Linear stability analysis for the differentially heated
rotating annulus

Gregory M. Lewis and Wayne Nagata !

Keywords: differentially heated rotating fluid experiment, axisymmetric to non-axisym-

metric transition, numerical computation of eigenvalues

Abstract

We use linear stability analysis to approximate the axisymmetric to non-axisymmetric
transition in the differentially heated rotating annulus. We study an accurate mathematical
model that uses the Navier-Stokes equations in the Boussinesq approximation. The steady
axisymmetric solution satisfies a two-dimensional partial differential boundary value prob-
lem. It is not possible to compute the solution analytically, and so numerical methods are
used. The eigenvalues are also given by a two-dimensional partial differential problem, and
are approximated using the matrix eigenvalue problem that results from discretizing the
linear part of the appropriate equations.

A comparison is made with the experimental results of Fein (1973). It is shown that
the predictions using linear stability analysis accurately reproduce many of the experimental
observations. Of particular interest is that the analysis predicts cusping of the axisymmetric
to non-axisymmetric transition curve at wave number transitions, and the wave number
maximum along the lower transition curve is accurately determined. The correspondence
between theoretical and experimental results validates the numerical approximations as well

as the application of linear stability analysis.

1 Introduction

Eigenvalues have long been used as a tool for theoretically predicting the stability of fluid
flows. They can be used to quantitatively delineate the regions in parameter space where
a steady flow is linearly stable from regions where it is unstable. In fact, under suitable
conditions, it can be shown that if a flow is linearly stable then it is indeed a stable flow,

even when nonlinearity is considered. In addition, linear stability analysis is the first step in
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a nonlinear bifurcation analysis that can be used to discover new solutions of the dynamical
equations.

In most previous work, linear stability analysis is used to study the stability of a basic
steady flow for which the corresponding steady solution of the model equations can be writ-
ten as an analytical expression. However, analytical methods are sometimes not sufficient
to determine the eigenvalues, and, in such cases, numerical approximations are necessary.
These studies have concentrated on cases where the linear stability analysis can be reduced
to an ordinary differential (one-dimensional) eigenvalue problem. Thus, even when numer-
ical methods must be implemented, it is not computationally intensive to find accurate
approximations for the eigenvalues. However, there are many interesting flows for which the
corresponding steady solution cannot be found analytically and for which the correspond-
ing eigenvalue problem cannot be reduced to a one-dimensional problem. Linear stability
analysis of such flows is often not considered, because it is not known if, due to computer
limitations, sufficiently fine numerical resolution can be attained to produce valid results.

Even when it can be performed, linear stability analysis may still not accurately reproduce
experimental results. For example, in Poiseuille flow, experimental observations indicate that
instability sets in for significantly lower parameter values than the linear stability analysis
predicts (Maslowe, 1985; Trefethen et al., 1993). The cause of this has been attributed to the
non-orthogonality of the eigenfunctions, due to the linearization of the dynamical equations
about the steady solution being a non-normal operator? (Trefethen et al., 1993; Farrell and
Ioannou, 1996). Such operators often result, for instance, when considering steady flows
with nonlinear spatial variations. In problems involving non-normal operators, it is possible
that even when the steady solution is linearly stable, small perturbations (that are present
in all physical systems) can grow to appreciable size before they ultimately decay. Thus,
small perturbations may take the flow into some regime where the linearization is not valid.

The success of linear stability analysis, for example, in the application to Rayleigh-
Bénard convection (see e.g. Chandrasekhar, 1961) has been attributed to the normality
of the linearization of the dynamical equations about the relevant steady flow. However,
linear stability analysis does not always fail in cases involving non-normal operators. For
example, in the Couette-Taylor problem (Chossat and Iooss, 1994), linear stability analysis
successfully predicts experimentally observed transitions between different flow regimes. In
fact, the most prominent failure of linear stability analysis seems to be in its application to
parallel shear flows, and it is possible that non-normality is only an issue when considering
operators that are, in some sense, “far from normal” (Trefethen, 1997).

Here, we use linear stability analysis to approximate the transition from axisymmetric to

2A normal operator is defined as an operator A that satisfies AA* = A* A, where A* is the adjoint of A;
an operator is normal if and only if all its eigenfunctions are mutually orthogonal.
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non-axisymmetric flow in the differentially heated rotating annulus. The steady solution of
the model equations that corresponds to the axisymmetric flow cannot be found analytically,
and must be approximated from a discretization of a two-dimensional partial differential
boundary value problem. In addition, the eigenvalue problem can only be reduced to a two-
dimensional partial differential problem, that also must be solved numerically. Furthermore,
although the steady axisymmetric flow is not a parallel shear flow, the linearization of the
model equations about the corresponding steady solution is not a normal operator. There-
fore, it is not known a priori if linear stability analysis will give accurate predictions. For
this reason, we make a detailed quantitative comparison between the predictions we obtain
using linear stability analysis and the experimental observations of Fein (1973). We study an
accurate mathematical model, with the intent of minimizing errors due to the model, so that
it can be argued that any substantial discrepancies between the theoretical and experimental
results can be attributed to either errors in the numerical approximations or the failure of
linear stability analysis.

In Section 7, we present our results, and show that, for this application, linear stability
analysis is indeed successful in predicting the experimental observations. The remainder of
the paper is arranged as follows. In the next section, we describe the differentially heated
rotating annulus experiments and in so doing, give more detail of the problem we will be
addressing. In Section 3, we discuss linear stability analysis in a general context. We
write down the model equations in Section 4, while in Section 5, the eigenvalue problem for
the present application is derived. The numerical methods are discussed in Section 6. A

conclusion follows the results section.

