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Abstract

We study two chemical models for pattern formation in growing
plant tips. For hemisphere radius and parameter values together opti-
mal for spherical surface harmonic patterns of index | = 3, the Brus-
selator model gives an 84% probability of dichotomous branching pat-
tern and 16% of annular pattern, while the hyperchirality model gives
88% probability of dichotomous branching and 12% of annular pat-
tern. The models are two-morphogen reaction-diffusion systems on
the surface of a hemispherical shell, with Dirichlet boundary condi-
tions. Bifurcation analysis shows that both models give possible mech-
anisms for dichotomous branching of the growing tips. Symmetries of
the models are used in the analysis.



1 Introduction

Much of the growth of plants occurs by the elongation of cylindrical stalks or
roots by action chiefly at a dome-shaped tip, for which a hemisphere is a rea-
sonable working approximation for mathematical study. Plant development
often involves more complex events at the growing tips. Many such events
are branching processes which break circular symmetry. Among these, one
of the commonest events is dichotomous branching. It is considered to be
probably the oldest kind of branching, intrinsic to the evolution of multicel-
lular plants (Zimmermann, 1952). In plant embryos, it generates the pair of
seed leaves that characterizes the very large class of flowering plants there-
fore called dicotyledons. It occurs also in some unicellular plants of large
size, that develop complex shapes (Holloway and Harrison, 1999; Dumais
and Harrison, 2000). (These seem rather more comparable to plants than to
other protists in their development.)

The morphogenetically active region is not a solid hemisphere. In unicel-
lular cases, it is the cell surface (membrane and wall) or possibly a thin layer
of cytoskeleton immediately inside the membrane. In multicellular cases, it
is a single outermost layer of cells, the tunica, of the growing tip called an
apical meristem. For both, a reasonable approximation is a hemispherical
shell, the thickness of the active region being much less than its diameter.

No mechanism for the symmetry-breaking at a growing tip is definitely
known and accepted. Various mechanisms have been proposed for pattern
formation in a thin superficial domain starting with circular symmetry: me-
chanical buckling (Green et al., 1996); mechanochemical interactions (Good-
win and Trainor, 1985); and chemical reaction-diffusion patterning, follow-
ing Turing’s (1952) postulate that morphological patterns follow correspond-
ing prepatterns in the concentrations of certain chemical substances (mor-
phogens). In Turing’s theory, the patterns arise from catalytic and inhibitory
reactions of two morphogens, both of which diffuse, but at different rates.
Elaborations of this theory, as well as examples, can be found in the books of
Nicolis and Prigogine (1977), Meinhardt (1982; 1995), and Harrison (1993).
Work of the Brussels and Bordeaux groups relevant to diverse patterns ob-
served in a chlorite-iodide-malonate reaction, a non-biological system known
to have Turing dynamics, can be found, e.g. in Verdasca et al. (1992) and
Dewel et al. (1995).

In that reaction, diffusivities substantially less than the narrow range in
aqueous solutions arise because of the use of a gel and of a large molecule



in the starch-iodine indicator. In living systems, a wide range of diffusivities
is always possible. For instance, in the plant growth we are considering, for
unicellular cases some chemical species may be bound to the cell membrane,
and for multicellular cases diffusion may be through the narrow cell-to-cell
channels known as plasmodesmata. We have used diffusivity ratios of 10
(subsection 3.2) and 12.5 (subsection 3.3). Widely different values of this
ratio have been used in published work, ranging at least from 5 [see p. 273
of Harrison (1993)] to 100. The pattern-forming property is usually not very
sensitive to this value provided that it is substantially greater than 1, except
that very high values tend to give some disorder in patterns of many spots
on a plane (Lacalli, 1981; Holloway and Harrison, 1995).

In this paper, we consider the application of reaction-diffusion theory to
dichotomous branching at a growing tip. The study arose from a problem
encountered in taking computational work from two to three spatial dimen-
sions. In two dimensions, Holloway and Harrison (1999), following Harrison
and Koldr (1988), successfully generated repeated dichotomous branching
of a loop, by computer modelling of a reaction-diffusion mechanism. Cell
outlines were computed matching several diverse shapes in the genus Mi-
crasterias of unicellular algae. But if a patterning process on a semicircular
loop is intended as a cross-section of a hemispherical shell, the appearance
of two concentration maxima on the semicircle is ambiguous. It could cor-
respond to two high-concentration patches on a hemisphere, the pattern to
generate dichotomous branching. Or it could represent a section through an
annular high-concentration region on the hemisphere. In the latter, circular
symmetry has not been broken. But if the conversion of chemical pattern into
morphology is that high concentration gives high rate of surface growth, an
annular pattern would lead to flattening of the dome shape of the tip. This
is sometimes observed in plants, and is another event needing explanation.

