
MATH 552 (2023W1) Lecture 32: Mon Nov 27

[ Last lecture: ... Melnikov’s method (derivation) ... ]

The “unperturbed” system: 2-dimensional Hamiltonian vector field

ẋ = f0(x), x ∈ R2, (4.5)

f0(x) =

 f10(x1, x2)

f20(x1, x2)

 , f10 =
∂H

∂x2
, f20 = − ∂H

∂x1
,

and we assume

(4.5) has a hyperbolic saddle equilibrium p00,

and an orbit Γ0 = {x0(t)} homoclinic to p00,

limt→±∞ x
0(t) = p00.

(M.0)

“Perturbed” 2-dimensional system of nonautonomous, periodic ODEs

ẋ = f0(x) + αf1(x, ωt), x ∈ R2, α ∈ R1, (4.6)

expressed as an equivalent, 3-dimensional autonomous sytem

ẋ = f0(x) + αf1(x, θ),

θ̇ = ω,
x̃ = (x, θ) ∈ R2 × S1, α ∈ R1. (4.7)

Fixed, “vertical” cross-section for (4.7) for all α (near 0)

Π = L× S1 = {(x̃ = (x, θ) ∈ X : x ∈ L, θ ∈ S1}



where

L : x = x00 + β
η0
‖η0‖

, |β| < ε,

β =
〈 η0 , x− x00 〉
‖η0‖

, η0 = f⊥0 (x00) ∈ R2, x00 = x0(0).

=====

Transversal intersections with the “vertical” cross-section:

For α = 0, the stable and unstable manifolds of the “unperturbed”

limit cycle, W̃ s
0 and W̃ u

0 , both have transversal (in fact, orthogonal) inter-

sections with Π. The transversal intersections form two smooth curves in

Π, and in fact, these two curves coincide in a single “vertical” line

(x00, θ (mod 2π)) ∈ Π, θ ∈ S1.

Transversal intersections of manifolds persist under smooth changes of

the manifolds, therefore for α 6= 0, for all α sufficiently near 0, W̃ s
α still

has a transversal intersection with Π, forming some smooth curve

(s(θ, α), θ (mod 2π)) ∈ Π, θ ∈ S1,
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with

s(θ, α) = x00 + O(|α|) ∈ L for all θ ∈ S1.

Similarly, W̃ u
α still has a transversal intersection with Π, forming some

smooth curve

(u(θ, α), θ (mod 2π)) ∈ Π, θ ∈ S1,

with

u(θ, α) = x00 + O(|α|) ∈ L for all θ ∈ S1.
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The Melnikov function:

The split function (“M version”) defined as

β(θ, α) =
〈 η0 , u(θ, α)− s(θ, α) 〉

‖η0‖

measures the signed “horizontal” distance (i.e. at θ = constant) from W̃ s
α

to W̃ u
α , along Π.

The Melnikov function, defined to be the numerator of β(θ, α),

M(θ, α) = 〈 η0 , u(θ, α)− s(θ, α) 〉 = ‖η0‖ β(η, α),

is simply a positive constant times the split function. It is a smooth

function, so it has a Taylor expansion in α, at α = 0.

For α = 0, W̃ s
0 and W̃ u

0 coincide along Π, and this implies

M(θ, 0) = 0 for all θ ∈ S1

and therefore we can “factor out” α from the Taylor expansion of M(θ, α)

about α = 0
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Clearly, for all α 6= 0 sufficiently near 0,

β(θ, α) = 0 ⇔ M(θ, α) = 0 ⇔ M̃(θ, α) = 0.

Notice we can solve

M̃(θ, α) = 0

exactly, for θ as an explicit function of α, using the implicit function

theorem, if there exists some θ0 ∈ S1 such that

i.e.

which is just the condition (M.1).

We can find an analytic expression for the leading-order term Mα(θ, 0),

of M̃(θ, α), by studying the derivative of solutions to initial value problems

with respect to the parameter α, evaluated at α = 0.
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Derivation of the integral formula (4.8):

Fix some θ0 ∈ S1, and consider two different initial value problems for

the 3-dimensional system (4.7), with two initial conditions in Π,

x̃u(0) = (u(θ0, α), θ0 (mod 2π) ), x̃s(0) = ( s(θ0, α), θ0 (mod 2π) ).

