
MATH 552 (2023W1) Lecture 33: Wed Nov 29

[ Last lecture: ... Melnikov’s method (derivation) ... ]

The “unperturbed” system: 2-dimensional Hamiltonian vector field

ẋ = f0(x), x ∈ R2, (4.5)

f0 =

 f10

f20

 , f10 =
∂H

∂x2
, f20 = − ∂H

∂x1
,

and we assume

(4.5) has a hyperbolic saddle equilibrium p00,

and an orbit Γ0 = {x0(t)} homoclinic to p00,

limt→±∞ x
0(t) = p00.

(M.0)

“Perturbed” 2-dimensional system of nonautonomous, periodic ODEs

ẋ = f0(x) + αf1(x, ωt), x ∈ R2, α ∈ R1, (4.6)

expressed as an equivalent, 3-dimensional autonomous sytem

ẋ = f0(x) + αf1(x, θ),

θ̇ = ω,
x̃ = (x, θ) ∈ R2 × S1, α ∈ R1. (4.7)

Fixed, “vertical” cross-section for (4.7) for all α (near 0)

Π = L× S1 = {(x̃ = (x, θ) ∈ X : x ∈ L, θ ∈ S1}



where

L : x = x00 + β
η0
‖η0‖

, |β| < ε,

β =
〈 η0 , x− x00 〉
‖η0‖

, η0 = f⊥0 (x00) ∈ R2, x00 = x0(0).

Transversal intersections of the stable and unstable manifolds W̃ s
α and W̃ u

α

with the “vertical” cross-section Π

(s(θ, α), θ (mod 2π)) ∈ Π, θ ∈ S1,

(u(θ, α), θ (mod 2π)) ∈ Π, θ ∈ S1,

The split function (“M version”)

β(θ, α) =
〈 η0 , u(θ, α)− s(θ, α) 〉

‖η0‖

measures the signed “horizontal” distance (i.e. at θ = constant) from W̃ s
α

to W̃ u
α , along Π.

The Melnikov function, is the numerator of β(θ, α),

M(θ, α) = 〈 η0 , u(θ, α)− s(θ, α) 〉

For α = 0, W̃ s
0 and W̃ u

0 coincide along Π,

M(θ, 0) = 0 for all θ ∈ S1

and therefore we can “factor out” α from the Taylor expansion of M(θ, α)
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about α = 0

M(θ, α) = α M̃(θ, α), M̃(θ, α) = Mα(θ, 0) + O(|α|)

Now we define two “time-dependent Melnikov functions”

Mu(t, θ, α) = 〈 f⊥0 (x0(t)), xu(t, θ, α) 〉, −∞ < t ≤ 0,

M s(t, θ, α) = 〈 f⊥0 (x0(t)), xs(t, θ, α) 〉, 0 ≤ t < +∞.

When t = 0, we have

M(θ, α) = Mu(0, θ, α)−M s(0, θ, α).

Taking the α-derivative at α = 0, and the t-derivative at any t (using

result of HW 2 problem 1, etc.) after a long calculation we have

Ṁu
α(t, θ, 0) = 〈 f⊥0 (x0(t)), f1(x

0(t), ωt + θ) 〉

=====

Now we integrate, to recover Mu
α(0, θ, 0)

By the fundamental theorem of calculus,

so we have
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We calculate

and we have

Mu
α(0, θ, 0) =

∫ 0

−∞
〈 f⊥0 (x0(t)), f1(x

0(t), ωt + θ) 〉 dt.

Similarly (Exercise),

M s
α(0, θ, 0) = −

∫ ∞
0

〈 f⊥0 (x0(t)), f1(x
0(t), ωt + θ) 〉 dt

and finally

which is the Melnikov integral (4.8).
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Summary/review

Theorem 4.2. (θ̇ = ω > 0, θ ∈ S1)

Mα(θ, 0) =

∫ +∞

−∞
〈 f⊥0 (x0(t)), f1(x

0(t), ωt + θ) 〉 dt

If (M.0) and (M.1):

Theorem 4.3. (γ̇ = 0, γ ∈ R1)

Mα(γ, 0) =

∫ +∞

−∞
〈 f⊥0 (x0(t)), f1(x

0(t), γ) 〉 dt

If (M.0) and (M.2):
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Generalizations of Theorems 4.2 and 4.3.

Melnikov’s method can be generalized to work in situations where the

unperturbed system is not Hamiltonian. For example, a useful generaliza-

tion can be made in the setting of Theorem 4.1 (the Andronov-Leontovich

theorem on the homoclinic bifurcation in R2): recall we have a 1-parameter

family of 2-dimensional vector fields (autonomous ODEs)

ẋ = f (x, α), x ∈ R2, α ∈ R1. (4.1)

and the unperturbed (α = α0) vector field satisfies

f (p00, α0) = 0 (equilibrium), (SL.0.i)

A0 = fx(p
0
0, α0) has eigenvalues λ10 < 0 < λ20

(hyperbolic saddle), (SL.0.ii)

ẋ = f (x, α0) has an orbit Γ = {x0(t)} that is homoclinic to p00

(bifurcation). (SL.0.iii)