A reaction-diffusion pattern is commonly envisaged as arising out of a uni-
form distribution of the morphogens, that being a homogeneous steady state
solution of the dynamic equations. In the present work, we consider that
state to be maintained permanently at the boundary of the growing tip, i.e.
there is a Dirichlet boundary condition at the equator of the hemisphere. Lin-
earization of Turing-type mechanisms about the homogeneous steady state
shows that the early stages of pattern formation should be a simple compe-
tition between linearly independent harmonic waveforms appropriate to the
geometry to be established according to their eigenvalues, which are expo-
nential growth rates of amplitudes. For the hemisphere, the waveforms are



spherical surface harmonics Y;,,. For any fixed radius of hemisphere and
values of kinetic parameters, all ¥;,, of the same index [ and satisfying the
boundary conditions should have the same growth rate. At [ = 3, this means
that annular pattern (m = 0) and pattern for dichotomous branching (the
real linear combinations of m = +2) should start growing at equal rates. But
what happens as the amplitudes grow and linearization is no longer a good
approximation?

As a start to three-dimensional modelling of patterning and growth, a
study was done (Harrison et al., 2001) comprising a large number of compu-
tations (to apparent steady state) for each of three different reaction-diffusion
models having substantially different nonlinearities, on a hemispherical shell
domain of fixed size, optimal for [ = 3. For all three models, the major-
ity of the final patterns were for dichotomous branching, but a substantial
minority (e.g. about 20% for the Brusselator model) ended with annular pat-
tern, and one model gave another variant also [tabulation, (Harrison et al.,
2001)]. These results led to the bifurcation analysis reported here for two
of the models. These are the Brusselator (Prigogine and Lefever, 1968) and
the hyperchirality system of Harrison and Lacalli (1978). The Brusselator is
widely used, and represents a simple, plausible and generic model of reaction-
diffusion pattern formation. The hyperchirality system is representative of
a different class of models, which possess an additional mathematical sym-
metry. This symmetry turns out to change some features of the patterns
that arise, e.g. in infinite two-dimensional planar surfaces favouring stripes
over spots where the Brusselator favours spots. [Computations with radii
optimal for [ > 3, reported in (Harrison et al., 2001), showed that, for the
hyperchirality model, complex patterns appear that seem to be showing the
striping tendency. For [ = 2, but on the complete sphere, see (Hunding and
Billing, 1981; Hunding and Brons, 1990).]

In addition to the contrast in mathematical symmetry, the two models
exemplify the main contrast in types of chemical mechanism for reaction-
diffusion patterning. The Brusellator is an activation-depletion mechanism;
the hyperchirality model is an activation-inhibition mechanism [terminology
devised by Meinhardt (1982) and used by Harrison (1993)].

The bifurcation analyses reported here have confirmed, at least for dy-
namic behaviour close to the boundary of the Turing instability, the statis-
tical result of the computations as mentioned above.



2 Models

2.1 The Brusselator

In the Brusselator there are two morphogens, one an activator and the other
a substance the depletion of which is an effective inhibition, whose concen-
trations are labelled X and Y. These morphogens diffuse, with the depleted
substance diffusing faster than the activator. The morphogens represent in-
termediates in a reaction whose initial reactants have concentrations A and
B. The rate equations for the morphogens are

X
%_t — DxV2X +aA — dX — bBX + ¢X?Y,
Y
aa_t = DyV?Y +bBX — cX?Y, (1)

in a hemispherical surface H, of radius r, where V2 is the Laplacian operator
restricted to ‘H,., a, b, ¢, d are rate constants, and Dy, Dy are diffusion
constants with Dy < Dy . The initial reactants are assumed to be present in
sufficiently large quantities throughout the reaction that their concentrations
A and B may be considered constants in (1). The chemical concentrations
X, Y, Aand B are often scaled so that the rate constants are all unity, but
we prefer to show explicitly the dependence of the rate equations on the rate
constants. This system has a patternless steady solution

aA dbB

- Y, = — 2
d’ 07 caA )
with uniform morphogen concentrations throughout the hemispherical sur-
face ‘H,.. Defining U, V' as deviations from the patternless solution, by