2 Experimental observations

Many laboratory experiments have studied the fluid flow in a rotating cylindrical annulus,
where a differential heating is obtained by keeping the inner and outer walls of the annulus at
different temperatures. See Figure 1. The experiments consist of finding the various stable
flow patterns that occur at different values of the rotation rate and differential heating.
Usually, the results are presented in a diagram where the transitions between the different
flow types are plotted on a graph with coordinate axes being the Taylor number 7 and the
thermal Rossby number R, which are judged to be the two most important dimensionless
parameters (Fein, 1973; Hide and Mason, 1975). The Taylor number
402 R*

V2

T:

(1)

is a measure of the relative importance of rotation to viscosity, where 2 is the rate of rotation,

R = ry — r, is the difference between the outer and inner radii of the annulus, and v is the
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kinematic viscosity of the fluid. The thermal Rossby number

R= @
is a measure of the relative importance of rotation to the differential heating, where AT =
T, —T, is the imposed horizontal temperature gradient, « is the coefficient of thermal expan-
sion, D is the depth of the fluid, and ¢ is the gravitational acceleration. Here, we consider
AT > 0; the inner wall of the annulus is held at a lower temperature than the outer wall.
If all other parameters are held fixed, there is a one-to-one relationship between the di-
mensionless parameters (thermal Rossby number and the Taylor number) and the physical
parameters (the differential heating and rate of rotation).

The experiments generally find four main flow regimes in different regions of parameter
space (see Figure 2): (1) Axisymmetric flow, characterized by its azimuthal invariance.
(2) Steady waves, a non-axisymmetric flow that resembles rotating waves with constant
amplitude and phase. Different wavelengths are seen in different subregions, with the pos-
sibility of observing stable waves of different wavelengths within the same subregion. The
transitions between the subregions exhibit hysteresis. (3) Vacillation, where the amplitude
or wavelength of the observed wave varies apparently periodically in time. (4) Irregular
Flow, characterized by its irregular nature in both space and time. All of the observed
flows have their counterparts in the atmosphere (Hide and Mason, 1975; Ghil and Childress,
1987).

Of particular interest to us, is the transition from the axisymmetric to wave regime. For
small values of the differential heating and rotation rate, a steady axisymmetric pattern
is observed. As the parameters are increased, this relatively simple pattern becomes un-
stable and a wave motion is observed. Below, we reproduce the transition curve between

axisymmetric and wave regimes by studying the linear stability of the axisymmetric flow.

3 Linear stability analysis

The linear stability of a steady solution is defined in terms of the eigenvalues of the lineariza-
tion of the dynamical equations about that solution. If the real parts of all the eigenvalues
are negative, then all small perturbations from the steady solution will decay in the linearized
equations. In this case, the solution is said to be linearly stable. If any of the eigenvalues
has positive real part, then some small perturbations will grow, and the solution is linearly
unstable. If there are only eigenvalues with zero real part and negative real part, it is called
neutrally stable, because there is neither growth nor decay of some small perturbations. The
curves in the space of parameters that indicate the parameter values where the solution is

neutrally stable are called neutral stability curves. These are very useful because, generally,
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they are the boundaries between the regions in parameter space where the steady solution
of interest is linearly stable and those regions where it is linearly unstable.

Linear stability analysis is justified by the Hartman-Grobman theorem (for a precise
statement of the theorem in the context of partial differential equations, see e.g. Henry,
1981, or in the context of ordinary differential equations, see e.g. Wiggins, 1990). A hy-
perbolic steady solution is one whose linearization has no eigenvalues with zero real part.
The Hartman-Grobman theorem states that if the steady solution is hyperbolic, then the
linearization about the solution has qualitatively the same behaviour as the full nonlinear
system. This implies that if the steady solution is linearly stable, then it is indeed a stable
solution. More precisely, if a steady solution is linearly stable, then there is a neighbourhood
about that solution where all initial conditions for the nonlinear system will produce solu-
tions that tend to the steady solution as t — oc. However, this definition of stability gives
only the long-time behaviour (¢ — oco) and says nothing about transient behaviour. Also,
the theorem does not state the size of the neighbourhood about the steady solution, and so it
could be that the size of the neighbourhood is very small. If this is the case, then the natural
fluctuations present in physical systems may be large enough to take the system out of the
neighbourhood, and a linearly stable solution may not correspond to a physically observable
flow. The size of the neighbourhood depends on the specific equations and solution, and it is
possible that the non-normality of the linearization of the equations about the given solution
causes a significant decrease in the size of the neighbourhood.

A different method of analysis that is often used to numerically determine the stability
of a solution could be called ‘numerical experimentation’, since the procedure of the lab-
oratory experiments is simulated on a numerical model. The procedure often begins by
finding a steady solution either analytically or numerically. This solution, to which small
amplitude random perturbations are added to simulate natural fluctuations, is used as the
initial condition for a numerical integration, or time-stepping. If the time-stepping produces
solutions that seem to stay near the steady solution, then the steady solution is labelled as
stable in these studies. The parameters are then varied and the process is repeated. If the
time-stepping produces a solution that evolves away from the steady solution, it is labelled
unstable. In this case, the time-stepping is continued until transient behaviour disappears
and the system appears to reach a different stable steady state, periodic solution, or a more
complicated solution.