In Theorem 4.1, if the unperturbed vector field f ( · , α0) is not Hamiltonian

(if it is Hamiltonian, then (SL.2) cannot be satisfied), consider a Melnikov

integral

Mα(α0) =

∫ +∞

−∞
〈 η(t), fα(x0(t), α0) 〉 dt,
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where (see the textbook, p. 211)

η(t) = exp

[
−
∫ t

0

(
∂f1
∂x1

+
∂f2
∂x2

)∣∣∣∣
(x,α)=(x0(τ),α0)

dτ

]
f⊥(x0(t), α0),

and the condition on the derivative of the (“A-L”) split function (SL.1) is

equivalent to an analytic expression (for the “M” split function)

Mα(α0) 6= 0. (SL.1’)

Also, the vector function η(t) can be characterized as the unique-up-to-

a-scalar-multiple bounded solution of the “adjoint variational equation”

η̇ = −A(t)ᵀη, η ∈ R2, t ∈ R

(i.e. the adjoint variational equation has a 1-dimensional function space

of bounded solutions, span{η(t)}), where A(t) = fx(x
0(t), α0) is the lin-

earization of the unperturbed vector field at the homoclinic solution.

For perturbations of systems with homoclinic orbits in dimensions n ≥

3, and also for perturbations of systems with heteroclinic solutions, gener-

alized Melnikov integrals are defined in terms of an inner product with an

η(t) ∈ Rn, a unique-up-to-a-scalar-multiple bounded solution of the ad-

joint variational equation. This approach generalizes to infinite dimensions

(PDEs, DDEs), and is useful, e.g. for studying stability and bifurcation of

travelling waves in reaction-diffusion systems.
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Transverse homoclinic points and homoclinic tangles

We return to the setting of Theorem 4.2. Suppose, for the 3-dimensional

autonomous system (4.7) that (M.0) and (M.1) hold, so for any sufficiently

small α 6= 0, Theorem 4.2 gives the existence of some θ̂(α) ∈ S1 such that

the split function β(θ̂(α), α) = 0.

Therefore the Poincaré map P̂ ( · , α) based on the cross-section

has a transverse homoclinic point q̂0, a point where the stable and

unstable manifolds for P̂ ( · , α), of its the hyperbolic saddle fixed point

p̂0(α), have a transversal intersection (the tangent vectors to the manifolds

at q̂0 are linearly independent).
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Since q̂0 ∈ W s(p̂0(α)), and since W s(p̂0(α)) is an invariant manifold, all

the iterates under P̂ ( · , α) satisfy

q̂k ∈ W s(p̂0(α)), for all k ∈ Z.

Similarly,

q̂k ∈ W u(p̂0(α)), for all k ∈ Z,

thus

q̂k ∈ W s(p̂0(α)) ∩W u(p̂0(α)), for all k ∈ Z.

Furthermore, the fact that P̂ ( · , α) is a local diffeomorphism implies
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Near the hyperbolic saddle fixed point p̂0(α), the Poincaré map P̂ ( · , α)

expands distances in the unstable direction and contracts distances in the

stable direction, and one can prove that this results in a “homoclinic tan-

gle” (see, e.g. Wiggins)

Ingredients of chaos

Consider a dynamical system, with either continuous time (ẋ = f (x),

x(t) = ϕt(x0)) or discrete time (x 7→ f (x), xk = f k(x0)), and suppose Λ

is an invariant set.

a. Sensitive dependence
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The dynamical system has sensitive dependence on Λ, if there is

some ε0 > 0 such that, for any x ∈ Λ and any δ > 0, there is always some

y ∈ Λ with ‖x− y‖ < δ and

‖ϕt(x)− ϕt(y)‖ ≥ ε0 for some t > 0, t ∈ R

or

‖f k(x)− f k(y)‖ ≥ ε0 for some k > 0, k ∈ Z

b. Topological transitivity

A subset U of a closed set Λ in Rn is relatively open in Λ, if it is

the intersection of Λ with an open subset of Rn. The dynamical system

is topologically transitive on a closed invariant set Λ, if for any two

relatively open subsets U , V in Λ we have

ϕt(U) ∩ V 6= ∅ for some t > 0, t ∈ R
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or

f k(U) ∩ V 6= ∅ for some k > 0, k ∈ Z

e.g. for any point in Λ, its forward orbit eventually visits arbitrarily close

to every other point in Λ, or “wanders everywhere” in Λ.

Some examples of topologically transitive invariant sets

For flows:

i. Λ = { an equilibrium in Rn } is a topologically transitive invariant

set.

ii. Λ = { a cycle in Rn } is a topologically transitive invariant set.

iii. θ̇1 = 1, θ̇2 = ω, (θ1, θ2) ∈ S1 × S1 = T2

if ω is irrational, then all of the 2-torus Λ = T2 is a topologically transitive

invariant set.
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For maps:

i. Λ = { a fixed point in Rn } is a topologically transitive invariant

set.

ii. Λ = { a cycle in Rn } is a topologically transitive invariant set.

iii. See HW 1, problem 4, x 7→ Ax, x ∈ R2 discrete rotation:

A =

 cos(φ) − sin(φ)

sin(φ) cos(φ)

 .

If φ/2π is irrational (θ 7→ θ + φ in S1), then the circle Λ = {x ∈ R2 :

‖x‖ = 1 } ∼= S1 is a topologically transitive invariant set.
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