The solutions of (4.7) with these initial conditions will have the form

x̃u(t) = (xu(t, θ0, α), ωt + θ0 (mod 2π) ),

x̃s(t) = (xs(t, θ0, α), ωt + θ0 (mod 2π) ),

respectively, with xu(0, θ0, α) = u(θ0, α), and xs(0, θ0, α) = s(θ0, α).
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The first two components of x̃u(t) and x̃s(t) can be expressed in terms

of solutions of initial value problems for the nonautonomous 2-dimensional

system (4.6). Note that we have to start the corresponding solutions at

the correct phase of the forcing function, f1(x, θ0):

Now we define two “time-dependent Melnikov functions” (whose purpose

will become clear later)

Mu(t, θ0, α) = 〈 f⊥0 (x0(t)), xu(t, θ0, α) 〉, −∞ < t ≤ 0,

M s(t, θ0, α) = 〈 f⊥0 (x0(t)), xs(t, θ0, α) 〉, 0 ≤ t < +∞.

When t = 0, we have

We now find an integral expression forMu
α(0, θ0, 0). Take the α-derivative

of Mu(t, θ0, α) at α = 0
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and then take the t-derivative at any t < 0

recalling that

Exercise: Use the results of HW 2 problem 1 to show that

ψ(t) = xuα(t, θ0, 0)

satisfies the linear nonhomogeneous ODE

Using the result of this Exercise, we get
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Now we integrate, to recover Mu
α(0, θ0, 0)

By the fundamental theorem of calculus,

so we have

We calculate
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and we have

Mu
α(0, θ0, 0) =

∫ 0

−∞
〈 f⊥0 (x0(t)), f1(x

0(t), ωt + θ0) 〉 dt.

Similarly (Exercise),

M s
α(0, θ0, 0) = −

∫ ∞
0

〈 f⊥0 (x0(t)), f1(x
0(t), ωt + θ0) 〉 dt

and finally

which is the Melnikov integral (4.8).
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Generalizations of Theorems 4.2 and 4.3.

Melnikov’s method can be generalized to work in situations where the

unperturbed system is not Hamiltonian. For example, a useful generaliza-

tion can be made in the setting of Theorem 4.1 (the Andronov-Leontovich

theorem on the homoclinic bifurcation in R2): recall we have a 1-parameter

family of 2-dimensional vector fields (autonomous ODEs)

ẋ = f (x, α), x ∈ R2, α ∈ R1. (4.1)

and the unperturbed (α = α0) vector field satisfies

f (p00, α0) = 0 (equilibrium), (SL.0.i)

A0 = fx(p
0
0, α0) has eigenvalues λ10 < 0 < λ20

(hyperbolic saddle), (SL.0.ii)

ẋ = f (x, α0) has an orbit Γ = {x0(t)} that is homoclinic to p00

(bifurcation). (SL.0.iii)

In Theorem 4.1, if the unperturbed vector field f ( · , α0) is not Hamiltonian

(if it is Hamiltonian, then (SL.2) cannot be satisfied), consider a Melnikov

integral

Mα(α0) =

∫ +∞

−∞
〈 η(t), fα(x0(t), α0) 〉 dt,
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where (see the textbook, p. 211)

η(t) = exp

[
−
∫ t

0

(
∂f1
∂x1

+
∂f2
∂x2

)∣∣∣∣
(x,α)=(x0(τ),α0)

dτ

]
f⊥(x0(t), α0),

and the condition on the derivative of the (“A-L”) split function (SL.1) is

equivalent to an analytic expression (for the “M” split function)

Mα(α0) 6= 0. (SL.1’)

Also, the vector function η(t) can be characterized as the unique-up-to-

a-scalar-multiple bounded solution of the “adjoint variational equation”

η̇ = −A(t)ᵀη, η ∈ R2, t ∈ R

(i.e. the adjoint variational equation has a 1-dimensional function space

of bounded solutions, span{η(t)}), where A(t) = fx(x
0(t), α0) is the lin-

earization of the unperturbed vector field at the homoclinic solution.

For perturbations of systems with homoclinic orbits in dimensions n ≥

3, and also for perturbations of systems with heteroclinic solutions, gener-

alized Melnikov integrals are defined in terms of an inner product with an

η(t) ∈ Rn, a unique-up-to-a-scalar-multiple bounded solution of the ad-

joint variational equation. This approach generalizes to infinite dimensions

(PDEs, DDEs), and is useful, e.g. for studying stability and bifurcation of

travelling waves in reaction-diffusion systems.
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