ,
and so fi is periodic in wt with period 27
filz,wt + 2m) = fi(z,wt) forallt, x.

Denote the unique solution x(t) of (4.6) that satisfies the initial condi-
tion
x(ty) = o € R?,
by
z(t) = @(t, ty, 79, a) € R?
Recall from the basic existence-uniqueness-smoothness Theorem 2.1, that

©(t, to, To, ) is smooth in all its variables. We will have occasion to study
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the derivative with respect to the parameter ©(t) = @, (t, to, xo, a) (see
HW 2 problem 1(b)).

Defining a new variable 6 = wt, we write the family of 2-dimensional
nonautonomous differential equations (4.6) as a family of 3-dimensional

autonomous differential equations, or vector fields (see Examples 2.D-E),
(/j;' pu—
. (4.7)
O =

Define a global cross-section for (4.7) for all a (near 0)

and we study the family of 2-dimensional Poincaré maps for (4.7),

The unique solution of (4.7) that satisfies the initial condition
z(0) = (2(0), 6(0)) = (xp, 0 (mod 27) ) € X
IS
z(t) = (p(t, 0,20, ) , wt (mod 27) ) € X

and the natural coordinate representation of the Poincaré map is



For the unperturbed av = 0 system, the Poincaré map P( -, 0) just hap-
pens to be the time-(27 /w) (stroboscopic) map for the 2-dimensional flow
©(t,0,20,0), of the unperturbed autonomous Hamiltonian system (4.5),
therefore P(-,0) has a hyperbolic saddle fixed point (p, 0 (mod 27)) €
20, whose 1-dimensional stable and unstable manifolds intersect, and hap-

pen to coincide along the smooth curve I'y x {0 (mod 27) } in ¥.



Then, taking points in > as initial values at ¢ = 0 for (4.7),-0, the hy-
perbolic saddle fixed point (pY, 0 (mod 27)) for the 2-dimensional Poincaré
map P(-,0) in ¥y generates a (27 /w)-periodic hyperbolic limit cycle
Lo = {p(t,0) = (p, wt (mod 2)) },er for the 3-dimensional vector field
(4.7)a=0 in X, and the 2-dimensional (global) stable and unstable mani-
folds W[‘f and Wé‘ of Ly intersect, and happen to coincide along a smooth

2-dimensional homoclinic manifold g=TyxS'in X.



For the perturbed system, for all @ # 0 sufficiently near 0, the hy-
perbolic saddle fixed point (p), 0 (mod27)) € Xy for the 2-dimensional
Poincaré map P(-,0) persists as a fixed point (p%(c), 0 (mod27)) € %
for the perturbed Poincaré map P(-, ) with p°(a) = pj + O(|«|), and it
remains a saddle point for P(-, o) with 1-dimensional stable and unstable
subspaces. Furthermore, in Yy, the 1-dimensional local stable and unsta-
ble manifolds W, and Wi, of (pp, 0 (mod27)) for the 2-dimensional

Poincaré map P(-,0), persist as 1-dimensional local stable and unstable

and W, of (p°(a),0 (mod2r)) for P(-, ), and W?

: S
manifolds o loc:

a,loc Jloc

and W}

10c are O(|af)-close to their @ = 0 counterparts (e.g. Example

2.D, implicit function theorem, continuity of multipliers with respect to

the parameter).



Now taking points in the 2-dimensional cross-section Xy as initial val-
ues at t = 0 for the 3-dimensional vector field (4.7), it follows that the
hyperbolic limit cycle Ly, of saddle type, for persists in X, as a hyperbolic
limit cycle Ly = {p°(t, ) = (p°(t, a), wt (mod 27))}, also of saddle type,
with p'(t,a) = py + O(|a|). Tt also follows that the 2-dimensional local

stable and unstable manifolds 1 0 loc and W(}L for Ly, also persist in X,

loc)

as local stable and unstable manifolds 1 o loc and VNVO? Joey 10T L., and these

invariant manifolds also remain O(|a/|)-close to their v = 0 counterparts

s U
0,loc and WO,loc'



We define the 2-dimensional vector field

foL(fU): — fao(@1, 22) |

fro(z1, z2)

which is orthogonal to the unperturbed 2-dimensional (Hamiltonian) vec-

tor field fy, and oriented.

Define a Melnikov integral

M0.0) = [ TR ®), (), wt 1 0)) de

(0. ¢]

) (4.8)
- / (1), falt + 6/, 2%(2),0) ) dt,

where (-, - ) denotes the usual inner product in R? and n(t) = f5-(2°(¢)).

Theorem 4.2. (Melnikov’s Method — Periodic Perturbations)
If, in (4.7), fo : R? = R? and f : R? x R — R? are C?, with fi(x,")
periodic in its last variable with period 2w, and the two conditions

(M.O) and

M, (6y,0) =0, Mop(05,0) #0  for some Oy € S*, (M.1)
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are true, then there is an open neighbourhood U of Ty U Ly in X,
such that for all o # 0 sufficiently near 0, the stable and unstable
manifolds W and W for (4.7) have transversal intersections in U.
Furthermore, if M,(0,0) # 0 for all 8 € S, then for all o # 0

sufficiently near 0, W2 and W do not intersect in U.
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