Many different models have been studied using numerical experimentation. Mo et al.
(1995) followed the above procedure on a three-dimensional quasigeostrophic model with
Ekman layers at the top and bottom. James et al. (1981), Hignett et al. (1985), Miller

and Butler (1991) and Lu et al. (1994) performed numerical experiments with a Navier-



LEWIS and NAGATA 6

Stokes model in cylindrical geometry for direct comparison to laboratory experiments. The
geometry of the annulus that we use in the present study is the same as that of Miller and
Butler (1991). Kwak and Hyun (1992) performed the analysis on a model of the Hathaway
and Fowlis (1986) experiment, and Collins and James (1995) studied a simplified global
circulation model. Lewis (1992) and Mundt et al. (1995) also performed time-integration of
basic states on different two-layer models. This list is far from exhaustive.

However, in addition to being qualitative, numerical experimentation does not highlight
the physical processes that lead to the observed dynamics. Thus, although it is a good
method of validating numerical models, it is not an ideal tool for gaining insight into the
physical nature of the system. Also, if the random perturbation that is added to the steady
solution is too large, the initial condition may be outside the neighbourhood of attraction of
the steady solution (see above) and the solution may appear to be unstable, even though the
solution may be physically observable. Because long time integration is needed to determine
the stability, errors are introduced at every time step.

In contrast, eigenvalues may be used to produce a quantitative, completely objective,
delineation of the region of stability of a steady solution. Also, numerical approximations of
the eigenvalues can be more easily verified. Finally, the information that is gained may be
used in a bifurcation analysis that could lead to further understanding of the mechanisms
present in the physical system. For instance, the results presented here on the differentially
heated rotating annulus are the first step in a double Hopf bifurcation (two-mode weakly
nonlinear) analysis (Lewis and Nagata, 2001). This analysis shows that there are regions
in the parameter space where there are two stable wave solutions and it also indicates the
mechanism by which the hysteresis of these solutions occurs. However, caution must still be
taken, because, as discussed above, the eigenvalues do not give transient behaviour and the

analysis may not accurately predict the stability of observed flows.

4 Model equations

The model consists of the Navier-Stokes equations describing the fluid motion, in a rotat-
ing reference frame, and simplified using the Boussinesq approximation. In particular, we
consider the variations of all fluid properties, except the density, to be negligible and the

equation of state of the fluid is assumed to be
p=po(l—a(-1Tp)) (3)

where p is the density of the fluid, T is the temperature, « is the (constant) coefficient of
thermal expansion, and py is the density at a reference temperature 7Ty. The dimensionless

quantity « (T — Tp) is assumed to be small. A significant simplification due to the Boussinesq
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approximation is that the fluid can be considered to be incompressible. The boundaries are
the inner and outer walls of the cylindrical annulus, as well as a rigid flat top and bottom. At
the boundaries, the no-slip condition is imposed on the fluid, and the temperature is 7, and 7
at the inner and outer walls, respectively. The bottom and top are thermally insulating. The
equations are written in circular cylindrical coordinates in a frame of reference co-rotating
at rate Q with the annulus. The radial, azimuthal and vertical (or axial) coordinates are
denoted 7, ¢ and z, respectively, with unit vectors e,, e, and e,. See Figure 1.

The equations describing the evolution of the vector fluid velocity, u = u(r, ¢, z,t) =
ue, + ve, + we, and the temperature of the fluid, T' = T'(r, ¢, 2, t) are:

1
du = vVu—20e, x u+ (gez - QQTeT) a(lT—Ty)) — —Vp—(u-V)u, (4)
ot Po
%—f = kV7T - (u-V)T, (5)
V-u=0, (6)

where p is the pressure deviation from py = pog(D — 2) + po2%r?/2, v is the kinematic
viscosity, k is the coefficient of thermal diffusivity, ¢ is the gravitational acceleration, V is
the usual gradient operator in cylindrical coordinates, and the spatial domain is defined by
re <17 <71, 0< @ <21, and 0 < z < D. The values of v and « are chosen to be those
of the fluid at the reference temperature T, and it is assumed that the difference between
the temperature of the fluid and Tj is everywhere small enough so that v and x can be
considered as constants. Centrifugal buoyancy has been included since we found it to have
non-negligible effects.

The boundary conditions are

u=20 on r=rer, and z=0,D,
T=T, on T =T,

T="1T, on r=ry,
oT

5:0 on z=0,D, (7)

with 27-periodicity in the azimuthal variable ¢.

If we scale the spatial variables as
r—Rr', ©—¢, z— D, (8)

and write
T — T + AT — AT%‘ + T, 9)
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where R = r,—r, and AT = T,—T,, then drop the primes, we obtain the following equations
describing the evolution of the fluid velocity u = u(r, ¢, z, t)e, +v(r, ¢, z, t)e,+w(r, @, 2, t)e,,

pressure deviation p = p(r, ¢, z,t) and temperature deviation T = T'(r, ¢, z, t):

OJu 9 1
E—I/svsu—R—pOVsp—QQezxu
1
Z_QQ T [T AT( _E> a :|__ ) s
+(ge Rre)a + r— o + T, —Tp R(u Viu, (10)
oT 9 AT AT 1
E —K/svsT—i_K.‘i r - R u_E(uvs)T’ (11)
1
v, ou= g o 10w (12)

or v T ap T T
where § = D/R, v, = v/R?, v is the kinematic viscosity, k, = x/R?, k is the coefficient of
thermal diffusivity, ¢ is the gravitational acceleration,
V2—82+18+1 82+182
S0r2  ror 209 62022
Vs=e 2+e 12+e 1o
T or “rop 7607

’U2

(0-V,)u= [(u-Vs)u—7] e, + [(u-vs)w%] ep+[(-Vyule,  (13)

and of wof 1 of
v
(- Vo) f=ugr+ 5,1 5%,

for any scalar function f = f(r, ¢, z,t). The domain is now expressed as r,/R < r < /R,

(14)

0 <¢<2m, 0< z<1, and the boundary conditions are

Ta Tb

u=>0 on T_R’R and z=0,1,
Ta Tb
TZO = 75
on r 7R
oT
5 = 0 on 2z=0,1, (15)

with 2m-periodicity in ¢ for u, 7" and p.

