DOUBLE HOPF BIFURCATIONS IN THE DIFFERENTIALLY
HEATED ROTATING ANNULUS*

GREGORY M. LEWIST AND WAYNE NAGATA?

Abstract. We study a mathematical model of the differentially heated rotating fluid annulus
experiment. In particular, we analyze the double Hopf bifurcations that occur along the transition
between axisymmetric steady solutions and non-axisymmetric rotating waves. The model uses the
Navier-Stokes equations in the Boussinesq approximation. At the bifurcation points, center manifold
reduction and normal form theory are used to deduce the local behaviour of the full system of partial
differential equations from a low-dimensional system of ordinary differential equations.

It is not possible to compute the relevant eigenvalues and eigenfunctions analytically. Therefore,
the linear part of the equations is discretized and the eigenvalues and eigenfunctions are approximated
from the resulting matrix eigenvalue problem. However, the projection onto the center manifold and
reduction to normal form can be done analytically. Thus, a combination of analytical and numerical
methods are used to obtain numerical approximations of the normal form coefficients, from which
the dynamics are deduced.

The results indicate that, close to the transition, there are regions in parameter space where
there are multiple stable waves. Hysteresis of these waves is predicted. The validity of the results is
shown by their consistency with experimental observations.

Key words. differentially heated rotating fluid experiment, axisymmetric to non-axisymmetric
transition, hysteresis of rotating waves, center manifold reduction, numerical approximation of normal
form coefficients

AMS subject classifications. 37N10, 76U05, 37N99

1. Introduction. Laboratory experiments that isolate the effects of differential
heating and rotation have long been regarded as useful tools for studying the behaviour
of large scale geophysical fluids, such as the atmosphere. The dynamic similarity of
the various experiments and actual geophysical flows indicates that the form of the
differential heating, the geometry of the system, the properties of the fluid, and the
boundary conditions play a secondary role [13]. This is evidence that the character of
large scale geophysical fluid flows is determined, to a large extent, by the differential
heating and rotation. Consequently, an investigation of a mathematical model of a
laboratory experiment itself can provide insight into the dynamical properties of large
scale geophysical fluids. Furthermore, models of the experiments can be tractable, and
the model and the method of analysis can be quantitatively validated via comparison
with experimental observations. In constrast, a quantitative validation is not possible
when studying direct, simplified models of large scale flows.

We study a model of a particular laboratory experiment in which the changes
in the flow patterns in a differentially heated rotating annulus are observed as the
imposed temperature gradient and rate of rotation are varied. We use an accurate
mathematical model that is able to quantitatively reproduce some of the experimental
observations [18], [19]. In the laboratory experiments, for small differential heating
and rotation, a steady axisymmetric pattern is observed, i.e. the pattern is invariant
under rotation. As the parameter values are increased, this relatively simple pattern
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becomes unstable and a wave motion appears. It is this transition from axisymmetric
to non-axisymmetric flow that is of interest here.

We study the transition by directly analyzing the partial differential equations
(PDEs) that describe the fluid flow in the rotating annulus. In particular, we study
the double Hopf bifurcations that are found at isolated points along the transition.
These double Hopf bifurcation points occur when the linearization about the steady
axisymmetric solution has two pairs of complex conjugate eigenvalues that simul-
taneously cross the imaginary axis as the parameters are varied. Center manifold
reduction is used to find the dynamics of the partial differential equations close to the
bifurcation point. This is a method of simplifying the equations in a way that takes
into account all the nonlinear interactions. The results are valid for parameter values
close to the bifurcation point and when the bifurcating solutions are, in some sense,
small. This method is sometimes referred to as weakly nonlinear analysis, because
the nonlinear terms in the equations are assumed to be small but not negligible. Es-
sentially, the technique is able to show the existence and stability of the bifurcating
solutions, and give a first-order estimate of the solution itself, but it is not able to
determine if the solution persists for values of the parameters far from the bifurcation
point.

This type of bifurcation analysis has been successful in other applications to fluid
flow. One of the best known is the onset of motion in a layer of fluid heated from
below, Rayleigh-Bénard convection (see e.g. [24]). Another application of note is
the Couette-Taylor problem (see [1] and the references contained therein), which is
a fluid annulus experiment (without differential heating) where the inner and outer
cylinders rotate at different rates, generating a shear flow in the fluid. A rich variety
of behaviour has been found by experiment, some of which can be explained with bi-
furcation theory. In addition, bifurcation analysis has made several predictions of flow
patterns that were subsequently confirmed by experimental results. In the geophysical
fluid dynamics literature, an asymptotic method, formally equivalent to center mani-
fold reduction, was used to analyze ‘weakly nonlinear’ wave-wave interactions (double
Hopf bifurcations) in the two layer quasi-geostrophic potential vorticity equations in
[20], [21], and [25] (see also [2] and [10]). The results indicated multiple stable wave
solutions and hysteresis of these solutions. For all of these models, it is possible to
find the results analytically.

In the field of geophysical fluid dynamics, few models exist that can be studied
purely analytically. Since the model we study does not fall into this category, we use
an analytical-numerical hybrid analysis technique. Using center manifold reduction,
it is possible to analytically reduce the time-dependent nonlinear PDEs to a series of
steady linear PDE problems. These linear systems are then solved numerically, which
results in numerical approximations for the coefficients of the normal form equations,
from which the local dynamics can be deduced. Not only are the linear problems less
difficult to numerically approximate, but also the validity of the approximations is
more easily verified. Thus, although numerical approximations must be made, this
method of analysis gives evidence that the predicted dynamics corresponds to those
of the PDEs. Essentially equivalent methods are used in the Couette-Taylor problem
[1] and in [7], where a double Hopf bifurcation was analyzed in a barotropic quasi-
geostrophic model. It should be noted that although similar methods were used in
these problems, the numerics are substantially less intensive than those presented
here. In fact, until recently, the numerics of this work would not have been possible
on a personal computer.
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In the next section, we describe the experiments in more detail. We discuss some
general experimental results, and in so doing, introduce some of the flow features that
our model reproduces. In Section 3, the dynamical equations are written explicitly.
The methods of analysis are discussed in the following two sections, where the analyt-
ical methods are presented in Section 4 and the numerical methods are presented in
Section 5. In Section 6, the results are described and discussed. A conclusion follows.

2. Experimental Observations. Many different experiments have been per-
formed in an attempt to develop an understanding of differentially heated rotating
fluid systems (see e.g. [13], [15], and [5]). The experiments often take the form of
studying fluid flow in a rotating cylindrical annulus, where the differential heating is
obtained by maintaining the inner and outer walls of the annulus at different tem-
peratures. See Figure 2.1. The experiments consist of finding the various stable flow
patterns that occur at different values of the rotation rate and differential heating.
The results are typically given in a diagram where the transitions between the differ-
ent flow types are plotted in parameter space, in terms of the Taylor number 7, and
the thermal Rossby number R [4], [13]. The Taylor number

_ 402R*
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is a dimensionless parameter measuring the relative importance of rotation to viscos-
ity, where Q is the rate of rotation, R is the gap width of the annulus and v is the
kinematic viscosity of the fluid. The thermal Rossby number
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R= iR

is another dimensionless parameter measuring the relative importance of rotation to
the differential heating, where AT is the difference in temperature between the inner
and outer walls of the annulus, « is the coefficient of thermal expansion of the fluid, D
is the depth, and g is the gravitational acceleration. If all other parameters are held
fixed, there is a one-to-one relationship between these two dimensionless parameters
and the two physical parameters that are varied during experiments: the differential
heating AT and rate of rotation (2.

