
MATH 552 (2023W1) Lecture 31: Fri Nov 24

[ Last lecture: Melnikov’s method ... ]

The “unperturbed” system: 2-dimensional Hamiltonian vector field

ẋ = f0(x), x ∈ R2, (4.5)

f0(x) =

 f10(x1, x2)

f20(x1, x2)

 , f10 =
∂H

∂x2
, f20 = − ∂H

∂x1
,

and we assume

(4.5) has a hyperbolic saddle equilibrium p00,

and an orbit Γ0 = {x0(t)} homoclinic to p00,

limt→±∞ x
0(t) = p00.

(M.0)

“Perturbed” 2-dimensional systems of nonautonomous, periodic ODEs

ẋ = f (t, x, α) = f0(x) + αf1(x, ωt), t ∈ R, x ∈ R2, α ∈ R1, (4.6)

expressed as a 3-dimensional autonomous sytem

ẋ = f0(x) + αf1(x, θ),

θ̇ = ω,
x̃ = (x, θ) ∈ R2×S1 = X, α ∈ R1. (4.7)

Fixed, global cross-section for (4.7) for all α (near 0)

Σ0 = {x̃ = (x, θ) ∈ X : x ∈ R2, θ = 0 (mod 2π)}



and family of 2-dimensional Poincaré maps for (4.7),

P ( · , α) : Σ0 → Σ0.

The coordinate representation of the Poincaré map is

P (x0, α) = ϕ(2π/ω, 0, x0, α) ∈ R2, x0 ∈ R2.

where ϕ(t, 0, x0, α) is the unique solution of the pertubed nonautonou-

mous periodic system (4.6) that satisfies the initial condition

x(0) = ϕ(0, 0, x0, α) = x0.

The perturbed (α 6= 0) Poincaré map P (·, α) has a hyperbolic saddle

fixed point; the perturbed 3-dimensional system (4.7) has a corresponding

hyperbolic saddle-type limit cycle L̃α. Local stable and unstable mani-

folds, for P (·, α) and for (4.7) exist, and are O(|α)|)-close to their unper-

turbed (α = 0) counterparts.

Define the 2-dimensional vector field

f⊥0 (x) =

 −f20(x1, x2)
f10(x1, x2)

 ,

which is orthogonal to the unperturbed 2-dimensional (Hamiltonian) vec-

tor field f0, and oriented in a specific way.

=====
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Define the Melnikov integral

Mα(θ, 0) =

∫ +∞

−∞
〈 f⊥0 (x0(t)), f1(x

0(t), ωt + θ) 〉 dt

=

∫ +∞

−∞
〈 η(t), fα(t + θ/ω, x0(t), 0) 〉 dt,

(4.8)

where 〈 · , · 〉 denotes the usual inner product in R2, and η(t) = f⊥0 (x0(t)).

Theorem 4.2. (Melnikov’s Method – Periodic Perturbations)

If, in (4.7), f0 : R2 → R2 and f1 : R2 × R1 → R2 are C2, with f1(x, ·)

periodic in its last variable with period 2π, and the two conditions

(M.0) and

Mα(θ0, 0) = 0, Mαθ(θ0, 0) 6= 0 for some θ0 ∈ S1, (M.1)

are true, then there is an open neighbourhood Ũ of Γ̃0 ∪ L̃0 in X,

such that for all α 6= 0 sufficiently near 0, the stable and unstable

manifolds W̃ s
α and W̃ u

α for (4.7) have transversal intersections in Ũ .

Furthermore, if Mα(θ, 0) 6= 0 for all θ ∈ S1, then for all α 6= 0

sufficiently near 0, W̃ s
α and W̃ u

α do not intersect in Ũ .
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We have a similar theorem if the perturbed 2-dimensional system is

autonomous and depends on another parameter γ ∈ R1 (a constant),

ẋ = f0(x) + αf1(x, γ), x ∈ R2, γ ∈ R1, α ∈ R1, (4.9)

In this case we can consider an extended 3-dimensional system

ẋ = f0(x) + αf1(x, γ),

γ̇ = 0,

and adapt the proof of Theorem 4.2. Now, the Melnikov integral is

Mα(γ, 0) =

∫ +∞

−∞
〈 f⊥0 (x0(t)), f1(x

0(t), γ) 〉 dt.