If the equations were written completely in terms of dimensionless variables, then the
Taylor number 7, the thermal Rossby number R, and other dimensionless parameters would
enter the equations. However, this would not simplify the analysis and so we choose to work
with the equations in the form (10) — (12). The parameters of interest are the rotation rate
) and the temperature difference AT between the inner and outer annulus walls, because
these are the quantities (external variables) which are generally varied in an experiment.
We present our results in terms of 7 and R so that they may be easily compared to the

experimental results.
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5 The analysis

The analysis consists of finding the locations in the (2, AT) parameter space where the
steady axisymmetric solution is neutrally stable. These locations form the neutral stability

curves. The main steps for plotting the curves are as follows:
1. Calculate the steady axisymmetric solution at a particular location in parameter space.
2. Solve the eigenvalue problem for this solution to find its linear stability.

3. Repeat steps (1) and (2) at various locations in parameter space to find the parameter

values where the solution is neutrally stable.

The eigenvalues cannot be computed analytically and are therefore approximated numer-
ically. An analytical form for the steady axisymmetric solution is also not known and so this
too has to be approximated numerically. In the analysis, this is dealt with by leaving the
axisymmetric solution unresolved in the perturbation equations (see Section 5.2). Then, for
the numerical approximation of the eigenvalues, the values of the axisymmetric solution are
only needed at specific spatial locations (the grid points), and numerical approximations are
used.

In the remainder of this section, we discuss the equations that must be derived in order

to calculate the eigenvalues. We discuss the numerical approximations in Section 6.

5.1 Steady axisymmetric solution

The analysis begins with the computation of a steady axisymmetric solution. That is, we

look for solutions of (10) — (12), satisfying the boundary conditions (15), in the form
u=u"rz2), v=0v0(0rz2), w=wOrz2), T=T902), (16)

where the dependent variables are independent of ¢ and t. Although it is not written
explicitly, the solutions also depend on the parameters.
Stream functions are used to solve for the axisymmetric solutions. With the form of the

solutions as above, the incompressibility equation (12) becomes

ou® w0 1 ow®
or + T +g 0z

—0. (17)

If u and w® are written in terms of a stream function &, defined by

w0 — 108 o) 5108

=5 W =gk (18)
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then the incompressibility condition (17) is automatically satisfied. After using (18) to

9 and w® in the axisymmetric equations, the pressure terms can be eliminated.

replace u!
This results in three equations in the three unknown functions v(%), £ and 7. The equations
are found using the Maple symbolic computation package, and are sufficiently complicated
that no insight is gained by explicitly writing them here.
The boundary conditions for v(® and T® are as before (15), while the no-slip conditions
on 4 and w® become
% — g =0 _Ta T

a’r‘_az_ T—E,Eand Z:O,l

This condition implies that £ is constant on the boundaries, and because there is a freedom

to choose £ up to an additive constant, the additional boundary condition is chosen to be

E=0 on r:%, % and z=0,1.

5.2 The perturbation equations

The equations that we linearize, to compute the eigenvalues, are called the perturbation

equations. We write

u=u®+a, p=p2+p T=TO+T, (19)
so that (1, p, T) is a perturbation from the steady axisymmetric solution (u®,p(® 7))
where u® = u®e, + v®e, + w®e,. By substituting (19) into (10) — (12), and dropping

the hats, we obtain the perturbation equations

1
‘?9_;‘ = KV 5V 20e. xut (e. — 2Rre,) T
1 1 1
10, [ IR S R 5
7 (2 V)u— @ V)u® - S @ -Vu, (20)
oT . AT 1 1 1
_ A 1o v o Lm0 L wvoyr (21
5 = Vil u— 5 (W?-V,)T - (V) = (W-V)T,  (21)

vs u= 0, (22)

with the boundary conditions (15).
The trivial solution u = 0, p = 0, T" = 0 now satisfies these equations, and corresponds
to the steady axisymmetric solution of (10) — (12). The linearization of the perturbation

equations is not a normal operator.
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5.3 The eigenvalue problem

If the perturbation equations (20) — (22) are linearized, and we assume that the unknown

functions may be written as
u=u(r, g, zt) = e, (r,2)e™, T(r, ¢, zt) =T, (r, 2)e™?, (23)

with m an integer, then a linear eigenvalue problem is obtained for each azimuthal (or zonal)
wave number m. The form of the azimuthal dependence of the unknown functions can be
assumed because of the 27-periodicity in ¢.

The linear stability of the axisymmetric solution is found from the eigenvalue problem
(see Section 3). In our case, we have a neutral stability curve for each azimuthal wave number
m. To one side of each curve (the ‘stable’ side), all small perturbations of the given wave
number decay to zero in the linearized equations, whereas to the other side (the ‘unstable’
side), there is a perturbation that grows exponentially. In the region of parameter space
which is on the stable side of all the neutral stability curves, the solution is linearly stable.
In the region on the unstable side of any of the curves, the solution is unstable. If the
parameters are varied such that there is a crossing from the stable region to the unstable
region, we can expect a transition from axisymmetric to non-axisymmetric flow.