Most of the experiments find four main flow regimes in different regions of param-
eter space (see Figure 2.2): (1) Axisymmetric Flow; this flow is characterized by its
azimuthal invariance. (2) Steady Waves; the flow in this region is non-axisymmetric
and resembles a rotating wave with constant amplitude and phase. Different wave-
lengths are seen in different subregions, with the possibility of observing stable waves
of different wavelengths within the same subregion. The transitions between the sub-
regions exhibit hysteresis. (3) Vacillation; in this region, the amplitude or structure
of the observed wave varies apparently periodically in time. (4) Irregular Flow; this
region is characterized by its irregular nature in both space and time.

All of the observed flows have their counterparts in the Earth’s atmosphere [6],[13].
The axisymmetric flow resembles the Hadley cell, which is observed in the atmosphere
near the equator where the ‘local’ rotation rate and differential heating are relatively
small. In mid-latitude regions of the Earth, the flow sometimes has wave character-
istics that resemble the steady waves and vacillations seen in the experiments. Here,
in both the atmosphere and experiments, the flow trajectories are curved and vertical
motion is inhibited.
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F1g. 2.1. The differentially heated rotating annulus experiment, where the annulus is rotated
at rate Q and the inner wall is held at the fized temperature T, and the outer wall at temperature
Ty, creating o differential heating AT = Ty, — Ty. ro and vy are the radii of the inner and outer
cylinders, R = ry, — rq, and D is the height of the annulus.

Of particular interest to us, is the transition from the axisymmetric to wave
regime and the hysteresis of the waves which is observed in the steady wave regime.
The hysteresis occurs between waves whose wave numbers differ by the integer one.
By quantifying the double Hopf bifurcations that occur along the transition, we give
evidence of the mechanism by which the hysteresis occurs.

3. Model Equations. The dynamical equations of the fluid are taken to be the
Navier-Stokes equations in the Boussinesq approximation. In particular, we consider
the variations of all fluid properties to be negligible, and the equation of state of the
fluid is assumed to be

(3.1) p = po[l — a (T —To)]

where p is the density of the fluid, T is the temperature, « is the (constant) coef-
ficient of thermal expansion, pg is the density at the reference temperature Tp, and
a (T —Tp) is assumed to be small. A significant simplification due to the Boussinesq
approximation is that the fluid can be considered incompressible. For the tempera-
ture evolution, we take the heat equation, with an advection term that couples the
fluid velocity to the temperature. The boundaries are the inner wall of the cylindrical
annulus with radius r,, the outer wall with radius 7y, as well as a rigid flat bottom
and top. At the boundaries, the no-slip condition is imposed on the fluid, and the
temperature is T, and T} at the inner and outer walls, respectively, while the bottom
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Fig. 2.2. A schematic diagram depicting general experimental results. See e.g. [18]. To
the left of all the curves is the azisymmetric regime which is separated into three (dynamically
similar) regions: lower symmetric, knee, and upper symmetric. To the right of the curve is the
non-azisymmetric regime which is separated into three dynamically distinct regimes: steady waves,
vacillation and irregular flow.

and top are thermally insulating. The equations are written in circular cylindrical co-
ordinates in a frame of reference co-rotating with the annulus at rate 2. The radial,
azimuthal and vertical (or axial) coordinates are denoted r, ¢ and z, respectively,
with unit vectors e,, e, and e,. See Figure 2.1.

We make a change of variables

(3.2) r=Rr', z=D2,

where R = rp —r, is the gap width and D is the height of the annulus, write the fluid
temperature as

reot ' 1 Ta
(33) T:T(T,CP,Z,t)-‘,-AT(r —E)"I‘Ta,

where AT = T,—T, is the imposed temperature difference, and write the fluid pressure
as

(3.4) p="p(r, 0,2 ,t)+ pogD(1 — ') + po P’ R*(r")? /2.

Then we drop the primes, to obtain equations describing the evolution of the fluid
velocity u = u(r, ¢, z,t)e, + v(r,p, z,t)e, + w(r, ¢, z,t)e,, pressure deviation p =
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p(r, ¢, z,t) and temperature deviation T' = T'(r, p, 2, t):

(3.5) %—‘t‘ =v,Viu - Ripovsp— 2Qe, X u

+ (ge. — Q*Rre,) a [T+ AT (r - %’) +T. =T - % (u-V,)u,
(3.6) %—f = /@SV§T+I@8¥ - %u— % (u-V,)T,
3.7) Vs-uzg—?+%+g—2+%g—f=0,

where § = D/R, vy, = v/R? v is the kinematic viscosity, k;, = x/R?, k is the
coefficient of thermal diffusivity, g is the gravitational acceleration,

2 106 1 07 1 02

2__ —_—— —_— —_—
Va = or? + T Or T 0p? t R 022’
V = e g_’.e 13 +e 12
T"or  Prdp 7602
_ 8U2 U1 6“2 1 6uz V1V
(ul'vs)u2_<u16r+r dp s, T )eT

8’[)2 V1 6U2 1 8’[)2 U1V2
* (UIW+ T g 5" Ty )%
6’11)2 V1 8’(1)2 1 611)2
* (“IW T e T e, )
for velocity fields u; = u;(r, ¢, 2, t)e, +v;(r, ¢, z,t)e, + w;i(r, ¢, 2z, t)e,, j = 1,2, and
oT E@_T 1 0T

(u-Vs)T:ua%—r&p%—gw&.

The domainisr,/R<r <rp/R,0 < ¢ < 2, 0 < z < 1, and the boundary conditions
are

. u=0 on r:—a,r—band 2=0,1,
3.8 0 ; =

T=0 on rz%l, %’,

T

‘;—2:0 on z=0,1,

with 27-periodicity in ¢ for u, T and p.

The solutions will not depend explicitly on the value of the reference temperature
To. However, there is implicit dependence because the values of v, k and py are
chosen to be those of the fluid at Ty. It is assumed that the difference between the
temperature of the fluid and Tj is everywhere small enough so that v and « can be
considered as constants.
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4. Analytical Methods. We choose as the parameters of interest the rotation
rate {2 and the temperature difference AT between the inner and outer annulus walls.
These are the physical quantities (external variables) that are easily varied in an ex-
periment. The other parameters describe the geometry of the annulus or properties of
the fluid. Another choice is to use the dimensionless parameters, the Taylor number
T and the thermal Rossby number R (see Section 2), which have a one-to-one cor-
respondence with 2 and AT. Our results are quoted in terms of these dimensionless
parameters because experimental results are usually presented on a log-log plot of T
versus R. However, the analysis was carried out using the parameters 2 and AT,
because non-dimensionalization did not significantly simplify the equations (see [18]).
The choice of parameters will not change the procedure or the results.

A summary of the main steps of the analysis is as follows:

1. Plot the neutral stability curves, by
(a) calculating the steady axisymmetric solution at a particular location in
parameter space,
(b) solving the eigenvalue problem for this solution to find its linear stability,
(c) repeating steps (a) and (b) at various locations in parameter space to
find the parameter values where the solution is neutrally stable.
2. Localize the point in parameter space where the double Hopf bifurcation
occurs (find the intersections of the neutral stability curves; see below).
3. Calculate the eigenvalues and eigenfunctions at the bifurcation point.
4. Compute the appropriate normal form coefficients, which involves
(a) calculating the adjoint eigenfunctions,
(b) calculating the center manifold coefficients.