X():

and expressing (1) in terms of U and V' we obtain
dbB 2caA
%—ZZDXvQU—FklU—FkQV‘Fa—AUQ—F «“ UV+CU2V,
dbB 2caA
a_V = DyV?V + kU + k,V — —U? — «“ UV—CUQV: (4)

ot aA

in H,, where

ca?A? a2 A2
klsz_d, k2: P2 kgz—bB, k4:—k2:— oz




On the boundary dH, which is the equator of the hemispherical surface, we
assume that the morphogen concentrations X and Y agree with their values
for the patternless solution (2), thus the boundary conditions for (4) are the
homogeneous Dirichlet conditions

U=0, V=0 on OH,. (5)

2.2 The hyperchirality model

The hyperchirality reaction-diffusion system (Harrison and Lacalli, 1978;
Harrison 1993) arose from the fact that biological molecules are usually of
a single handedness, but are used to build structures of both handednesses,
such as the right and left hands. It was postulated that two handednesses
might appear first in such things as two modes of attachment of a supramolec-
ular structure (e.g. protein tetramer) to a membrane, to make “Flatland”
enantiomers of a morphogenetic activator substance with concentrations Xp
and X, interacting with a similarly “hyperchiral” inhibitor substance, with
concentrations Yp and Y;. However, all that is really required is that there
are four morphogens which reduce effectively to two, due to morphogens
with the same kinetics grouping into two pairs. This latter requirement is
biologically plausible [see the discussions of Harrison (1993) and of Lacalli
(1990)]. Like the Brusselator, the hyperchirality system is capable of produc-
ing a wide variety of patterns, but the presence of symmetry in the kinetics
can affect the type of patterns produced. For example, in an infinite two-
dimensional plane, Lyons and Harrison (1991) found that the hyperchirality
system tends to produce stripes, while the Brusselator tends to produce spots
under analogous conditions [discussion of patterns including stripes, spots
and honeycomb-like hexagonal arrays can be found in (Dewel et al., 1995)].
The effects of symmetry on pattern selection in the plane is discussed by
Golubitsky et al. (1988), where the motivating application is to convection
in fluids, but the underlying mathematics is the same for a large class of
continuum models including reaction-diffusion sytems.

The rate equations for the morphogens in the hyperchirality system are

X
a@tD = DxV?Xp + kXXA2X12) + kXYA2YL2
— (XpA?/Px)[kxx(Xp + X7) + kxy (Y5 + Y1),
0X
8—tL = DxV2X[ + kxxA2X? + kyy A%Y2



— (XL A%/ Px)[kxx (XD + X7) + kxy (Y5 + Y1), (6)

Y,
8—tD = DyV*Yp + kyxB*X} — (YpB?/ Py )kyx (X} + X}),
Y,
S = Dy VYo kyx B2XE — (VLB Py )kyx (X + X7),

in ‘H,, where kxx, kxy, kyx are rate constants, Dy, Dy are diffusion con-
stants, A, B are concentrations of initial reactants, considered constants, and
Py = Xp+ Xy, Py = Yp+Y] are also considered constants. The patternless
steady solution corresponds to the racemic mixtures

Xp =Xy, Yp=Yr. (7)
Defining U and V as the differences
U:XD—XL, V:YD_YLa (8)

and subtracting the second equation in (6) from the first, and the fourth
equation from the third, we obtain

ouU

= DxV?U + (ki + kup)U + koV — k1, U? — ksUV?,

ov

= Dy V2V + k3U + k,V — kgU?V, (9)

in H,, where
k1o = kxxA*Px /2, ki = —kxy A*PZ /2Py,
ky = —kxyA*Py, ky=kyxB?*Px, ky=—kyxB*P%/2Py,

ks = kxyA?/2Px, k¢ = kyxB*/2Py.

On the boundary at the equator of the hemispherical surface we take homo-
geneous Dirichlet conditions

U=0, V=0 on OH,. (10)



2.3 Stability and bifurcation

To study the onset of pattern formation, we begin with a linearized stability
analysis of the patternless steady solution U = 0, V' = 0 for both models.
On the hemispherical surface, it is conventional to take as spatial variables
the angles # and ¢, where 0 is the co-latitude and ¢ is the longitude. Then U
and V can be expanded in series of the familiar spherical surface harmonics
Yi.m(0,¢), where [ = 0,1,2,... and m is an integer with |m| < [. Because of
the homogeneous Dirichlet boundary conditions (5) and (10), the expansions
are restricted to only those surface harmonics that satisfy the boundary con-
dition at the equator: Y;,,(7/2,¢) = 0 for all ¢. Among all the values of [,
[ = 3 is the lowest value for which linear combinations of Y, give prepat-
terns for dichotomous branching. In our analysis we choose parameter values
so that all [ with [ # 3 correspond to stable infinitesimal perturbation modes
of the patternless steady state that decay back to the patternless state, while
[ = 3 corresponds to slightly unstable perturbation modes that grow away
from the patternless state. For the same parameter values in the nonlinear
models, we expect patterns to appear that resemble linear combinations of
the Y3 ,,. The three surface harmonics for [ = 3 satisfying the homogeneous
Dirichlet boundary condition at the equator are