The eigenvalue problem for the eigenvalues A and eigenfunctions (ﬁm, Tm), where u,, =
Uy + Upm€y, + W e,, 1s:

1 Opm

)‘~m = s v2~m_N__ 5 A
" V( “ poR Or

—@m) 49204, —

.1
—O?RarT,, — = l(u@) : vm) G 4 (A - V) u® — 2

U 20 - m
Vi = (Vi T 2 g,
r r P

1
__ (0) 7 i 0)
7 [(u Vm) Um + (U, - V) v T ] (25)
~ 1 Opm 1 . .
My, = UsV2 0y, + gaT,, — po—D% - [(u(o) Vm) Wy + (U - V) w(O)] (26)
i o _ AT 1o P (@ ©)
M = 5Vl — —ln — & (0 V) Ton + (i - V) 7] (27)
Ol Uy M 1 0w,
Ot | Um | MMy 2 O0m 2
or r * r + 0 0z 0 (28)
where
veo_m, & 10 18
moor2 92 ror 62022
and
\Y e 9 + o +e 19
T o ¢ 60z
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If m # 0, it is possible to eliminate p,, and @,,. From the incompressibility equation (28),

we obtain 5 5
o U 1 29
m < or * r * ) 0z ) (29)
and from equation (25) we have
R U, 20M _ -
B = —i2 {—)\ﬁm T, (vfnf)m _Im LTum) — 204,
m T
1 Og uOp
3 l(u@-vm) T + (- V) 0@ + 2 T“ + 2 TU H (30)

The resulting three equations in the three remaining unknowns ., w,,, T,, may be

written in the form of a generalized eigenvalue problem

AU, = Tl (31)
where
U,
Um = U:)m
T

and A,, and L,, are 3 x 3 matrices of linear operators. If m = 0, a stream function method
can be used in exactly the same manner as in the calculation of the axisymmetric solution.

Again the equations are computed symbolically using Maple.

6 Numerical methods

6.1 Discretization

Since analytic solutions are not possible for either the axisymmetric solution or the eigen-
value problem, the solutions are approximated numerically. Second order centered finite
differencing is used to discretize the spatial derivatives. We approximate the value of the
unknown functions at the locations of the N x N grid points in the interior of the domain
defined by: r =71, 1 < k< Nand z = 2,1 <[ < N, where N, k, | are positive integers,
and rg = r4/R, ryy1 = 1/R, 20 =0 and zy,1 = 1. The values of T on the upper and lower
boundaries must also be considered as unknowns. This leads to discretized solution vectors
of size 3N? + 2N.

Upon discretization, the axisymmetric solution is approximated from a system of non-
linear algebraic equations and the partial differential eigenvalue problems become matrix

eigenvalue problems.
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6.2 The grid: non-uniform spacing

With the combination of the no-slip boundary conditions and the small parameter () mul-
tiplying the second derivative term, boundary layers in the solution of the axisymmetric
problem can be expected. For this reason, a scaling method is used to choose the locations
of the grid points. This method consists of making a change of coordinates and calculating
the solutions on a uniform grid in the new coordinates. The transformation is chosen such
that its inverse takes a uniform grid to a grid with many points near the boundary.

The transformation which takes (r, z) to the new coordinates (z,y), is

tan~t (nz 1
. 71(77 ) 1
2tan~' (n/2) 2
tan " (py) 1
2tan~! (n/2) 2

T

"R

(32)

where 7 is a scaling factor which determines the magnitude of compression near the boundary.
See Figure 3. The domainr € [r,/R,13/R], z € [0,1] goestoz € [-1/2,1/2], y € [-1/2,1/2].
The equations are transformed simply by writing u(r, z) = u'(x,y) (likewise for other func-
tions) and using the chain rule to write the equations in terms of derivatives with respect to
x and y.

It turns out that the boundary layers in the eigenfunctions are not as severe as those in
the axisymmetric solutions. In fact, significant errors can be introduced into the eigenvalues
and eigenfunctions if the grid points in the interior are too sparse. This occurs even if the
axisymmetric solutions appear to be well represented. This problem suggests that different
scaling factors should be used for the axisymmetric and eigenvalue problems. However,
the errors introduced in the interpolation seemed to negate the benefit of using multiple
scaling factors. In the calculations presented, we choose the scaling factor n = 6, which
gives qualitatively good results when N = 20. It seems that for smaller values of 7 (for this
N), the boundary layer is not well resolved for some values of the parameters Q and AT,
while for larger values of 7, there are not enough interior points to sufficiently describe the

eigenfunctions for all 2 and AT.

6.3 Solution techniques

For the computation of the axisymmetric solution we use Newton’s method. This method
can be combined with a predictor-corrector continuation technique to find the axisymmetric
solution for a wide range of parameter values. If 2 = 0 and AT = 0, then the trivial solution
satisfies the axisymmetric equations. Thus for 2 and AT small, the trivial solution is a
reasonable prediction of the solution, and Newton’s method is used for the correction. For

small increments in the parameter values, the previous solution is a reasonable prediction.
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To make larger increments in the parameter values, a secant line approximation can be used
for the prediction.

Each point on a neutral stability curve is found using an iterative secant method, where
the real part of the eigenvalue with largest real part is considered as a function of the
parameters. Iteration continues until the magnitude of the real part of the relevant eigenvalue
is less than a specified tolerance (1078 for the results presented below).