An analytical form for the steady axisymmetric solution is not known, and, there-
fore, numerical approximations must be made. This is also the case for the eigenvalues
and eigenfunctions. In the analysis, this is dealt with by leaving the the unknown
functions unresolved when deriving the formulae for the normal form coefficients.
That is, we write the normal form coefficients in terms of the unresolved functions.
Then, for the numerical approximation of the normal form coefficients, the values of
the unknown functions are only needed at specific locations (the grid points), and nu-
merical approximations are used. We postpone discussion of the numerical methods
until the next section, and for the remainder of this section, we discuss the analytical
methods. In particular, we discuss the equations necessary for the computation of
the axisymmetric solution and the eigenfunctions, and we discuss briefly how center
manifold reduction is used to derive the formulae for the normal form coefficients of
interest. For a more detailed explanation of the center manifold reduction and normal
form equations in the context of this model, see [18] and for a general context see e.g.
[11].

4.1. The steady axisymmetric solution. The analysis begins with the com-
putation of a steady axisymmetric solution. That is, we look for a solution of equa-
tions (3.5)—(3.7), with the boundary conditions (3.8), in the form

u=u®(rz2) =uO(r 2)e, + 0O (r, 2)e, + W (r, 2)e,,

b= p(O) (Ta Z), T= T(O) (7’, Z),

independent of ¢ and ¢. The solution also depends on the parameters, but we do not
indicate this dependence explicitly. We assume that such a solution exists, is unique
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and regular, and depends smoothly on the parameters, at least for the parameter
values of interest. We have not attempted to prove this, but believe that, using
standard techniques, it would be a feasible if lengthy digression to do so (see, for
example [3]).

A stream function £(%) is introduced, so that the incompressibility condition (3.7)
is automatically satisfied. The pressure terms can then be eliminated, and we obtain
three equations in the three unknown functions £©, v(® and 7). The resulting
equations, computed using the Maple symbolic computation package, are sufficiently
complicated that no insight is gained by explicitly writing them here. For more details,
see [18]. In Section 5, we describe how £@, v(® and T(®) are computed numerically.

4.2. The perturbation equations. Next, the perturbation equations are re-
quired. It is on this system that the center manifold reduction is performed. We
write

(4.1) u=u?+4d, p=p@+p, T=TO+T,

where (u(®,p(® 7)) is the steady axisymmetric solution, substitute (4.1) into equa-
tions (3.5)—(3.7), and drop the hats, to obtain the perturbation equations

(4.2) % = v, Viu - R%OVSP —2Qe, X u+ (ge, — Q*Rre,) oT

-2 (4@ ) u- 5@ V) - 2 Vo),
@m%?:@wT égké%(WVQT—leMT@——mYME
(4.4) Vs-u=0,

with the boundary conditions (3.8). The trivial solution u = 0, p = 0, T = 0
now satisfies these equations, and corresponds to the steady axisymmetric solution of
equations (3.5)—(3.7).

The perturbation equations (4.2)—(4.4) can be put into a suitable abstract form
for which some important theoretical properties have been established. Following
Henry [12, pp. 79-81], we can define a space X' of vector functions U = [u, T'] so that
the incompressibility condition (4.4) and boundary conditions (3.8) are satisfied as
part of the definition of the space. Then there is an abstract projection operator onto
the space X that eliminates the pressure terms, and the system (4.2)—(4.4) together
with boundary conditions (3.8) can be written as an abstract evolution equation in
the space X,

(4.5) U=LU+N(),

where L U is the linear part of the equation (observe that L depends on the param-
eters, through the steady axisymmetric solution), and N(U) is the nonlinear part (it
has the form N(U) = M(U, U), where M is bilinear). If we assume that the steady ax-
isymmetric solution of (3.5)—(3.8) exists, is unique, is regular, and depends smoothly
on the parameters, then at least locally near U = 0 the initial-value problem for (4.5)
in X has a unique solution U(t), ¢ > 0, that depends smoothly on initial conditions
and parameters [12, Chapter 3]. Moreover, the principle of linearized stability holds,
and the stability of the trivial solution U = 0 of (4.5) can be determined from the
spectrum of the linearization L [12, Chapter 5].
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4.3. The eigenvalue problem. The linearized stability of the steady axisym-
metric solution is determined by the spectrum of the linearization of (4.2)—(4.4) about
the trivial solution. Since L is the sum of a self-adjoint operator and a bounded
linear operator, it is sectorial. The spatial domain is bounded, so the spectrum con-
sists entirely of isolated eigenvalues of finite multiplicity. The eigenvalue problem
is formally obtained by assuming that the unknown functions may be written as
u = u(r,@,z,t) = eMiy,(r,2)e™?, with m an integer, and likewise for 7' and p,
and then linearizing (4.2)—(4.4). A linear eigenvalue problem, for the eigenvalues A

and the eigenfunctions |ii,, (r, 2), T (r, 2)| €™#, is obtained for each azimuthal wave

number m. By the principle of linearized stability, if all eigenvalues A have negative
real parts, then the steady axisymmetric solution is asymptotically stable, while if
any eigenvalue X\ has a positive real part, then the steady axisymmetric solution is
unstable. We are especially interested in locating critical parameter values where a
finite number of eigenvalues have zero real parts, and the rest have negative real parts.
The solution is then neutrally stable, and we expect bifurcation of solutions of the
nonlinear equations as parameters are varied near the critical values. The azimuthal
wave numbers m of the eigenfunctions corresponding to the eigenvalues that have zero
real part at the critical parameter values are defined as the critical wave numbers.

If m # 0, it is possible to eliminate the pressure and azimuthal velocity terms.
The resulting three equations in the three remaining unknowns i, (r, 2), W, (r, z) and

T, (r, 2) may be written in the form of a generalized linear eigenvalue problem

(4.6) )\Amﬁm = LmUma
where
Um = u}m )
T

and A, and L,, are 3 X 3 matrices of linear operators. If m = 0, a stream function
method can be used in exactly the same manner as in the calculation of the axisym-
metric solution. Again the equations were calculated using Maple and are too lengthy
to write here.

Finally, the adjoint eigenvalue problem is necessary to calculate the adjoint eigen-
functions. The adjoint operators are calculated using the inner product, which for
two vector functions Uy = [uy,T1] and Uy = [ug, T3] is taken to be

1 p27 p2b
(4.7) (U1,Us) = / / /R (wy - W + TWT>) r dr dy dz,
o Jo Jzg

where the overbar denotes complex conjugation. The adjoint eigenfunctions have the

form [ﬁ;‘n (r,2), T% (r, z)} eime,

4.4. Normal form coefficients. The numerical results, presented in Section 6,
predict that there are critical parameter values where the linear eigenvalue problem
has two complex conjugate pairs of eigenvalues with zero real parts, while the other
eigenvalues have negative real parts. Therefore, suppose that the critical parameter
values occur at 2 = Qg and AT = ATy, so that for  near Qy and AT near ATy, the
eigenvalue problem has eigenvalues

(4.8) M o= 4w, A, Ao =g +iws, Ao,
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and when Q = Qp and AT = ATy, we have p3 = ps = 0. Also, assume that all
the other eigenvalues have negative real parts, with the real parts uniformly bounded
below zero.

The eigenfunctions corresponding to the above eigenvalues are

@1, 61, @2, 62,

where they have the form
®; = [ﬁmj (r, z),Tm]. (r, z)] eimi®,

with m; (j = 1,2, m; # ms) being the azimuthal wave number corresponding to
®;. The center eigenspace E° is the span of the eigenfunctions corresponding to the
eigenvalues with zero real parts when Q = Q¢ and AT = ATy,

E° = span{@l,gl, (1)2762}.

