MATH 552 (2023W1) Lecture 33: Wed Nov 29

| Last lecture: ... Melnikov’s method (derivation) ... ]

The “unperturbed” system: 2-dimensional Hamiltonian vector field

i = fo(z), x€eR (4.5)
fio OH OH
fo= : fio==—, fo=—7,
8562 85131
f20

and we assume

(4.5) has a hyperbolic saddle equilibrium p8,
and an orbit Ty = {z"(#)} homoclinic to pj, (M.0)
limy 400 2°(t) = p).

“Perturbed” 2-dimensional system of nonautonomous, periodic ODEs
&= folx) + afi(z,wt), =€R* acR (4.6)

expressed as an equivalent, 3-dimensional autonomous sytem

© = folz) + afilz,0),

0 =uw,

i=(z,0) cR* xS, acR.  (47)

Fixed, “vertical” cross-section for (4.7) for all « (near 0)

M=LxS'={@=(x,0€eX: v€L,0cS"}



where

L:o=al+8-1 |8 <e,

2ol

0
7] ,CU—.CU
gt r 00— fLd) € B2 al = 29(0).

Transversal intersections of the stable and unstable manifolds W? and W

with the “vertical” cross-section 11
(s(0,a), 0 (mod 27)) € 11, 6 € S,

(u(f, ), 0 (mod 27)) € I, 0 € S,

The split function (“M version”)

(o, ulb, a) = 5(6,a))

B8, ) = ol

measures the signed “horizontal” distance (i.e. at @ = constant) from W(j
to W, along II.

The Melnikov function, is the numerator of 3(0, a),
M(0,a) = (1m0, u(f,a) = s(0,a))
For ov = 0, W and W coincide along 11,
M(0,0)=0 forallfeS'

and therefore we can “factor out” « from the Taylor expansion of M (6, o)
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about @ = 0
M6, 0) = a M8, a), M0, ) = M,(6,0) + O(|a|)
Now we define two “time-dependent Melnikov functions”

MU“(t,0,a) = ( f(2°(t), 2"(t,0,a)), —oo <t <0,

M5(t,0,a) = { f-(z"(t)), 25(¢,0,a)), 0<t< +oo.
When ¢t = 0, we have
MO, ) = M*“0,0,a) — M?*(0,0, ).

Taking the a-derivative at @ = 0, and the t-derivative at any ¢ (using

result of HW 2 problem 1, etc.) after a long calculation we have

M;(t,0,0) = { fy- (1)), fi(a(t),wt +0))

Now we integrate, to recover M*(0,6,0)

By the fundamental theorem of calculus,

so we have



We calculate

and we have

0

MH0.0,0) = [ (HO), Al(e).wt +0)) de.

—0o0

Similarly (Exercise),

M(0,6,0) = / TR, @), 0t + 0)) di

and finally

which is the Melnikov integral (4.8).



Summary /review

Theorem 4.2. (# =w >0, 0 € S!)

M(0.0) = | TR, @), 0t +0)) di

If (M.O) and (M.1):

Theorem 4.3. (4 =0, v € R})

M0 = [ O, A1), ) ) dt

If (M.0) and (M.2):



Generalizations of Theorems 4.2 and 4.3.

Melnikov’s method can be generalized to work in situations where the
unperturbed system is not Hamiltonian. For example, a useful generaliza-
tion can be made in the setting of Theorem 4.1 (the Andronov-Leontovich
theorem on the homoclinic bifurcation in R?): recall we have a 1-parameter

family of 2-dimensional vector fields (autonomous ODESs)
= f(z,a), r€R* acR. (4.1)
and the unperturbed (o = «y) vector field satisfies

f(pg, a0) =0 (equilibrium), (SL.0.i)

Ag = f.(pg, ) has eigenvalues A9 < 0 < Agg

(hyperbolic saddle),  (SL.0.ii)

@ = f(z,ap) has an orbit I' = {2°(¢)} that is homoclinic to p)

(bifurcation).  (SL.0.ii)

In Theorem 4.1, if the unperturbed vector field f( -, a) is not Hamiltonian
(if it is Hamiltonian, then (SL.2) cannot be satisfied), consider a Melnikov

integral

Mofan) = [ (), Fale(0), a0) ) dt,

0
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where (see the textbook, p. 211)

t
olt) = exp [— [ (Geea) dT]
0 Oxry 0xo (z,0)=(29(7),)

and the condition on the derivative of the (“A-L") split function (SL.1) is

f(@(t), ao),

equivalent to an analytic expression (for the “M” split function)
M, () # 0. (SL.17)