After discretization, the eigenvalue problem (31) is solved using Arnoldi iteration (Tre-
fethen and Bau, 1997), which computes a specified number of eigenvalues (and corresponding
eigenvectors). In particular, we calculate the eigenvalues with smallest magnitude. Although
we are interested in the eigenvalue with largest real part when the real part is zero (the crit-
ical eigenvalue), experimental results have shown the phase speed of the observed waves to
be very slow (see below). The phase speed is given approximately by the imaginary part of
the critical eigenvalue, which implies that the magnitude of the critical eigenvalue is small,
and, therefore, the eigenvalues with smallest magnitude should correspond with the eigen-
values with largest real part. This hypothesis was tested with N = 20 by computing all
the eigenvalues. In all such cases, the eigenvalue with smallest magnitude is indeed the
eigenvalue with largest real part. This does not guarantee that for smaller grid spacings this
is still true, however, the correspondence between the different grid spacings suggests that
the assumption is valid. Also, to reduce the risk of error, not only the smallest magnitude
eigenvalue is computed, but the p smallest, where in most cases p = 12. Note that although
this is adequate here, it may not be for other applications.

For the general matrix eigenvalue problem (ABv = Aw, where A and B are matrices,
v is the eigenvector, A is the eigenvalue), Arnoldi iteration requires B to be symmetric
and positive definite. Unfortunately, this is not the case with the present problem, so it is
necessary to invert B to obtain the usual matrix eigenvalue problem (i.e. Av = B~!'Aw).
This destroys most of the sparseness of the matrices. Taking into account the sparseness,
however, still saves a factor of two in computer memory. The non-symmetric property of B
is not due to the computation on the non-uniform grid, since there are variable coefficients
in the pre-transformed equations.

The discretized (transformed) equations and the entries of the coefficient matrices are
computed symbolically using Maple. The results are then transferred to the Matlab numer-

ical computation package, to find the numerical approximations.

6.4 Convergence

For numerical procedures, an important consideration is whether or not the method of ap-

proximation is convergent, and if so, to what order is the convergence. A method is called
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convergent if the error of the numerical approximation goes to zero as the step size (grid
spacing) goes to zero. For the axisymmetric solution, if certain standard assumptions are
made about the smoothness of the solutions, and if second order centered differencing is
implemented, then there is convergence of order 2 (i.e., the error of the approximation is
approximately equal to a constant times h?, as h — 0, where h is the step size). Convergence
also holds for the eigenvalue problem, however, for the present application, the order of the
convergence is not known.

Although convergence is an important property of a numerical method, its definition
involves a limit as the step size h — 0. Therefore, it is possible that if the step size is not
taken small enough, convergence will not be observed. This is particularly evident for the
matrix approximation of the eigenvalue problem. It is obvious that the matrix approximation
will not be able to contain all the solutions of the continuous problem. (There are at most
n eigenvalues of an n X n matrix where there are an infinite number of eigenvalues of the
continuous problem). It could be that when the step size is relatively large, the eigenfunctions
corresponding to the critical eigenvalues are not resolved. However, typically, it is the highly
oscillatory, high wave number eigenfunctions that the matrix problem is unable to resolve.
Since the eigenfunctions corresponding to the critical eigenvalues have relatively low wave
numbers and are not highly oscillatory, we expect that these functions are resolved (even if
the step size is relatively large), and that the errors in the differencing are relatively small.

Due to the uncertainty introduced when considering finite step size, it is important to look
for evidence of convergence in the numerical results themselves. For the approximation of the
critical parameter values (the parameter values at the transition) using linear stability anal-
ysis, a relatively simple way of investigating convergence consists of inspecting the numerical
differences between the approximations at adjacent levels of discretization (grid spacing).
If the differences consistently decrease as the grid is refined, then the approximations can
be assumed to be convergent. See Section 7 for an example. The results presented below
give evidence that the approximation of the transition curve is indeed convergent. A more
detailed comparison may also give an estimate of the order of the convergence. However, in

our case, the step size could not be taken small enough to obtain such an estimate.

7 Results

The results of our analysis are presented in this section. We will compare our results to the
experimental observations of Fein (1973), and, therefore, use the corresponding values of the
parameters for the annulus geometry and fluid properties. These are listed in Table 1.

An example of the axisymmetric solution is plotted in Figure 4. Qualitatively, the form

of the solution is the same for all values of the parameters. The figure shows that the fluid
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velocity in the interior of the fluid is predominantly in the azimuthal direction. The radial
velocity is almost zero everywhere except at the upper and lower boundaries, where it is
negative and positive, respectively. The vertical velocity is largest at the inner and outer
walls, where there is rising at the warmer outer wall and sinking at the cooler inner wall.
The azimuthal velocity exhibits an almost linear shear in the vertical in the interior with a
positive velocity in the upper half of the annulus and negative velocity in the lower half. The
resulting circulation is a convection cell which, due to the Coriolis force, is tilted from the
radial plane such that, at the upper and lower boundaries, the inward and outward motion
is deflected to the right.

The neutral stability curves are presented in Figure 5. There is a separate curve for
each azimuthal wave number. The curves are the points in the parameter space where, for
the given wave number, there is one pair of complex conjugate eigenvalues with zero real
part while all other eigenvalues associated with that wave number have negative real part.
Figure 5 shows the neutral stability curves for the wave numbers m = 3 to m = 8. Curves
for wave numbers from m = 2 to m = 10 were calculated and it was found that the only
critical wave numbers were m = 3 to m = 8, where the critical wave number is the wave
number of the neutrally stable wave at the axisymmetric to non-axisymmetric transition.
That is, the neutral stability curves of the wave numbers that are not plotted are always
to the right of at least one other curve. It is not possible to calculate the neutral stability
curves of all wave numbers, however it can be argued that the higher wave numbers will
not be critical in the parameter range of interest. We refer the reader to Lewis (2000) and
here justify investigation of only a finite number of wave numbers by comparison with the
experimental results. The computations were performed using a 550MHz desktop computer
with 256 M RAM, running under the Linux operating system. A 25 x 25 grid was used for
the calculations of all curves shown. With the available resources, it was not possible to find
detailed neutral stability curves on a finer grid. Approximately 30 points were calculated
along each of the curves.