The stable eigenspace E? is the span of all the other eigenfunctions that correspond to
eigenvalues with negative real parts. The adjoint eigenfunctions corresponding to the
®; are denoted by @7, where the ®7 are found from the adjoint eigenvalue problem.
The eigenfunctions and their adjoints are normalized so that their inner products
satisfy

(4.9) (®;,97) =1,

for j = 1,2. Due to a rescaling (see below), the results do not depend on the way in
which the second normalization constant is determined.
The projection of U onto the center eigenspace E° is given by

(4.10) PU = (U, ;)& + (U, 8,)3; + (U, 33)®» + (U, T,)T>.
Using this projection, we may then decompose U:
(411) U= 2'1(1)1 =+ 3161 + ZQ‘I’Q + 2262 + ‘IJ,

where PU = 219, +31$1 + 259 +2252 € E° and (I — P)U =WV € E*, and [ is the
identity operator. This implies that the complex amplitudes z; and z2 are given by
the inner products z; = 21(t) = (U, &%) and 22 = 22(t) = (U, D3).

Taking the projection of equation (4.5), we get

(4.12) 21 =Mz + (N(D), @),
22 = Mazo + (N(U), @3),

where U is given by (4.11). The complex conjugate equations contain redundant
information, and so are omitted. For (4.12), we use center manifold theory to write
U solely in terms of the center eigenspace variables z; and z», and in so doing we
decouple the system.

Given that the assumptions stated above for (4.5) and the eigenvalues for the
linearization are valid, then, for (2, AT) in a neighborhood of (Qg, ATp), the center
manifold theorem [12, p. 168] implies that there exists a differentiable center manifold
for equation (4.5) :

(4.13)Wlf]c = {U =291 + 3161 + 20P5 + 2262 + H(Zl(§1,31$1,22¢2,2262)} R
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where H : E¢ — E? is defined for ||z;®; + 721 ®; + 20®5 + Zo®5|| small and || - || is the
norm that corresponds to the inner product (4.7). The local center manifold W, . is
locally invariant, is tangent to the center eigenspace E€ at U = 0 when Q = )y and
AT = ATy, and is locally exponentially attracting.

Therefore, on the center manifold, we can write

(414) U :H(Zl,El,ZQ,EQ) = 0('21,71,22,72?)
and then expand the center manifold function H in a Taylor series as

(4.15) H(21,7%1,22,%2) = Hao002; + Hi10021Z1 + Hoo20%5 + Hoo1122%2
+ Hiot02122 + Hio0121Z2 + c.c. + O(3),

where H;jj; are the Taylor series coefficients of H, O(n) = O(|z1,%1, 22,%2|") and c.c.
denotes the complex conjugates of the previous terms that are written explicitly. We
also write

(4.16) N (21,21, 22,%2) = Nagoozi + Ni10021Z1 + Noo2025 + Noo1122%22
+ Nio102122 + Nigo121Z2 + c.c. + O(3),

where N(z1,%1,22,Z2) is the nonlinear term of (4.5) written in terms of z1,%1, 22
and Zo, using the decomposition of U given in equation (4.11), and with ¥ written
using (4.14) and (4.15). With the nonlinear part written as (4.16), the system is
decoupled and (4.12) reduces to a four-dimensional ordinary differential equation that
describes the dynamics on the center manifold. Because the center manifold is locally
exponentially attracting, the behaviour of the original partial differential equations,
close to the bifurcation point, can be deduced from the reduced system.
The normal form for the non-resonant case is

(417) 2:’1 = )\121 + G112f21 + G12z1Z222 + 0(4),
%o = Xozo + G9121Z122 + GQzZ%EQ + 0(4),

where \;=X;(Q, AT), and the normal form coefficients Gy; are given by

(4.18) G11 = (Na2100, 1),
Gi2 = (Nio11, ®1),
Ga21 = (Ni110, ®3),
G2z = (Noo21, ®3)

The normal form (4.17) is obtained from (4.12) by using a series of near-identity
coordinate transformations (see, e.g., [26]). This normal form requires the non-
resonance condition that the imaginary parts of the eigenvalues, wy and ws, satisfy
njwi +nsws # 0 for all integers ny and ny with |ng|+|ns| < 4, at the critical parameter
values 2 = Q¢ and AT = ATy.

In general, the formulae (4.18) for the normal form coefficients also depend on the
coefficients of the terms that are quadratic in 21 and 25 (e.g. Nagoo). However, in our
case these terms vanish in the projection (4.12), because, due to their p-dependence,
they are orthogonal to the adjoint eigenfunctions. In the same manner it can be shown
that to find the normal form coefficient G171 = (Naigg, ), only Né{"o})) is needed,

where N,(;Zzl) is defined as the coefficient of !¢ in the expansion N;jri(r,¢,2) =
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ZNZ(;Z? (r,z) e™¢. That is, all terms with a factor ™, m # my, vanish in the

iITner product because they are orthogonal to ®}. Furthermore, due to the form of
the nonlinear part, only the eigenfunctions ®;, ®;, and the particular coefficients of
the center manifold function, ﬁl(%o and ﬁz(gng), appear in the formula for NQ(%})),
where the ‘gz(;Zl) are defined in a similar manner as the Nz(;;:l) , te. Hiyp(r,p,2) =

Z I?z(;:l) (r,z) ™.

Thus, in addition to the eigenfunctions, the normal form coefficient
e (11 can be written as a function of only the coefficients ﬁl(%o and Hz(ggal).
Similarly, in addition to the eigenfunctions, the normal form coefficients

e Gy, can be written as a function of only the coefficients, HSY),, H\mi~™2)

and H{Ttm2)
?
o (21 can be written as a function of only the coefficients H 1(%0, ﬁéﬁf{ml) and
ﬁ(m1+m2)

010
e G52 can be written as a function of only the coefficients H(gg)n and Hég;'ff).

The equations satisfied by the H;jri(r,¢,2) are derived using the local invari-
ance of the center manifold [11]. From these equations, it follows that the relevant

ﬂ'l(;zl) (r, 2) satisfy:

(4.19) 201 L] Al = NGRY,

(0 (0
L(O)Hflz)o = _N1(12)0a

[22a1 = £ A = NG,

g
L(O)H(go)u = _Néoip

[0+ 2) L= Lmtma)] ) = i),

[0 + %) 1= Ema=rma)] frfgas=s) = Figei ),

where the L(™) are defined by L [ﬁ' (r, z)eim“’] = eim¢ [I:(m)ﬁ (r, z)] and I is the iden-
tity operator. For m # 0, the same solution method that is used for the eigenvalue
problem can be used here (i.e. elimination of the pressure term and one velocity com-
ponent). For m = 0, the stream function method (as for the axisymmetric solution)
can be used.

We write 21 = p1e¥1 /\/|GT,| and 25 = pse’® [\/|G5,|, where G is the real part
of the normal form coefficients G;;, and substitute these expressions into (4.17). In
these scaled polar coordinates, the truncated normal form equations are

(4.20) p1=p1 (1 + api +bp3)
p2 = p (2 + cpi +dp3) ,
él = w1,

92 = w2,
where
(4.21) a - 41,

e
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b 12
|G5,]”
21
IG |’

d= 22 = 41,
|G,

and \; = p] + iw;. The O(|p1, p2| ) terms are ignored in the p; equations, and the
O(lp1, p2| ) terms are ignored in the 0 equations. Ignoring these terms does not affect
the local dynamics, except for fine detalls of the dynamics on invariant tori.
In summary, given m; and my, the coeflicients of the scaled normal form equations
a, b, c,d can be written in terms of the following functions, which are all only functions
of two spatial variables r and z:
e the eigenfunctions and adjoint eigenfunctions

&, @

my?