Theorem 4.3. (Melnikov’s Method – Autonomous Perturbations)

If, in (4.9), f0 : R2 → R2 and f1 : R2 × R1 → R2 are C2 and satisfy

both conditions (M.0) and

Mα(γ0, 0) = 0, Mαγ(γ0, 0) 6= 0 for some γ0 ∈ R1, (M.2)

then there is an open neighbourhood U of Γ0 ∪ { p00 } in R2, such that

for all α 6= 0 sufficiently near 0, there is a unique value γ̂(α) = γ0 +

O(|α|) so that (4.9) has a homoclinic orbit in U only for γ = γ̂(α) and

no homoclinic orbit in U for γ 6= γ̂(α). Furthermore, if Mα(γ, 0) 6= 0

for all γ, then for all α 6= 0 sufficiently near 0, (4.9) has no homoclinic

orbit in U .
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Example 4.A. A periodically forced, damped nonlinear oscillator

ẍ + α ẋ− x + x3 = ε cos(ωt), x ∈ R1.

Assume damping is positive and small, 0 < α � 1, and the forcing

amplitude scales like α,

ε = αγ, where γ 6= 0 is fixed as α→ 0+

Then rewrite the nonautonomous 2nd order equation as

in the form of (4.7), with

We observe (Example 2.F, lectures 11–12) that f0 is a Hamiltonian vector

field, with Hamiltonian function

5



To get an analytic expression for homoclinic orbits, note that they lie on

the level set

so solving for x2 gives

etc., and the right homoclinic orbit (x1 > 0) is

and

The Melnikov integral is
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so if | γ
√

2 πω sech
(
πω
2

)
| > 4

3, i.e. |γ| > 4
3
√
2 πω sech(πω/2)

we see there exists some θ0 ∈ S1 satisfying (M.1), and by Theorem 4.2,

W̃ s
α and W̃ u

α have transversal intersections in some open neighbourhood

Ũ of Γ̃ ∪ L̃0, for all α 6= 0 sufficiently close to 0.

Furthermore, if |γ| < 4
3
√
2πω sech(πω/2)

,
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then W̃ s
α and W̃ u

α have no intersections in Ũ .

Derivation of the Melnikov integral in Theorem 4.2

Recall

f⊥0 =

 −f20
f10


The “vertical” cross-section:

Let

and let L be the 1-dimensional line segment of length 2ε in R2 oriented in

the direction of η0, for some small, fixed ε > 0
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Observe that for x ∈ L,

β =

〈
η0
‖η0‖

, x− x00
〉

=
〈 η0 , x− x00 〉
‖η0‖

is the signed distance from x00 to x, along the oriented line segment L.

Now for (4.7) in the 3-dimensional manifold X , define the 2-dimensional

“vertical” cross-section Π
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Keeping Π fixed in X for all α, we will study how certain solutions of (4.7)

intersect Π for α = 0 and for α 6= 0.

Transversal intersections with the “vertical” cross-section:

For α = 0, the stable and unstable manifolds of the “unperturbed”

limit cycle, W̃ s
0 and W̃ u

0 , both have transversal (in fact, orthogonal) inter-

sections with Π. The transversal intersections form two smooth curves in

Π, and in fact, the curves coincide in a single “vertical” line

(x00, θ (mod 2π)) ∈ Π, θ ∈ S1.

Transversal intersections of manifolds persist under smooth changes of
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the manifolds, therefore for α 6= 0, for all α sufficiently near 0, the sta-

ble manifold of the “perturbed” limit cycle, W̃ s
α, still has a transversal

intersection with Π, forming some smooth curve

(s(θ, α), θ (mod 2π)) ∈ Π, θ ∈ S1,

with

s(θ, α) = x00 + O(|α|) ∈ L for all θ ∈ S1.

Similarly, W̃ u
α still has a transversal intersection with Π, forming some

smooth curve

(u(θ, α), θ (mod 2π)) ∈ Π, θ ∈ S1,

with

u(θ, α) = x00 + O(|α|) ∈ L for all θ ∈ S1.
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The Melnikov function:

A split function defined as

β(θ, α) =
〈 η0 , u(θ, α)− s(θ, α) 〉

‖η0‖

measures the signed “horizontal” distance (i.e. at θ = constant) from W̃ s
α

to W̃ u
α , along Π.

The Melnikov function is defined to be the numerator of β(θ, α)

M(θ, α) = 〈 η0 , u(θ, α)− s(θ, α) 〉 = ‖η0‖ β(η, α)

which is simply a positive constant times the split function. It is a smooth

function, so it has a Taylor expansion in α, at α = 0.
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For α = 0, W̃ s
0 and W̃ u

0 coincide along Π, and this implies

M(θ, 0) = 0 for all θ ∈ S1

and therefore we can “factor out” α from the Taylor expansion of M(θ, α)

about α = 0
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