

[**Last lecture:** Melnikov's method ...]

The “unperturbed” system: 2-dimensional Hamiltonian vector field

$$\dot{x} = f_0(x), \quad x \in \mathbb{R}^2, \quad (4.5)$$

$$f_0(x) = \begin{pmatrix} f_{10}(x_1, x_2) \\ f_{20}(x_1, x_2) \end{pmatrix}, \quad f_{10} = \frac{\partial H}{\partial x_2}, \quad f_{20} = -\frac{\partial H}{\partial x_1},$$

and we assume

(4.5) has a hyperbolic saddle equilibrium p_0^0 ,

and an orbit $\Gamma_0 = \{x^0(t)\}$ homoclinic to p_0^0 , (M.0)

$$\lim_{t \rightarrow \pm\infty} x^0(t) = p_0^0.$$

“Perturbed” 2-dimensional systems of *nonautonomous, periodic* ODEs

$$\dot{x} = f(t, x, \alpha) = f_0(x) + \alpha f_1(x, \omega t), \quad t \in \mathbb{R}, x \in \mathbb{R}^2, \alpha \in \mathbb{R}^1, \quad (4.6)$$

expressed as a 3-dimensional autonomous system

$$\begin{aligned} \dot{x} &= f_0(x) + \alpha f_1(x, \theta), & \tilde{x} &= (x, \theta) \in \mathbb{R}^2 \times \mathbb{S}^1 = X, & \alpha &\in \mathbb{R}^1. \\ \dot{\theta} &= \omega, \end{aligned} \quad (4.7)$$

Fixed, global cross-section for (4.7) for *all* α (near 0)

$$\Sigma_0 = \{\tilde{x} = (x, \theta) \in X : x \in \mathbb{R}^2, \theta = 0 \pmod{2\pi}\}$$

and family of 2-dimensional Poincaré maps for (4.7),

$$P(\cdot, \alpha) : \Sigma_0 \rightarrow \Sigma_0.$$

The coordinate representation of the Poincaré map is

$$P(x_0, \alpha) = \varphi(2\pi/\omega, 0, x_0, \alpha) \in \mathbb{R}^2, \quad x_0 \in \mathbb{R}^2.$$

where $\varphi(t, 0, x_0, \alpha)$ is the unique solution of the perturbed nonautonomous periodic system (4.6) that satisfies the initial condition

$$x(0) = \varphi(0, 0, x_0, \alpha) = x_0.$$

The perturbed ($\alpha \neq 0$) Poincaré map $P(\cdot, \alpha)$ has a hyperbolic saddle fixed point; the perturbed 3-dimensional system (4.7) has a corresponding hyperbolic saddle-type limit cycle \tilde{L}_α . *Local* stable and unstable manifolds, for $P(\cdot, \alpha)$ and for (4.7) exist, and are $O(|\alpha|)$ -close to their unperturbed ($\alpha = 0$) counterparts.

Define the 2-dimensional vector field

$$f_0^\perp(x) = \begin{pmatrix} -f_{20}(x_1, x_2) \\ f_{10}(x_1, x_2) \end{pmatrix},$$

which is orthogonal to the unperturbed 2-dimensional (Hamiltonian) vector field f_0 , and *oriented in a specific way*.

=====

Define the **Melnikov integral**

$$\begin{aligned}
M_\alpha(\theta, 0) &= \int_{-\infty}^{+\infty} \langle f_0^\perp(x^0(t)), f_1(x^0(t), \omega t + \theta) \rangle dt \\
&= \int_{-\infty}^{+\infty} \langle \eta(t), f_\alpha(t + \theta/\omega, x^0(t), 0) \rangle dt,
\end{aligned} \tag{4.8}$$

where $\langle \cdot, \cdot \rangle$ denotes the usual inner product in \mathbb{R}^2 , and $\eta(t) = f_0^\perp(x^0(t))$.