¢7?’1,2 ’ (}:ﬂz y
where ®;(r, ¢, z) = <i>mj (r,z)ei™i% j=1,2.
e certain Taylor series coefficients of the center manifold function

77(0 2 Fr(ma— Fr(ma+ i7(0 2
Hitgor g Hiooi ™, Higy™, Hgo and Hogie?,

where Hjjp(r,¢,2) = Z Hz(;Zl) (r,2)e'™?. The eigenfunctions are found from the

eigenvalue problem (4.6), and the coefficients of the center manifold function are
found from (4.19).

5. Numerical Methods. In order to find values of the normal form coefficients,
the axisymmetric solution, the eigenfunctions and the Taylor series coefficients of the
center manifold function must be known. Because analytic solutions of these are not
known, they are approximated numerically. Upon discretization, the axisymmetric
solution is approximated from a system of nonlinear algebraic equations, while the
partial differential eigenvalue problems become matrix eigenvalue problems and the
partial differential boundary value problems for finding the coefficients of the center
manifold function become systems of linear equations. In all cases, the discretization
leads to large sparse systems, and so, we seek appropriate solution techniques.

In this section, we discuss some of the details of the numerical approximations,
including the discretization and solution techniques. Also included is a brief discussion
of convergence for the approximation.

5.1. The mesh: non-uniform spacing. We employ centered finite differencing
to discretize the spatial derivatives. The values of the unknown functions, in the
interior of the domain, are approximated at N x N grid points, labeled by (r,z) =
(rg,2z1), with 1 < k < N and 1 <1 < N, where N, k, [ are positive integers. We
define ro = ro/R, rn41 = m5/R, 20 = 0 and zy41 = 1. This leads to a discretized
solution vector of size 3N? + 2N (because T (r, 20) and T(rg, 2n11) are also unknown
for 1 <k < N).

With the no-slip boundary conditions and the small parameter v multiplying a
second derivative term, boundary layers form in the fluid flow. For this reason, a
scaling method is used to choose the locations of the grid points. This consists of
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making a change of coordinates and calculating the solutions on a uniform grid in the
new coordinates. The transformation is chosen such that its inverse takes a uniform
grid to a grid with many points near the boundary. The transformation that takes

the new coordinates (z,y) to the original coordinates (r, z) is given by
tan~t(pz) 1 7 ()

5.1 - 42

(5.1) Ztan_l(")+2+R = 2tan1()+

where 7) is a scaling factor that determines the magnitude of compression near the
boundary. See Figure 5.1. The domain r, < r < r,/R, 0 < z < 1 is mapped to
—-1/2 <2 <1/2,-1/2 <y <1/2, and the solutions are approximated on a uniform
grid in the (x,y) coordinates.

05
LLLLLLoiIiiiIiiin 06
> ofloiiioiiiiiiiiiiill N
LLLLLLoiIiiiIiiin o4l
P R RS SERRRE PEoboiob i
05 0 05 16 18 2

X r

F1G. 5.1. The transformation of the grid points. (a) A uniform grid (equally spaced grid points)
of N =20 (b) the grid obtained by applying the change of coordinates (5.1) with n = 6.

The boundary layers observed in the eigenfunctions are not as severe as those in
the axisymmetric solutions. In fact, significant errors are introduced in the eigenvalues
and eigenfunctions if the points in the interior are too sparse. This occurs even if the
axisymmetric solutions appear to be well resolved. This suggests that different scaling
factors should be used for the axisymmetric and eigenvalue problems. However, errors
introduced in interpolation seem to negate the potential benefit of using different
scaling factors. In the calculations presented, the scaling factor n = 6 is used. This
is the smallest value that leads to qualitatively good results for the axisymmetric
problem when N = 20; for smaller values of 7, the boundary layer is not resolved well
enough. Also, for larger values of 5 (for N = 20), there is an insufficient number of
interior points to adequately describe the eigenfunctions. However, for larger values
of N, the results are consistent and not as sensitive to the choice of 7.

5.2. Solution techniques. For the computation of the axisymmetric solution
we use Newton’s method. This method can be combined with a predictor-corrector
continuation technique to find the axisymmetric solution for a wide range of parameter
values. If Q@ = 0 and AT = 0, then the trivial solution satisfies the axisymmetric
equations. Thus for Q and AT small, the trivial solution is a reasonable prediction of
the solution, and Newton’s method is used for the correction. For small increments
in the parameter values, the previous solution is a reasonable prediction. To make
larger increments in the parameter values, a secant line approximation can be used
for the prediction.
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Each point on a neutral stability curve is found using an iterative secant method,
where the real part of the eigenvalue with largest real part is considered as a function
of the parameters. The iterative procedure for the localization of the double Hopf
points uses the fact that the points occur at intersections of two neutral stability
curves. In both procedures, iteration continues until the magnitudes of the real parts
of the relevant eigenvalues are less than a specified tolerance (10~8 for the results
presented below).

The discretized transformed equations and the entries of the coefficient matrices
are computed symbolically using Maple. The generalized matrix eigenvalue problem,
which results from the discretization of (4.6), is solved in Matlab using the implicitly
restarted Arnoldi method [17], which is a memory-efficient iterative method for finding
a specified number of eigenvalues with the largest magnitudes. A generalized Cayley
transformation is made so that the Arnoldi iteration finds the eigenvalues with largest
real parts [8]. The parameters of the transformation can also be chosen to improve
convergence properties. In particular, the generalized Cayley transformation

(5.2) C(L,A) = (L — oy A)" (L — azA)

maps eigenvalues A of the generalized matrix eigenvalue problem AAv = Lv to
eigenvalues o of the transformed matrix C(L, A), such that the eigenvalues A with
Real(A\) > (a1 + a2) /2 are mapped to the eigenvalues o with |o| > 1, where a; and
ay are the real parameters of the Cayley transformation. The matrix C(L, A) does
not have to be formed explicitly, because the Arnoldi iteration only requires matrix-
vector products involving C(L, A), see [17]. Thus, the full sparseness properties of L
and A can be exploited, and computer memory requirements can be reduced.

5.3. Convergence. For the centered differencing that was used, the local trun-
cation error is O(h?) (i.e. approximately a constant times h?, as h — 0), where h
is the mesh size. Given this and a few standard assumptions, the accuracy of the
approximations for the boundary value problems will be O(h?). In addition, if the
approximate solution and the differencing scheme for the derivative are both O(h?),
then the approximations of derivatives of the solutions are also O(h?). However, for
the present application, although the approximation of the partial differential eigen-
value problem by the matrix eigenvalue problem can be assumed to converge, the
order of this convergence is unknown. Considering this, it is reasonable to assume
that the approximations of the normal form coefficients converge, even though we
could not say to what order.

An additional comment should be made concerning the eigenfunction approxima-
tion. It is obvious that a finite-dimensional approximation is not able to approximate
all the solutions of the infinite-dimensional continuous eigenvalue problem. We ex-
pect that it is the highly oscillatory, high wave number eigenfunctions that the matrix
problem is unable to resolve. Because the critical eigenfunctions of interest have rela-
tively low wave numbers and are not highly oscillatory, we expect that these functions
are resolved, and that the errors in the differencing are relatively small.

Our results, which are presented in the next section, indicate that the approx-
imation of the normal form coefficients seem to be convergent. However, the mesh
size h could not be taken small enough to obtain an accurate estimate of the order of
convergence.
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TABLE 5.1
The annulus geometry and fluid properties used in the analysis, after [4]. See text for definitions
of symbols.