In Figure 6, the curve which delineates the axisymmetric from the non-axisymmetric
regimes is plotted. Along this curve it can be seen that there are transitions of the critical
wave number. These transitions occur at intersections of the neutral stability curves. Also
plotted in Figure 6 is the experimentally observed transition curve taken from Fein (1973),
with critical wave number transitions. This is the curve where a transition from the ax-
isymmetric to steady wave flow was observed. All curves are plotted on a log-log graph of
Taylor number 7 versus thermal Rossby number R. Approximate experimental error bars
are also included at selected points along the transition curve. The error bars “reflect the

uncertainty due to finite variations of the critical parameter across the transition point as
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well as uncertainties associated with measuring one’s position in parameter space” (Fein,
1973). The error bars along the upper transition are too small to distinguish and so they
are not included. This is due to the log variation of the axes and is not a reflection of more
precise measurements.

In Figure 7, is the upper and knee region of the transition. Here, the detail of the
intersection of the neutral stability curves is shown. A similar plot of the lower transition
would offer no more detail because the curves are very close together.

A number of observations can be made.
e There is a good correspondence between the numerical and experimental results.

e Along the lower transition, the discrepancies between the theoretical and experimental
transition curves lie mostly within the experimental error. Along the upper transition,
although the discrepancies appear to be small, they still fall beyond the approximated
experimental error. This may be due to factors that were not considered in the exper-
imental errors, for instance, the disturbance effects due to the probes that were used
to measure the temperature of the fluid. However, the discrepancies may be due to
errors in the numerical approximation, or due to errors in the model approximations
(e.g. the Boussinesq approximation). It is unlikely that the discrepancies are due to
the non-normality of the linear part, because if they were, the theoretical curve would

be to larger parameter values than the experimental curve.

e There is cusping along the upper transition curve, associated with changes in the

critical wave number, in both the experimental and numerical results.

e There is a local maximum of critical wave number (m = 8) along both of the lower

transition curves.

e It seems that the discrepancies in the wave number transitions along the stability curve
are relatively large. This could be due to the difficulty in locating these transitions,

both numerically and experimentally.

e The theoretical lower transition curve is not linear on the graph. Fein (1973) believed

that his experimental data showed evidence (albeit inconclusive) of this claim.

In fact, all the main features of the transition curves observed in the experiments are
replicated with the numerical results. Neither the cusping along the upper transition nor
the critical wave number maximum of m = 8 along the lower transition has been predicted
before in such a realistic model. Miller and Butler (1991), using numerical experimentation

(see Section 3), did not locate enough points along the transition curve to reproduce the
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curve, and so could not make these predictions. In fact, their results showed a critical wave
number maximum of m = 7.

A nonlinear bifurcation analysis (Lewis and Nagata, 2001) shows that a non-axisymmetric
steady rotating wave bifurcates from the steady axisymmetric solution at the axisymmetric to
non-axisymmetric transition. To first order, the wave has the same form as the eigenfunction
associated with the critical eigenvalue. Furthermore, the ‘drift rate’ of the rotating wave at
transition can be approximated from the imaginary part of the critical eigenvalue, where the
drift rate is the frequency that full wavelengths drift past a fixed point on the annulus. The
drift rate wy is given by y

¢

Wy = g (33)
where w. is the imaginary part of the critical eigenvalue and m,. is the wave number of
the eigenfunction associated with the critical eigenvalue. The theoretical drift rates at the
transition are calculated from (33), and are plotted in Figure 8. The solid line in the
figure is a line that is consistent with experimental data (Fein, 1973). Again there is good
correspondence. The experimental results do not cover the whole transition curve since some
of the wave speeds were judged to be too slow to measure accurately (Fein, 1973).

As mentioned above, an N x N grid, with N = 25, is used for the calculations of all
the neutral stability curves that are presented. Neutral stability curves are also calculated
for N = 20, with good correspondence with the presented results for the lower transition
and knee. To test the approximations, calculations with N = 30 are also made at several
locations along the transition. In all cases, the approximations on the finer grid confirm
the validity of the presented results. A comparison of the approximations of the critical
parameter values at the different levels of discretization also gives evidence of the convergence
of the method of approximation. See Table 2 for an example of one such comparison. The
difference between the value for N = 30 with the value N = 25, is smaller (by almost
half) than the difference between the value for N = 25 with the value for N = 20. Other
comparisons reveal similar behaviour. Although this is evidence of convergence, to obtain
an estimate of the order of convergence, the calculations would have to be performed with
an even finer grid. This is not possible with our available resources. Note, however, that the
differences in the approximations of the critical parameter values are quite small. Finally,
since the results accurately reproduce the experimental results (see below), we conclude that
the approximations are satisfactory. See Lewis (2000) and Lewis and Nagata (2001) for

further examples and further discussion of the numerical convergence.
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8 Conclusion

In this paper, we use linear stability analysis to determine the transition from axisymmetric
steady solutions to non-axisymmetric solutions in a mathematical model of the differentially
heated rotating annulus. The relevant eigenvalues cannot be found analytically and therefore
numerical approximations are necessary. For two reasons, it is not known a priors if the linear
stability analysis will make accurate predictions of the transition: (1) errors in the numerical
approximation of the eigenvalues may lead to faulty predictions, and (2) it has been suggested
that a non-normal linearization of the dynamical equations about the steady solution may
also lead to faulty predictions.