Theorem 4.2. (Melnikov's Method – Periodic Perturbations)

If, in (4.7), $f_0 : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ and $f_1 : \mathbb{R}^2 \times \mathbb{R}^1 \rightarrow \mathbb{R}^2$ are C^2 , with $f_1(x, \cdot)$ periodic in its last variable with period 2π , and the two conditions (M.0) and

$$M_\alpha(\theta_0, 0) = 0, \quad M_{\alpha\theta}(\theta_0, 0) \neq 0 \quad \text{for some } \theta_0 \in \mathbb{S}^1, \tag{M.1}$$

are true, then there is an open neighbourhood \tilde{U} of $\tilde{\Gamma}_0 \cup \tilde{L}_0$ in X , such that for all $\alpha \neq 0$ sufficiently near 0, the stable and unstable manifolds \tilde{W}_α^s and \tilde{W}_α^u for (4.7) have transversal intersections in \tilde{U} . Furthermore, if $M_\alpha(\theta, 0) \neq 0$ for all $\theta \in \mathbb{S}^1$, then for all $\alpha \neq 0$ sufficiently near 0, \tilde{W}_α^s and \tilde{W}_α^u do not intersect in \tilde{U} .

We have a similar theorem if the perturbed 2-dimensional system is *autonomous* and depends on another parameter $\gamma \in \mathbb{R}^1$ (a constant),

$$\dot{x} = f_0(x) + \alpha f_1(x, \gamma), \quad x \in \mathbb{R}^2, \quad \gamma \in \mathbb{R}^1, \quad \alpha \in \mathbb{R}^1, \quad (4.9)$$

In this case we can consider an extended 3-dimensional system

$$\dot{x} = f_0(x) + \alpha f_1(x, \gamma),$$

$$\dot{\gamma} = 0,$$

and adapt the proof of Theorem 4.2. Now, the **Melnikov integral** is

$$M_\alpha(\gamma, 0) = \int_{-\infty}^{+\infty} \langle f_0^\perp(x^0(t)), f_1(x^0(t), \gamma) \rangle dt.$$

Theorem 4.3. (Melnikov's Method – Autonomous Perturbations)

If, in (4.9), $f_0 : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ and $f_1 : \mathbb{R}^2 \times \mathbb{R}^1 \rightarrow \mathbb{R}^2$ are C^2 and satisfy both conditions (M.0) and

$$M_\alpha(\gamma_0, 0) = 0, \quad M_{\alpha\gamma}(\gamma_0, 0) \neq 0 \quad \text{for some } \gamma_0 \in \mathbb{R}^1, \quad (\text{M.2})$$

then there is an open neighbourhood U of $\Gamma_0 \cup \{p_0^0\}$ in \mathbb{R}^2 , such that for all $\alpha \neq 0$ sufficiently near 0, there is a unique value $\hat{\gamma}(\alpha) = \gamma_0 + O(|\alpha|)$ so that (4.9) has a homoclinic orbit in U only for $\gamma = \hat{\gamma}(\alpha)$ and no homoclinic orbit in U for $\gamma \neq \hat{\gamma}(\alpha)$. Furthermore, if $M_\alpha(\gamma, 0) \neq 0$ for all γ , then for all $\alpha \neq 0$ sufficiently near 0, (4.9) has no homoclinic orbit in U .

Example 4.A. A periodically forced, damped nonlinear oscillator

$$\ddot{x} + \alpha \dot{x} - x + x^3 = \varepsilon \cos(\omega t), \quad x \in \mathbb{R}^1.$$

Assume damping is positive and small, $0 < \alpha \ll 1$, and the forcing amplitude scales like α ,

$$\varepsilon = \alpha\gamma, \quad \text{where } \gamma \neq 0 \text{ is fixed as } \alpha \rightarrow 0+$$

Then rewrite the nonautonomous 2nd order equation as

in the form of (4.7), with

We observe (Example 2.F, lectures 11–12) that f_0 is a Hamiltonian vector field, with Hamiltonian function

To get an analytic expression for homoclinic orbits, note that they lie on the level set

so solving for x_2 gives

etc., and the right homoclinic orbit ($x_1 > 0$) is

and

The Melnikov integral is

so if $|\gamma\sqrt{2}\pi\omega \operatorname{sech}\left(\frac{\pi\omega}{2}\right)| > \frac{4}{3}$, i.e. $|\gamma| > \frac{4}{3\sqrt{2}\pi\omega \operatorname{sech}(\pi\omega/2)}$

we see there exists some $\theta_0 \in \mathbb{S}^1$ satisfying (M.1), and by Theorem 4.2, \tilde{W}_α^s and \tilde{W}_α^u have transversal intersections in some open neighbourhood \tilde{U} of $\tilde{\Gamma} \cup \tilde{L}_0$, for all $\alpha \neq 0$ sufficiently close to 0.