Ta 3.48 cm
Th 6.02 cm
R 2.54 cm
D 5 cm

v | 1.01e72 | cm?/sec
k | 1.41e=® | cm?/sec
a [ 2.06e 1] 1/°C
po | 0.998 | gm cm3
To | 20.0 °C

g 980 gm/cm?
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6. Results. The results of our study are presented in this section. The param-
eter values specifying the geometry of the annulus and fluid properties are listed in
Table 5.1. These values correspond to the experiments performed by Fein [4]. Our
results are compared with those obtained in that study.

6.1. The axisymmetric solution. An example of the axisymmetric solution
is plotted in Figure 6.1. Qualitatively, the form of the solution is the same for all
values of the parameters. The figure shows that the fluid velocity in the interior of
the fluid is predominantly in the azimuthal direction. The radial velocity is almost
zero everywhere except near the upper and lower boundaries, where it is negative and
positive, respectively. The vertical velocity is largest at the inner and outer walls,
where there is rising at the warmer outer wall and sinking at the cooler inner wall.
The interior azimuthal velocity exhibits an almost linear shear in the vertical, with a
positive velocity in the upper half of the annulus and negative velocity in the lower half.
The resulting circulation is a convection cell that is tilted from the radial plane such
that, at the upper and lower boundaries, the inward and outward motion is deflected
to the right. Although quantitative information of the experimental axisymmetric flow
was not available, the computed flow profile qualitatively reproduces all the features
of the experimental flow.

6.2. Neutral stability and transition curves. The neutral stability curves
are presented in Figure 6.2. There is a separate curve for each azimuthal wave number.
The curves consist of points in the parameter space where, for the given wave number,
there is one pair of complex conjugate eigenvalues with zero real part while all other
eigenvalues associated to that wave number have negative real part. Wave numbers
from m = 2 to 10 were calculated and it was found that m = 3 to 8 were the only
critical wave numbers. Therefore, only these are shown in Figure 6.2. It is not possible
to calculate the neutral stability curves of all wave numbers, but it can be argued that
the higher wave numbers will not be critical in the parameter range of interest. We
refer the interested reader to [18] and here justify investigation of only a finite number
of wave numbers by comparison with the experimental results. A 25 x 25 grid was
used for the calculations of all curves shown.

In Figure 6.3, the curve that separates the axisymmetric regime from the non-
axisymmetric regime is plotted. To the left of this curve, the axisymmetric solution is
linearly stable (to perturbations of all wave numbers), while to the right, it is unstable.
Along this curve it can be seen that there are transitions of the critical wave number.
These transitions occur at intersections of the neutral stability curves and correspond
to the double Hopf bifurcation points, i.e., at these points there are two complex
conjugate pairs of eigenvalues with zero real parts. Also plotted on Figure 6.3 is
the experimentally observed transition curve taken from Fein [4], with critical wave
number transitions. This is the curve where a transition from the axisymmetric to
steady wave flow was observed. All curves are plotted on a log-log graph of the Taylor
number T versus the thermal Rossby number R (see Section 2).

Linear analysis reproduces many of the experimental observations. By inspection
of Figure 6.3, it can be seen that there is a good correspondence between the numerical
and experimental transition curves. It has also been shown, via comparison with
experimentally measured wave speeds at the transition, that the imaginary parts of
the eigenvalues are also in agreement. See [19] for further discussion.

6.3. Double Hopf normal form coefficients: hysteresis. The numerical
results are presented in Table 6.3. Included are the locations of the double Hopf
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F1G. 6.1. The azisymmetric solution: (a) u the fluid velocity in the radial direction, (b) v the
fluid velocity in the azimuthal direction, (c) w the fluid velocity in the vertical direction, and (d)
T the deviation of the temperature of the fluid from AT (r — ro/R) + Ta. This solution is for the
N = 25 case and is observed at the (mi,m2) = (6,7) double Hopf point, where Q@ = 0.5927 and
AT = 0.6950.

bifurcation points and the values of the normal form coefficients, as well as the values
of the imaginary parts of the critical eigenvalues at the bifurcation point. The double
Hopf points are labeled in terms of the associated critical wave numbers m; and ms.
For all double Hopf points, a = —1, b < 0, ¢ < 0 and d = —1, and the condition
A = ad — be < 0 is also satisfied.

The dynamics are found from an investigation of the fixed points of the equations
obtained by ignoring the 6; in the normal form equations (4.20). To lowest order, the
f; equations add a constant rotation for each corresponding dimension. See [9] for a
complete analysis of the normal form equations (4.20). Here, there are fixed points
when

1. pP1 = pP2 = 0
M1

2. pp=0and p; =p, = a
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F1G. 6.2. Neutral stability curves are plotted for the wave numbers m = 3 to m = 8. The
curves are calculated by finding the parameter values where for each m, the eigenvalues of (4.6) all
have negative real part except one with zero real part. The curves are plotted on a log-log graph of
thermal Rossby number versus Taylor number.

3. pp=0and pp =p, = ﬁ_il

—d b —
4 py = pgT) _ / u1A+ o2 and py = pgT) _ fep Aauz

where A = ad — bc and with the condition that the quantities inside the square root
signs must be positive.

Fixed point (1) is a fixed point of the normal form equations for all values of
the parameters. By inspection of the normal form equations (4.20), it is fairly easy
to see that, regardless of the values of the coefficients, for small p; and p2, p1 and
P2 will have the same sign as p; and pa, respectively. This means that solution (1)
will be stable if both p; and ps are negative and unstable if either one is greater
than zero. In the fluid annulus, this solution corresponds to the steady axisymmetric
flow. Fixed points (2) and (3) correspond to periodic solutions of the normal form
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F1g. 6.3. Transition curves for theory and experiment delineating the azisymmetric from the
non-azisymmetric regimes. The critical wave number transitions (double Hopf bifurcation points),
labelled as (m1, m2), are also plotted along the curve.

equations and exist when p; > 0 and ps > 0, respectively (because we have a = —1
and d = —1). In the fluid, these solutions correspond to non-axisymmetric, steadily
rotating waves. The fixed point (4) corresponds to a 2-torus for the normal form
equations and exists when (—dpy + bus) /A > 0 and (cu1 —aps) /A > 0. Because
we have A < 0, a=—-1,b< 0, ¢c <0 and d = —1, the 2-torus exists in the wedge
in (p1, o) parameter space given by dui /b < pa < cpa/a, p1 > 0, pa > 0. These
solutions correspond to modulated wavy flow in the fluid.
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TABLE 6.1

Numerical results for double Hopf bifurcation points. a = —1 and d = —1 for all N. N is
number of grid points on one side, (0, ATo) is the location in parameter space where the bifurcation
occurs, w1 and wa are the imaginary parts of the eigenvalues at (o, ATp) and a,b,c and d are the
normal form coefficients.