For this reason, we study an accurate mathematical model of the annulus, that uses
the Navier-Stokes equations in the Boussinesq approximation. We may then validate the
predictions via quantitative comparison with experimental results. Indeed, we show that the
theoretical and experimental results are in good correspondence. The ability of the analysis
to replicate the experimental observations not only indicates the validity of the mathematical
model and the numerical approximations, but also indicates that the non-normality of the
linearization does not preclude the use of linear stability analysis, at least in the present
application.

Many features of the experimental transition are duplicated using the predictions of
the linear stability analysis. The theoretical transition curve itself is approximately within
experimental error for the lower and knee part of the transition. The small discrepancy
at the upper transition may be caused by errors in the mathematical model or by factors
that were not included in the experimental errors. The critical wave number maximum of
m = 8 along the lower transition is accurately predicted. For the first time in such an
accurate model of the differentially heated rotating annulus, cusping is shown at the upper
transition and it is seen that the lower transition is not linear. A previous study (Miller and
Butler, 1991), that investigated the annulus configuration of Fein (1973), did not investigate
the axisymmetric to non-axisymmetric transition in detail and therefore did not attempt
to replicate the experimental results in detail. Furthermore, the study employed numerical
experimentation which could not verify the accuracy of linear stability analysis.

In addition to providing a means to quantitatively predict transition curves, linear stabil-
ity analysis is a starting point for nonlinear bifurcation analysis. The results presented here
have been used in a double Hopf bifurcation analysis at the critical wave number transitions
(Lewis and Nagata, 2001). The analysis indicates that there is a region in parameter space,
adjacent to the critical wave number transitions, where the nonlinear dynamical equations
support two stable steady waves. Hysteresis of these waves is predicted and the boundaries

of the region of hysteresis are approximated. Also, a first order approximation of the wave
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form is given. In principle, this nonlinear analysis can be extended to explore vacillating
flow. For the present model, it would be expected that there is a curve in parameter space
where the steady waves are neutrally stable. This curve may be the transition curve from
wave to vacillating flow.

Finally, this study gives evidence that linear stability analysis may be accurately applied
to other complex models, including large scale models of the atmosphere. The fact that
accurate numerical approximations are obtained, even when it is necessary to discretize two
spatial variables, supports the application of linear stability analysis to many other models
where it may have previously been thought of as computationally prohibitive.
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Tq 3.48 cm
Th 6.02 cm
R | 254 cm
D ) cm

v | 1.01e7? | cm?/sec
k | 1.41e73 | cm?/sec
a | 2.06e7t| 1/°C
po | 0.998 | gm cm?
T 20.0 °C

g 980 | gm/cm?

23

Table 1: The annulus geometry and fluid properties used in the analysis, after Fein (1973). See text for

definitions of symbols.

(N[ 0 [ AT

20 | 0.800 | 0.396
25| 0.800 | 0.383
30 | 0.800 | 0.375

Table 2: An example of the approximate critical parameter values for different values of N, where the
approximations are made on an N x N grid and Q¢ and ATy are the critical parameter values. For this

example, 2 was held fixed while AT was varied.
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fluid

Figure 1: The differentially heated rotating annulus experiment, where the annulus is rotated at rate Q
and the inner wall is held at the fixed temperature T, and the outer wall at temperature T}, creating a
differential heating. r, and r, are the radii of the inner and outer cylinders, R = r, —r,, and D is the height
of the annulus.
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log(Thermal Rossby number)
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Figure 2: A schematic diagram depicting general experimental results. See e.g. Hide and Mason (1975).
To the left of all the curves is the axisymmetric regime which is separated into three (dynamically similar)
regions: lower symmetric, knee, and upper symmetric. To the right of the curve is the non-axisymmetric
regime which is separated into three dynamically distinct regimes: steady waves, vacillation and irregular

flow.
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Figure 3: The transformation of the grid points. (a) A uniform grid (equally spaced grid points) of size
20 x 20 (b) the grid obtained by applying the change of coordinates (32) with 1 = 6.
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Figure 4: The axisymmetric solution: (a) u the fluid velocity in the radial direction, (b) v the fluid velocity
in the azimuthal direction, (c) w the fluid velocity in the vertical direction, and (d) T the deviation of the
temperature of the fluid from AT (r —r,/R) + T,. This solution is calculated on a 25 x 25 grid and is
observed at 2 = 0.8169 and AT = 0.3820.
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Figure 5: Neutral stability curves are plotted for the wave numbers m = 3 to m = 8. The curves are
calculated by finding the parameter values where, for each m, the eigenvalues of (31) all have negative real
part except one with zero real part. The curves are plotted on a log-log graph of thermal Rossby number
versus Taylor number.
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Figure 6: Transition curves for theory and experiment delineating the axisymmetric from the non-
axisymmetric regimes. The critical wave number transitions, labelled as mj, ms, are also plotted along
the curve. Experimental error bars are included at selected points along the experimental transition curve.
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Figure 7: Neutral stability curves: upper transition. Same as Figure 5, but only top part is shown.
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Figure 8: Theoretical and experimental drift rates of steady rotating waves at transition, where the drift
rate is the frequency that full wavelengths drift past a fixed point on the annulus. Theoretical drift rates are
labelled with both x’s and dots so that the results from neighbouring wave numbers can be distinguished
(that is, transitions from x’s to dots, and visa versa, correspond to wave number transitions along the
transition curve). The solid line is consistent with the experimental results (within experimental error) of
Fein (1973). Theoretical results are calculated from (33). aAT/ is the intensity of the ‘thermal wind’, see
Fein (1973).