Furthermore, if $|\gamma| < \frac{4}{3\sqrt{2}\pi\omega \operatorname{sech}(\pi\omega/2)}$,

then \tilde{W}_α^s and \tilde{W}_α^u have no intersections in \tilde{U} .

Derivation of the Melnikov integral in Theorem 4.2

Recall

$$f_0^\perp = \begin{pmatrix} -f_{20} \\ f_{10} \end{pmatrix}$$

The “vertical” cross-section:

Let

and let L be the 1-dimensional line segment of length 2ε in \mathbb{R}^2 oriented in the direction of η_0 , for some small, fixed $\varepsilon > 0$

Observe that for $x \in L$,

$$\beta = \left\langle \frac{\eta_0}{\|\eta_0\|}, x - x_0^0 \right\rangle = \frac{\langle \eta_0, x - x_0^0 \rangle}{\|\eta_0\|}$$

is the *signed* distance *from* x_0^0 *to* x , along the oriented line segment L .

Now for (4.7) in the 3-dimensional manifold X , define the 2-dimensional “vertical” cross-section Π

Keeping Π fixed in X for all α , we will study how certain solutions of (4.7) intersect Π for $\alpha = 0$ and for $\alpha \neq 0$.

Transversal intersections with the “vertical” cross-section:

For $\alpha = 0$, the stable and unstable manifolds of the “unperturbed” limit cycle, \tilde{W}_0^s and \tilde{W}_0^u , both have transversal (in fact, orthogonal) intersections with Π . The transversal intersections form two smooth curves in Π , and in fact, the curves coincide in a single “vertical” line

$$(x_0^0, \theta \pmod{2\pi}) \in \Pi, \quad \theta \in \mathbb{S}^1.$$

Transversal intersections of manifolds persist under smooth changes of

the manifolds, therefore for $\alpha \neq 0$, for all α sufficiently near 0, the stable manifold of the “perturbed” limit cycle, \tilde{W}_α^s , still has a transversal intersection with Π , forming some smooth curve

$$(s(\theta, \alpha), \theta \pmod{2\pi}) \in \Pi, \quad \theta \in \mathbb{S}^1,$$

with

$$s(\theta, \alpha) = x_0^0 + O(|\alpha|) \in L \quad \text{for all } \theta \in \mathbb{S}^1.$$

Similarly, \tilde{W}_α^u still has a transversal intersection with Π , forming some smooth curve

$$(u(\theta, \alpha), \theta \pmod{2\pi}) \in \Pi, \quad \theta \in \mathbb{S}^1,$$

with

$$u(\theta, \alpha) = x_0^0 + O(|\alpha|) \in L \quad \text{for all } \theta \in \mathbb{S}^1.$$

The Melnikov function:

A **split function** defined as

$$\beta(\theta, \alpha) = \frac{\langle \eta_0, u(\theta, \alpha) - s(\theta, \alpha) \rangle}{\|\eta_0\|}$$

measures the *signed* “horizontal” distance (i.e. at $\theta = \text{constant}$) *from* \tilde{W}_α^s *to* \tilde{W}_α^u , along Π .

The **Melnikov function** is defined to be the numerator of $\beta(\theta, \alpha)$

$$M(\theta, \alpha) = \langle \eta_0, u(\theta, \alpha) - s(\theta, \alpha) \rangle = \|\eta_0\| \beta(\theta, \alpha)$$

which is simply a positive constant times the split function. It is a smooth function, so it has a Taylor expansion in α , at $\alpha = 0$.

For $\alpha = 0$, \tilde{W}_0^s and \tilde{W}_0^u coincide along Π , and this implies

$$M(\theta, 0) = 0 \quad \text{for all } \theta \in \mathbb{S}^1$$

and therefore we can “factor out” α from the Taylor expansion of $M(\theta, \alpha)$ about $\alpha = 0$