21

| N | mi, M2 | QO | ATO | —Ww1 —Ww3 || b & |
30| 3,4 1.025 | 12.76 | 2.320-10=2 | 3.305-10"2 [ -1.0051 | -2.362
40| 3,4 1.030 | 12.93 | 2.514-10"2 | 3.632-10~2 | -0.9720 | -2.651
50 | 3,4 1.034 | 13.04 | 2.560-10=2 | 3.712-10=2 | -0.9813 | -2.723
30 4,5 [0.7313 | 3.772 | 1.450-10=2 | 1.936-102 | -1.332 | -2.273
40 | 4,5 [0.7271 | 3.795 | 1.508-10"2 | 2.018-10"2 | -1.327 | -2.367
50 | 4,5 | 0.7276 | 3.840 | 1.533-10"2 | 2.053-10~2% | -1.324 | -2.414
20 5,6 [ 06354 1.543 | 7.946-10~3 | 1.039-102 | -1.360 | -2.134
30| 5,6 | 0.6102] 1.490 | 8.462-10~2 | 1.091-10=2 | -1.470 | -2.187
40| 5,6 | 06048 | 1.502 | 8.721-10=% | 1.124-10"% | -1.483 | -2.237
50 | 5,6 | 0.6036 | 1.517 | 8.867-10"% | 1.141-10~2 || -1.488 | -2.265
20 6,7 [0.6117 [ 0.6972 | 3.711-10=3 | 4.960-103 | -1.473 | -2.253
30 6,7 |0.5838 | 0.6944 | 4.046-10"3 | 5.398-10° | -1.532 | -2.256
40 | 6,7 | 0.5757 | 0.7008 | 4.217-10~2 | 5.611-10=3 | -1.556 | -2.269
50 | 6,7 | 0.5727 | 0.7071 | 4.317-10"3 | 5.735-103 | -1.568 | -2.277
20 7,8 [0.8699 [ 0.3959 | 8582-10~% [ 1.161-103 [ -1.628 [ -2.433
30| 7,8 [0.7925 [ 0.3758 | 9.294-10~% | 1.283-10~3 || -1.616 | -2.408
40 | 7,8 [0.7652 | 0.3713 | 9.750-10~% | 1.356-10"% | -1.625 | -2.404
50| 7,8 | 0.7505 [ 0.3704 | 10.09-10~* | 1.410-1073 | -1.631 | -2.399
20| 8,7 1.603 | 0.4692 | 4.010-10~* | 3.493-10~% | -2.309 | -1.748
30| 8,7 1.635 | 0.4581 | 3.748-10~* | 3.284-10~* | -2.274 | -1.723
40| 8,7 1.655 | 0.4559 | 3.602-10~* | 3.156-10~*% | -2.270 | -1.722
50 | 8,7 1.670 | 0.4556 | 3.501-10~* | 3.064-10~*% | -2.268 | -1.722
20 7,6 2.226 | 0.4625 | 1.5529-10"* | 1.3613-10"* || -2.311 | -1.734
30| 7,6 2.231 | 0.4457 | 1.4406-10~* | 1.2289-10~* || -2.309 | -1.719
40| 7,6 2.250 | 0.4391 | 1.3228-10~% | 1.1086-10~* || -2.310 | -1.718
50| 7,6 2.269 | 0.4356 | 1.2318-10~% | 1.0177-10~* || -2.310 | -1.717
20 6,5 3.843 | 0.2559 | 2.064-107° | 2.083-10° [ -2.376 | -1.746
30| 6,5 4.696 | 0.1718 | 2.278-107° | 2.198-10° || -2.350 | -1.733
40| 6,5 5.886 | 0.1148 | 2.257-107° | 2.165-107° | -2.336 | -1.729
50 | 6,5 7.449 10.0764 | 2.315-107° | 2.220-10~° || -2.330 | -1.730
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A linear stability analysis of fixed points (2), (3) and (4) gives the local behaviour
near the bifurcation points. See Figure 6.4 for the bifurcation diagram. The results
indicate that both of the bifurcating waves, corresponding to the fixed points (2) and
(3), are stable in the wedge where the 2-torus exists. Thus, the boundaries of the
wedge po = duy /b and ps = cuy/a give the boundaries of the region of bistability
of the wave solutions. Furthermore, because only one of the bifurcating waves loses
stability on each of the boundaries of the wedge, there is hysteresis. The results also
indicate that the 2-torus is always unstable. In Figure 6.6, the approximate boundaries
of the region of bistability are drawn. The bifurcation diagram in Figure 6.5 shows
the hysteresis that occurs when a one-parameter path through the parameter space
crosses the region of bistability. The parameter s could be either Q or AT or a
function of both, depending on particular circumstances. An example of such a path
is indicated on Figure 6.4.

M2 H2=CHay g

T o

A A//

Sy

M1

Fi1G. 6.4. The two-dimensional bifurcation diagram. The diagram is displayed using the real
parts of the critical eigenvalues p1, pu2 as the bifurcation parameters. The regions of different
character are separated by solid lines. In each region, the corresponding phase portrait is drawn,
where the phase portraits are presented in p1, p2 coordinates. The 01 and 02 equations in (4.20)
add a constant rotation to each coordinate. The dotted line indicates a possible one-parameter path
which will lead to hysteresis. The bifurcation points along this path are indicated by so, s1, s2 and
s3 (see Figure 6.5).

Quantitative verification of the predicted hysteresis is not currently possible due
to the lack of available experimental data for the specific annulus studied here. Fur-
thermore, although the extent of hysteresis has been mapped for other transitions in
other regions of parameter space (see e.g. [5], [14], [16], and [4]), there is relatively
little data concerning the hysteresis that occurs in the transitions between steady
waves near the axisymmetric regime. Also, many experimental results in the steady
wave regime are quoted in terms of the wave number that is most likely to occur. Our
analysis cannot predict this.

Concerning the convergence of the numerical approximations, it can be seen that
the numerical differences between the normal form coefficients at the different levels
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F1G. 6.5. The one-dimensional bifurcation diagram depicting the bifurcation observed along the
path indicated with the dotted line in Figure 6.4. The bifurcation points are labelled as so, s1, s2
and s3. ||U|| is a measure of the size of the solution and s is the bifurcation parameter.

of discretization decrease with increasing discretization level (see Table 6.3). This
is an indication of convergence. However, it appears that IV is not large enough to
make an estimation of the order of convergence. Yet, the differences in the normal
form coefficients at different N are quite small, which is evidence that these results
are at least qualitatively accurate. To say this with more certainty, the analysis
must be performed using higher levels of discretization. This was not possible with
the available resources. Because the results accurately reproduce the experimental
results, we conclude that the approximations are satisfactory.

The results for the (myi,m2) = (3,4) and (my1,m2) = (4,5) double Hopf points
are not complete (see Table 6.3). For these wave number pairs with N = 20, the
eigenfunctions are not well resolved, and the eigenvalues are inaccurate. Also, the
evidence of convergence of the normal form coefficients (see Table 6.3) is weaker for
the double Hopf points at higher differential heating. It seems that the increase in
numerical difficulty is not caused by the difficulty of resolving the boundary layer in
the axisymmetric solution, but rather by the difficultly of resolving the eigenfunctions
in the interior of the domain.