Y50(0,¢) = 200539 — gcosﬁ

and '
Ys510(0,0) = 152 gin% 6 cos 6.

In order to determine the specific steady patterns that onset in the two
models, we reduce both the Brusselator and hyperchirality reaction-diffusion
problems to nonlinear bifurcation equations of the form

& = Omaat + B122 4+ Byzz + Cia® + Cha 2z,
3 = Opman? + Bsxz + Cyx?z + Cy2%2, (11)

7 = Opmae? + Bsxz + C52°z + C47° 2,

where the real parameter o,,,, is the common growth rate of the fastest grow-
ing (I = 3) perturbation modes obtained from the linearized stability analysis
of the patternless solution. The variable x is real and represents the ampli-
tude of the Y3, component of a solution of the reaction-diffusion problem,



and z is complex and it represents the complex amplitude of the Y35 compo-
nent of the solution. Overbars denote complex conjugates, thus the variable
Z represents the complex amplitude of the Y3 _s component of the solution.
The coefficients By, Bs, Bs, C, Cs, C5 and C} are real numbers whose values
we must determine. Equilibrium solutions of the bifurcation equations (11)
correspond to steady morphogen patterns on the hemispherical surface for
the Brusselator or hyperchirality reaction-diffusion problems.

Symmetry plays an important role in the analysis of the patterns that
form in both models. In a generic system, with no symmetry, only one lin-
early independent mode would lose stability at a particular set of parameter
values. Symmetry is responsible for three linearly independent modes losing
stability with the same growth rate o,,,,. Perhaps the most obvious symme-
try of both models is the symmetry with respect to rotation about the polar
axis of the hemisphere. There is also symmetry with respect to reflections
across vertical planes that contain the polar axis. These symmetries are used
to simplify the analysis of the bifurcation equations. Another symmetry,
whose effects are less obvious, is present in the hyperchirality model. For
homogeneous Dirichlet boundary conditions, the fact that (9) has only cubic
nonlinearities allows the use of results of Field et al. (1991) on bifurcations on
hemispheres. The domain of the problem can be extended mathematically
from the hemispherical shell to the spherical shell, and the solutions of the
resulting extended problem that are odd with respect to the equator can be
found. By restricting such solutions to the upper hemisphere, we recover all
solutions to the original problem, but we can exploit the richer symmetry
structure of the problem with the spherical shell domain.

Analysis of the bifurcation equations (11) shows that both models pro-
duce stable morphogen prepatterns for dichotomous branching. The details
of patterns of chemical concentrations differ somewhat between the mod-
els, and furthermore the Brusselator model predicts that stable dichotomous
branching patterns can occur below the threshold of instability of the pattern-
less solution. In addition, both models allow the possibility of no branching
when the patternless solution loses stability. This is because both models
have stable annular patterns as well as stable dichotomous branching pat-
terns. In both of the models most initial conditions to lead to dichotomous
branching, while a small but significant minority of initial conditions lead to
failure to branch (annular pattern). We estimate for both of the models the
probabilities that a growing tip will branch dichotomously or fail to branch.



3 Bifurcation analysis

3.1 Bifurcation equations

The reduction of time-dependent reaction-diffusion problems to bifurcation
equations is standard. Among the various general methods available for
reaction-diffusion systems, we mention perturbation expansions using the
Fredholm Alternative [e.g. (Nicolis and Prigogine, 1977)], Liapunov-Schimidt
reduction [e.g. (Golubitsky and Schaeffer, 1985)] and centre manifold reduc-
tion [e.g. (Carr, 1981)]. We prefer centre manifold reduction, because the
method has an appealing geometric interpretation, and it preserves sym-
metry and local dynamics. In particular, the stability of solutions can be
determined directly from the bifurcation equations. We do not give details
here, but a rigourous justification for the method applied to reaction-diffusion
systems can be found in (Carr, 1981).

