MATH 552 (2023W1) Lecture 31: Fri Nov 24

| Last lecture: Melnikov's method ... |

The “unperturbed” system: 2-dimensional Hamiltonian vector field

T = folx), r € R?, (4.5)
fo(z) = Fole1, 22 ; Jio= 27}], Joo = — 27}[,
faol(z1, 72) 2 !

and we assume

(4.5) has a hyperbolic saddle equilibrium p8,
and an orbit Ty = {z"(#)} homoclinic to p}, (M.O)
limy 400 2°(t) = p).

“Perturbed” 2-dimensional systems of nonautonomous, periodic ODEs
= f(t,x,a) = folx) +afi(r,wt), tcR, zcR*® acR, (4.6)

expressed as a 3-dimensional autonomous sytem

© = folz) + afilz,0),

0 =uw,

i=(z,0) cR*xS'=X, acR' (47)

Fixed, global cross-section for (4.7) for all o (near 0)

Yo={T=(z,0) € X: v €R* =0 (mod 27)}



and family of 2-dimensional Poincaré maps for (4.7),
P(-,a): Xy — 2.
The coordinate representation of the Poincaré map is
P(x0,0) = p(2m/w, 0,10, a) € R*, x5 € R?.

where ¢(t,0, xg, a) is the unique solution of the pertubed nonautonou-

mous periodic system (4.6) that satisfies the initial condition
z(0) = (0,0, xy, ) = x.

The perturbed (a # 0) Poincaré map P(-, ) has a hyperbolic saddle
fixed point; the perturbed 3-dimensional system (4.7) has a corresponding
hyperbolic saddle-type limit cycle L,. Local stable and unstable mani-
folds, for P(-, ) and for (4.7) exist, and are O(|«)|)-close to their unper-
turbed (o = 0) counterparts.

Define the 2-dimensional vector field

foL(CE): — fao(z1, T2) |

fro(z1, z2)

which is orthogonal to the unperturbed 2-dimensional (Hamiltonian) vec-

tor field fy, and oriented in a specific way.



Define the Melnikov integral

M(0.0) = | TR, i@ (), wt +0)) di

o0

(4.8)

+00

- / (0(), falt + 0w, 2°(1),0)) dt.

(0. ¢]

where (-, ) denotes the usual inner product in R? and n(t) = f5-(2"(¢)).

Theorem 4.2. (Melnikov’s Method — Periodic Perturbations)
If, in (4.7), fo : R2 = R? and f, : R? x R! — R? are C?, with fi(x,")
periodic in 1ts last variable with period 2w, and the two conditions

(M.0) and
M,(600,0) =0, M_,4(09,0) #0  for some 0y € S, (M.1)

are true, then there is an open neighbourhood U of Ty U Ly in X,
such that for all a # 0 sufficiently near 0, the stable and unstable
manifolds W and W for (4.7) have transversal intersections in U.
Furthermore, if M,(0,0) # 0 for all 8 € S, then for all o # 0

sufficiently near 0, W2 and W do not intersect in U.



We have a similar theorem if the perturbed 2-dimensional system is

autonomous and depends on another parameter v € R (a constant),
&= folx)+afilz,y), 2zeR’ ~eR, aeR, (49
In this case we can consider an extended 3-dimensional system

T = folx) + afi(z, ),
7 — 07

and adapt the proof of Theorem 4.2. Now, the Melnikov integral is

M 0) = [0 A0, de

0

Theorem 4.3. (Melnikov’s Method — Autonomous Perturbations)
If, in (4.9), fo: R* — R? and f; : R* x R! — R? are C? and satisfy

both conditions (M.0) and
Mo(70,0) =0, Moy (70,0) # 0 for some 79 € RY, (M.2)

then there is an open neighbourhood U of To U { p) } in R?, such that
for all o # 0 sufficiently near 0, there is a unique value y(a) = vy +
O(|a) so that (4.9) has a homoclinic orbit in U only for v = y(a) and
no homoclinic orbit in U for v # ~(a). Furthermore, if M,(7,0) # 0
for all~, then for all o # 0 sufficiently near 0, (4.9) has no homoclinic

orbit in U.



Example 4.A. A periodically forced, damped nonlinear oscillator
i+ai—1x+2°=ccos(wt), xR

Assume damping is positive and small, 0 < a < 1, and the forcing

amplitude scales like a,
e = a7y, wherey # 0 is fixed as a — 0+

Then rewrite the nonautonomous 2nd order equation as

in the form of (4.7), with

We observe (Example 2.F, lectures 11-12) that f, is a Hamiltonian vector

field, with Hamiltonian function



To get an analytic expression for homoclinic orbits, note that they lie on

the level set

so solving for xo gives

etc., and the right homoclinic orbit (x; > 0) is

and

The Melnikov integral is



so if | yv/2 7w sech (%) | > %, ie. |y| > 3\/§msjch(m/2)

we see there exists some 6y € S! satisfying (M.1), and by Theorem 4.2,

W2 and WY have transversal intersections in some open neighbourhood

U of T'U Ly, for all a # 0 sufficiently close to 0.

4
3v/2 mwsech(rw/2)’

Furthermore, if |y| <



then W} and W! have no intersections in U.

Derivation of the Melnikov integral in Theorem 4.2

Recall
o —f
fio
The “vertical” cross-section:

Let

and let L be the 1-dimensional line segment of length 2e in R? oriented in

the direction of ng, for some small, fixed € > 0



Observe that for x € L,

ﬁ:< 7o x_x8>:<n07x_x8>

70]] [ 70]|

is the signed distance from ) to x, along the oriented line segment L.

Now for (4.7) in the 3-dimensional manifold X, define the 2-dimensional

“vertical” cross-section II



Keeping IT fixed in X for all a, we will study how certain solutions of (4.7)

intersect IT for a = 0 and for a: # 0.

Transversal intersections with the “vertical” cross-section:

For o = 0, the stable and unstable manifolds of the “unperturbed”
limit cycle, W§ and W, both have transversal (in fact, orthogonal) inter-
sections with II. The transversal intersections form two smooth curves in

[I, and in fact, the curves coincide in a single “vertical” line

(z), 6 (mod 27)) € II, 6 S

Transversal intersections of manifolds persist under smooth changes of

10



the manifolds, therefore for v # 0, for all a sufficiently near 0, the sta-
ble manifold of the “perturbed” limit cycle, Wo‘f, still has a transversal

intersection with II, forming some smooth curve
(s(0,a), 6 (mod 27)) € I, 0 € S,

with

s(0,a) =z)+O(|la|) € L forall§ € S".

Similarly, Wg still has a transversal intersection with II, forming some

smooth curve
(u(f, ), 0 (mod 27)) € I, 0 € S,

with

u(@,a) = 20+ O(|a|) € L forall € S

11



The Melnikov function:

A split function defined as

<770 ) u(ea O‘) B 8(97 Q) >
70l

B0, a) =

measures the signed “horizontal” distance (i.e. at § = constant) from W

to ng, along II.

The Melnikov function is defined to be the numerator of 5(6, a)

M(0,a) = (no, u(@,a) —s(0,a)) = |Inol| B(n, )

which is simply a positive constant times the split function. It is a smooth

function, so it has a Taylor expansion in a, at o = 0.

12



For a = 0, VNVO9 and Wé‘ coincide along 11, and this implies
M(9,0) =0 forallfesS

and therefore we can “factor out” « from the Taylor expansion of M (6, «)

about a =0
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