6.4. The eigenfunctions: bifurcating wave form . An example of an eigen-
function is plotted in Figure 6.7. This is the eigenfunction with wave number m = 6
that is observed at the (m1,m2) = (6,7) double Hopf point (see Table 6.3). From
equation (4.20), the periodic orbit corresponding to the wave with wave number my,
to lowest order in yy, is given by

(6.1) p1 :\/_Tm+0(”1)’

6y =wit+0 (),
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Fi1Gc. 6.6. Theoretical transition curve between the azisymmetric and the non-azisymmetric
regimes including the boundaries of the region of bistability. The boundaries are the solid lines
attached to the double Hopf points. For each double Hopf point, the area between the boundaries is
the region where there is bistability of wave solutions.

or in terms of 21,

(6.2) 2= _T/“e"‘“t +0(m),

which describes a near-circular periodic orbit. The periodic orbit corresponding to
the wave with wave number ms is given by a similar expression. In terms of the vari-
ables of the perturbation equations (4.2)—(4.4), to lowest order, the periodic solution
correspoding to (6.1) is given by U = [u,T] = 2, ®; +Z,®; = Re (21®;). That is,

/_ 1 . .
14 ezwltq,ml ezmlcp
a

_Tm [*i’:nl cos (myp + wyt) — B, sin (myp + wlt)] + 0 (1),

(6.3) U=Re + O (1)
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i.e. a rotating wave, where & = &, "%, and where ®7  and ®{ _ denote the

real and imaginary parts of ®,,,. In terms of the variables of the original equa-
tions (3.5)—(3.7), the solution U corresponds to deviations from the axisymmetric
solution [u(®,T®] of the same equations. Also, if ¢ is fixed, then at different ¢,
the periodic solution is a different linear combination of <i>fm and @ﬁnl, and so, the
form of the eigenfunction gives the form of the bifurcating wave, to the lowest order
of approximation. That is, the approximation is valid for parameter values that are
close to the axisymmetric-to-wave transition curve.
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Fi1G. 6.7. An example of the radial and vertical dependence of an eigenfunction with m = 6 and
N=30 at Q@ = 0.5838 and AT = 0.6944: (a) real part, (b) imaginary part, and (c) amplitude of the
radial component of the eigenfunction, (d) real part, (e) imaginary part, and (f) amplitude of the
azimuthal component of the eigenfunction, (g) real part, (h) imaginary part, and (i) amplitude of the
vertical component of the eigenfunction, (j) real part, (k) imaginary part, and (1) amplitude of the
temperature component of the eigenfunction. That is, the actual components of the eigenfunctions
are the plotted functions multiplied by ™% .
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The form of the bifurcating wave is consistent with previous results. Measure-
ments, from experiments with the same annulus geometry as is used for our results,
indicate that the temperature has a maximum at mid-radius mid-depth [4]. Further-
more, the coarse features of the wave form are consistent with the detailed exper-
imental and numerical results of [15], as well as the numerical results of [27], even
though different annulus geometries, waves with different dominant wave numbers,
and waves far from the axisymmetric-to-wave transition curve, are studied. This in-
cludes (see Figures 5 and 6 of [15]) the radial dependence of the Fourier amplitude
of the dominant wave number of the radial velocity at various heights, and the radial
dependence of the Fourier amplitude of the dominant wave number of the azimuthal
velocity at mid-depth. In our case, the square of the Fourier amplitude is given by

N2 /. \2
(@Inj) + (Qinj) . See also Figure 8 in [27] for the vertical dependence of the devi-

ations from the azimuthally averaged flow of both temperature and velocity for the
(numerical) wave forms in an annulus without a rigid lid. However, compared to our
bifurcating waves (6.3), the waves of these experimental and numerical studies show
a relative decrease in the amplitude at mid-radius of the azimuthal average of the
azimuthal velocity (i.e. the wave number zero Fourier component of the azimuthal
velocity). In our case, the azimuthal average to first order is given by the axisymmet-
ric solution [u(®, p(®), T©)] (see Figure 6.1). The waves studied in [15] and [27] are
observed in regions of parameter space far from the axisymmetric-to-wave transitions,
where the higher-order terms in (6.3), which we have ignored, may be important. Al-
though these higher-order terms do not produce a significant qualitative change in
the deviations from the azimuthally averaged flow, they do seem to produce a small,
but noticeable, qualitative difference on the the azimuthal averaged flow itself. In
order to study this effect, the bifurcating waves (6.3) would have to be calculated for
parameter values far from the transition curve.

7. Conclusion. In this paper, we study the transitions from axisymmetric steady
solutions to non-axisym-metric waves in a Navier-Stokes model of the differentially
heated rotating annulus experiment. An analytical-numerical center manifold reduc-
tion is used to analyze the double Hopf bifurcation points that occur at this transition.
The results, that are obtained by numerically approximating the coefficients of the
normal form equations, show that there are stable waves that bifurcate from the
axisymmetric solution via a Hopf bifurcation, and that hysteresis of the bifurcating
waves occurs near critical wave number transitions. Associated with the hysteresis is
the existence of an unstable torus. Approximate boundaries to the region of bistability
are drawn. The results are consistent with laboratory experiments, which supports
not only the validity of the model, but also the validity of the analysis. Although the
convergence of the numerical approximations cannot be proven, the evidence of con-
vergence and the correspondence with experimental results supports the claim that
the behaviour, that is predicted by our results, occurs in the full partial differential
equation model.

The behaviour seen in the model of the experiment is qualitatively the same as
that seen in the models of the analytical studies discussed in the first section. This is
very interesting because the models of these analytical studies are simplified models
of atmospheric circulation, and so they are of a very different scale from that of
the experiment. That is, the method of analysis is able to highlight the dynamical
similarity of two geophysical fluid models of vastly different scales. The similarity is
evidence for the usefulness of studying the models of both scales and that both types
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of models incorporate the fundamental properties of differentially heated rotating
systems.

The study presented here is a beginning, and there are many possible directions
future work could take. The models of atmospheric circulation of the analytical stud-
ies, mentioned above, are quite simplified. The success of the numerical computations
of the present study gives confidence that analysis of this type could be applied to
more realistic atmospheric models, such as that presented in [3]. Also, in the analysis
of the annulus experiment, there is the possibility of resonant behaviour close to an
experimentally observed ‘triple-point’, which is a point in parameter space that is
shared by three regimes (the axisymmetric, the wave and the irregular regimes; see
Figure 2.2). The (my, m2) = (6, 5) double Hopf point, which occurs in a similar region
in parameter space as the experimentally observed triple-point, is close to being reso-
nant, i.e. the imaginary parts of the two complex conjugate pairs of eigenvalues with
largest real part are nearly equal. Thus, a strongly resonant double Hopf bifurcation
might be found by varying a third parameter, and in this case, the dynamics found
close to the resonant bifurcation may explain the existence of the triple-point.

Another interesting direction would be to attempt to follow the bifurcating so-
lutions as the parameters move away from the bifurcation point. Two interesting
flows that are observed in the annulus (both experimentally and numerically) are
amplitude vacillation and wave dispersion [14], [22]. It has been hypothesized that
the mechanism responsible for both of these flows is an interaction of two waves via
a stable torus, where amplitude vacillation results from an interaction of two waves
of the same dominant azimuthal wave number, while wave dispersion results from an
interaction of waves with different dominant azimuthal wave numbers ([23], [21]; see
also [5] for experimental evidence).

The unstable torus, that we have shown to exist in the steady wave regime, is such
an interaction of two waves with different wave numbers. Thus, it is possible that if
the unstable torus could be followed further into the steady wave regime, a bifurcation
to a stable torus (and wave dispersion) may be discovered. Alternatively, if the stable
periodic orbits corresponding to the wave solutions could be followed further into the
wave regime, a bifurcation to a stable torus might occur, which may result in the
discovery of either amplitude vacillation or wave dispersion. At the moment, such a
study seems computationally prohibitive. However, if the curvature of the annulus
is neglected, a symmetry of the resulting system leads to a bifurcation to a steady
solution as opposed to a periodic orbit. In this case, the computation may be possible.

The comparison of theoretical and experimental results that took place in the
investigation of the Taylor-Couette flow led to many more discoveries about the sys-
tem than otherwise would have occurred. The work presented here begins such a
comparison for the differentially heated rotating annulus flow. Some of our results
are confirmed by comparison with experiments, and some predictions, concerning the
boundaries of the region of bistability, have yet to be verified. For future work, we
expect that the use of such techniques will lead to further discovery of new dynam-
ics, both theoretical and experimental, which in turn will lead to a better general
understanding of differentially heated rotating fluid systems.
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