MATH 552 (2023W1) Lecture 32: Mon Nov 27

| Last lecture: ... Melnikov’s method (derivation) ... ]

The “unperturbed” system: 2-dimensional Hamiltonian vector field

T = folx), r € R?, (4.5)
fo(z) = Fole1, 22 ; Jio= 27}], Joo = — 27}[,
faol(z1, 72) 2 !

and we assume

(4.5) has a hyperbolic saddle equilibrium p8,
and an orbit Ty = {z"(#)} homoclinic to p}, (M.O)
limy 400 2°(t) = p).

“Perturbed” 2-dimensional system of nonautonomous, periodic ODEs
&= folx) + afi(z,wt), z€R* acR (4.6)

expressed as an equivalent, 3-dimensional autonomous sytem

© = folz) + afi(z,0),

0 =uw,

i=(z,0) cR* xS, acR.  (47)

Fixed, “vertical” cross-section for (4.7) for all o (near 0)

M=LxS'={@=(z,0eX: v€L,0cS"}



where

L:o=al+8-1 |8 <e,

2ol

0
UOJx_x
gt . 0] o= fLad) € B2 al = 29(0).

Transversal intersections with the “vertical” cross-section:

For a« = 0, the stable and unstable manifolds of the “unperturbed”
limit cycle, WOS and Wéﬂ both have transversal (in fact, orthogonal) inter-
sections with II. The transversal intersections form two smooth curves in

II, and in fact, these two curves coincide in a single “vertical” line

(z), 6 (mod 27)) € 11, 6 S

Transversal intersections of manifolds persist under smooth changes of
the manifolds, therefore for av # 0, for all « sufficiently near 0, Was still
has a transversal intersection with II, forming some smooth curve

(s(0,a), 0 (mod 27)) € 11, 6 € S,

2



with

s(0,a) =x) +O(|la|) € L forall § cS".

Similarly, Wé‘ still has a transversal intersection with II, forming some

smooth curve
(u(f, ), 0 (mod 27)) € I, 0 € S,

with

u(@,a) = 20+ O(|a|) € L forall § € S.



The Melnikov function:

The split function (“M version”) defined as

(o, ulb,a) = 5(6,a))

B, ) = ol

measures the signed “horizontal” distance (i.e. at @ = constant) from Wo‘f

to W, along II.

The Melnikov function, defined to be the numerator of (6, «),

M(Q,Oz) - <7707 u(07a> - S(€7&>> - HnOH B(”ao‘)v

is simply a positive constant times the split function. It is a smooth
function, so it has a Taylor expansion in «, at o = 0.

For oo = 0, W and W coincide along II, and this implies
M(0,0)=0 forallecS

and therefore we can “factor out” « from the Taylor expansion of M (6, «)

about « =0



Clearly, for all a # 0 sufficiently near 0,
BB,a)=0 < M@B,a)=0 < M@, a)=0.

Notice we can solve

M(O,a) =0
exactly, for € as an explicit function of «, using the implicit function

theorem, if there exists some 6y € S' such that

l.e.

which is just the condition (M.1).

We can find an analytic expression for the leading-order term M, (4, 0),
of M (0, ), by studying the derivative of solutions to initial value problems

with respect to the parameter «, evaluated at a = 0.
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Derivation of the integral formula (4.8):
Fix some 0y € S!, and consider two different initial value problems for

the 3-dimensional system (4.7), with two initial conditions in II,
£4(0) = (u(by, @), 6y (mod 2m) ), z°(0) = (s(0y, ), 6y (mod 27) ).
The solutions of (4.7) with these initial conditions will have the form
z'(t) = (x2"(t, 0, ), wt + Oy (mod 27) ),

T°(t) = (x°(t, 0y, @), wt + Gy (mod 27) ),

respectively, with z%(0, 0y, a) = u(fy, ), and x*(0, by, ) = s(6p, ).



The first two components of £"(¢) and z°(¢) can be expressed in terms
of solutions of initial value problems for the nonautonomous 2-dimensional
system (4.6). Note that we have to start the corresponding solutions at

the correct phase of the forcing function, fi(x,6p):

Now we define two “time-dependent Melnikov functions” (whose purpose

will become clear later)

M"(t, 0y, ) = { fi-(2"(t)), 2"(t, 0y, ) ), —o0 <t <0,

M5(t, 0y, ) = { f-(2"(t)), 2°(, 09, ) ), 0 <t < +oo.

When ¢t = 0, we have

We now find an integral expression for MY(0, 6y, 0). Take the a-derivative

of M"(t, 0y, ) at o =0



and then take the t-derivative at any ¢t < 0

recalling that

Exercise: Use the results of HW 2 problem 1 to show that

P(t) = 241, 60, 0)

satisfies the linear nonhomogeneous ODE

Using the result of this Exercise, we get



Now we integrate, to recover MY (0, 6y, 0)

By the fundamental theorem of calculus,

so we have

We calculate



and we have

0

M (0, 60, 0) = / (FHE(0), Fula®(),wt + 60) ) dt.

—0o0

Similarly (Exercise),

M0, 60,0) = — / TR0, £ (), wt + 0 ) de

and finally

which is the Melnikov integral (4.8).
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Generalizations of Theorems 4.2 and 4.3.

Melnikov’s method can be generalized to work in situations where the
unperturbed system is not Hamiltonian. For example, a useful generaliza-
tion can be made in the setting of Theorem 4.1 (the Andronov-Leontovich
theorem on the homoclinic bifurcation in R?): recall we have a 1-parameter

family of 2-dimensional vector fields (autonomous ODESs)
= f(z,a), r€R* acR. (4.1)
and the unperturbed (o = «y) vector field satisfies

f(pg, a0) =0 (equilibrium), (SL.0.i)

Ag = f.(pg, ) has eigenvalues A9 < 0 < Agg

(hyperbolic saddle),  (SL.0.ii)

@ = f(z,ap) has an orbit I' = {2°(¢)} that is homoclinic to p)

(bifurcation).  (SL.0.ii)

In Theorem 4.1, if the unperturbed vector field f( -, a) is not Hamiltonian
(if it is Hamiltonian, then (SL.2) cannot be satisfied), consider a Melnikov

integral

Mofan) = [ (), Fale(0), a0) ) dt,

0
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where (see the textbook, p. 211)

t
olt) = exp [— [ (Geea) dT]
0 Oxry 0xo (z,0)=(29(7),)

and the condition on the derivative of the (“A-L") split function (SL.1) is

f(@(t), ao),

equivalent to an analytic expression (for the “M” split function)
M, () # 0. (SL.17)

Also, the vector function 7(t) can be characterized as the unique-up-to-

a-scalar-multiple bounded solution of the “adjoint variational equation”
n=-At)Tp, neR?) tcR

(i.e. the adjoint variational equation has a 1-dimensional function space
of bounded solutions, span{n(t)}), where A(t) = f.(2°(t), o) is the lin-
earization of the unperturbed vector field at the homoclinic solution.

For perturbations of systems with homoclinic orbits in dimensions n >
3, and also for perturbations of systems with heteroclinic solutions, gener-
alized Melnikov integrals are defined in terms of an inner product with an
n(t) € R"  a unique-up-to-a-scalar-multiple bounded solution of the ad-
joint variational equation. This approach generalizes to infinite dimensions
(PDEs, DDEs), and is useful, e.g. for studying stability and bifurcation of

travelling waves in reaction-diffusion systems.
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