

MATH 552 (2023W1) Lecture 35: Mon Dec 4

[**Last lecture:** ... transverse homoclinic points and homoclinic tangents. Ingredients of chaos (sensitive dependence, topological transitivity, compactness). Chaos ...]

Theorem 4.4. (Smale & Birkhoff) *If a smooth map $x \mapsto f(x)$, $x \in \mathbb{R}^n$, $n \geq 2$, has a hyperbolic fixed point p^0 and there exists a point $q_0 \neq p^0$ of transversal intersection between the stable manifold $W^s(p^0)$ and unstable manifold $W^u(p^0)$, then there exists a positive integer N such that f^N has a compact invariant set Λ , containing a countably infinite number of cycles of arbitrarily long period and an uncountably infinite number of nonperiodic orbits, on which f^N is chaotic.*

=====

Ideas from the proof of the Smale-Birkhoff theorem; the Smale horseshoe

The Smale horseshoe map is discussed in the textbook, section 1.3.2.

The Smale-Birkhoff theorem (Theorem 4.4) has been described as

“fish” \Rightarrow “horseshoe”

Some other generic global bifurcations with one parameter

Saddle connection (heteroclinic) bifurcation for a flow in \mathbb{R}^2

Bifurcation condition: if $\alpha = \alpha_0$, there is a heteroclinic orbit connecting a pair of hyperbolic saddles.

Example 4.B. (Textbook, p. 58.) In \mathbb{R}^2 :

$$\dot{x}_1 = 1 - x_1^2 - \alpha x_1 x_2,$$

$$\dot{x}_2 = x_1 x_2 + \alpha (1 - x_1^2).$$

Saddle-node (fold) bifurcation of a limit cycle for a flow in \mathbb{R}^n , $n \geq 2$

Bifurcation condition: if $\alpha = \alpha_0$, there is a nonhyperbolic limit cycle with simple *nontrivial* Floquet multiplier 1.

Example 4.C. In \mathbb{R}^2 :

$$\dot{x}_1 = -x_1 - x_2 + \alpha x_1(x_1^2 + x_2^2) - x_1(x_1^2 + x_2^2)^2,$$

$$\dot{x}_2 = x_1 - x_2 + \alpha x_2(x_1^2 + x_2^2) - x_2(x_1^2 + x_2^2)^2.$$

Or, in polar coordinates

$$\dot{r} = r(-1 + \alpha r^2 - r^4), \quad \dot{\theta} = 1.$$

Period-doubling bifurcation of a limit cycle for a flow in \mathbb{R}^n , $n \geq 3$

Bifurcation condition: if $\alpha = \alpha_0$, there is a nonhyperbolic limit cycle with simple (nontrivial) Floquet multiplier -1 .

E.g.

SNIC bifurcation for a flow in \mathbb{R}^2

Bifurcation condition: if $\alpha = \alpha_0$, there is a saddle-node equilibrium in an invariant circle. (Textbook: saddle-node homoclinic, p. 250.)

Example 4.D. In \mathbb{R}^2 :

$$\dot{x}_1 = x_1(1 - x_1^2 - x_2^2) - x_2(\alpha - x_1),$$

$$\dot{x}_2 = x_1(\alpha - x_1) + x_2(1 - x_1^2 - x_2^2).$$

Or, in polar coordinates

$$\dot{r} = r(1 - r^2), \quad \dot{\theta} = \alpha - r \cos(\theta).$$

Invariant torus (Neimark-Sacker) bifurcation of a limit cycle for a flow in \mathbb{R}^n , $n \geq 3$

Bifurcation condition: if $\alpha = \alpha_0$, there is a nonhyperbolic limit cycle with nontrivial Floquet multipliers $e^{\pm i\phi}$, $e^{ik\phi} \neq 1$ for $k = 1, 2, 3, 4$.
(Textbook, p. 131; p. 136.)

E.g.

Period doubling cascade (to chaos) for a map in \mathbb{R}^1

Example 4.E. (See HW 4 problem 1. Also, textbook p. 129; p. 145; Wikipedia article “logistic map”; Strogatz)

In \mathbb{R}^1 :

$$x \mapsto \alpha x(1 - x)$$