Also, the vector function 7(t) can be characterized as the unique-up-to-

a-scalar-multiple bounded solution of the “adjoint variational equation”
n=-At)Tp, neR?) tcR

(i.e. the adjoint variational equation has a 1-dimensional function space
of bounded solutions, span{n(t)}), where A(t) = f.(2°(t), o) is the lin-
earization of the unperturbed vector field at the homoclinic solution.

For perturbations of systems with homoclinic orbits in dimensions n >
3, and also for perturbations of systems with heteroclinic solutions, gener-
alized Melnikov integrals are defined in terms of an inner product with an
n(t) € R"  a unique-up-to-a-scalar-multiple bounded solution of the ad-
joint variational equation. This approach generalizes to infinite dimensions
(PDEs, DDEs), and is useful, e.g. for studying stability and bifurcation of

travelling waves in reaction-diffusion systems.
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Transverse homoclinic points and homoclinic tangles

We return to the setting of Theorem 4.2. Suppose, for the 3-dimensional
autonomous system (4.7) that (M.0) and (M.1) hold, so for any sufficiently
small a # 0, Theorem 4.2 gives the existence of some é(oz) € S! such that

the split function 3(A(a), a) = 0.

Therefore the Poincaré map P( -, &) based on the cross-section

has a transverse homoclinic point ¢), a point where the stable and
unstable manifolds for ]5( -, ), of its the hyperbolic saddle fixed point
pY(c), have a transversal intersection (the tangent vectors to the manifolds

at ¢y are linearly independent).



Since gy € W*(p°(r)), and since W*(p"(cv)) is an invariant manifold, all

the iterates under P( -, ) satisfy
gr € W*(p'(a)), forall k € Z.

Similarly,
gr € W*p"a)), forallk € Z,

thus

G € W) N W’ (a)), forall k € Z.

Furthermore, the fact that P(-, a) is a local diffeomorphism implies



Near the hyperbolic saddle fixed point p%(c), the Poincaré map p(-, a)
expands distances in the unstable direction and contracts distances in the
stable direction, and one can prove that this results in a “homoclinic tan-

gle” (see, e.g. Wiggins)

Ingredients of chaos

Consider a dynamical system, with either continuous time (& = f(x),
z(t) = '(z0)) or discrete time (x > f(x), 21 = f¥(x¢)), and suppose A

1S an nvariant set.

a. Sensitive dependence

10



The dynamical system has sensitive dependence on A, if there is
some £p > 0 such that, for any x € A and any 0 > 0, there is always some

y € A with ||z — y|| < ¢ and

" (2) — o' (y)|| > ey forsomet >0 tcR

or

¥ (x) — fAy)|| > ey forsome k >0,k € Z

b. Topological transitivity

A subset U of a closed set A in R" is relatively open in A, if it is
the intersection of A with an open subset of R". The dynamical system
is topologically transitive on a closed invariant set A, if for any two

relatively open subsets U, V' in A we have

gpt(U)ﬁV%(Z) for somet >0,t € R
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or

fk(U)ﬂV#(Z) for some k >0, k€ Z

e.g. for any point in A, its forward orbit eventually visits arbitrarily close
to every other point in A, or “wanders everywhere” in A.
Some examples of topologically transitive invariant sets
For flows:

i. A = { an equilibrium in R" } is a topologically transitive invariant
set.

ii. A ={acyclein R" } is a topologically transitive invariant set.

111. 91 =1, 92 = w, (91,(92) € S! x S = T?

if w is irrational, then all of the 2-torus A = T? is a topologically transitive

mvariant set.
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For maps:

i. A = { afixed point in R"” } is a topologically transitive invariant
set.

ii. A ={acyclein R" } is a topologically transitive invariant set.

iii. See HW 1, problem 4, z — Az, x € R? discrete rotation:

cos(9) — sin()
sin(g)  cos(9)

If ¢/2m is irrational (8 — 6 + ¢ in S'), then the circle A = {x € R* :

A —

|z]] = 1} = St is a topologically transitive invariant set.
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