In this section we discuss the centre manifold reduction of the reaction-
diffusion problems (4)—(5) and (9)—(10) to the bifurcation equations (11)
governing the dynamics. More technical details of the procedure are given
in the Appendix. In each system we suppose that all except one of the
parameters are fixed, and consider the remaining parameter as a control
parameter, which we denote by A. Then the model is written in abstract
form as a nonlinear evolution equation

U=AMNU+B\U,U)+C(\U,U,U), (12)

where the dot denotes differentiation with respect to t, the vector function
U= (U9,,t),V(0,¢,t))T for each t > 0 belongs to an infinite-dimensional
space of vector functions whose two components each satisfy the homoge-
neous Dirichlet boundary conditions (5) or (10), and for each A, A(\) is
a linear differential operator, sometimes called the Turing operator in the
context of reaction-diffusion systems, B(J\;-,+) is a bilinear or quadratic op-
erator, and C(J;-, -, +) is a trilinear or cubic operator. For the hyperchirality
system (9) there are no quadratic terms, thus B = 0. This introduces ad-
ditional symmetry in the hyperchirality system. For both the Brusselator
and hyperchirality systems, one solution of the evolution equation (12) is
the origin U = 0 of the space of vector functions, which corresponds to the
patternless steady solution.

The first step of the reduction is to determine the linearized stability
of the patternless steady solution, by solving the linear partial differential

10



equation eigenvalue problem for the eigenvalues or growth rates o,
ANU = oU, (13)

where U = (U(0,6),V(0,¢))". This can be accomplished by expanding
both components of U in series of the spherical surface harmonic functions
Yim(0,¢). If all eigenvalues o are real and negative or are complex with
negative real parts, then under the linearized dynamics all perturbations of
the patternless solution decay exponentially back to U = 0, as t increases.
In this case it can be shown that U = 0 is an asymptotically stable solution
of the nonlinear evolution equation (12). If any eigenvalues are positive
or have positive real parts, then perturbations that are linear combinations
of the corresponding eigenfunctions grow exponentially under the linearized
dynamics, and it follows that U = 0 is unstable.

In fact, we use parameter values such that all eigenvalues are real, and
we denote the largest eigenvalue, or the growth rate of the fastest growing
modes, by 4. We find a critical parameter value \g such that, ¢) when
A < Ao all eigenvalues are negative and in particular o,,,, < 0, i) when
A = )\, there is a zero eigenvalue 0,,,, = 0 and all the other eigenvalues are
negative, and 7i7) when A > Xy and A is close to Ag, there is one real positive
eigenvalue 0,,,; > 0 and the remaining eigenvalues all are negative. We
interpret this situation as the patternless steady state U = 0 losing stability
as A increases through Ag.

For our problems there are three linearly independent vector eigenfunc-
tions, or modes, corresponding to the zero eigenvalue ,,,, = 0 for (13) when
A = Ag. We choose the eigenfunctions and label them as

US,Oa U3,27 U37727

so that each component of Us,, is a constant multiple of the surface har-
monic Y3, (0, ¢), m = 0,£2. The span of these eigenfunctions is the centre
eigenspace

E¢={U°=2U;30+ 2U32+2zU;3_2| z€R,2€C}, (14)

which is three-dimensional.

According to the centre manifold theorem, if the parameter \ is near
its critical value Ao, then the evolution equation (12) has an exponentially
attracting, finite-dimensional local centre manifold of solutions Wy in the

11



infinite-dimensional space of vector functions. This centre manifold Wy,
is tangent to the centre eigenspace E° at the origin of the space of vector
functions when A = )\, and hence is three-dimensional. Because W[, is
locally attracting, most transients for small-amplitude solutions of the full
system rapidly decay and the local long-term dynamics can be predicted if we
know only the dynamics on Wy, which are governed by a three-dimensional
system of first-order ordinary differential equations. In particular, we can
predict the existence and stability of bifurcating steady solutions of (12) for
U near 0, when A\ is near \g. The dynamics on the local centre manifold
W, determine which patterns are selected, as A increases through Ay and
the patternless steady solution loses its stability.

The ordinary differential equations that govern the dynamics on the local
centre manifold W, are the bifurcation equations (11), where higher-order
terms are neglected. Since the last equation in (11) is just the complex
conjugate of the second equation, it is sometimes omitted. In subsections 3.2
and 3.3 we determine the values of the coefficients By, B,, B3, C1, (s, Cj,
Cy in the bifurcation equations (11) for the Brusselator and hyperchirality
models, and hence deduce the bifurcation and stability of steady patterned
solutions.

It is important to consider the effects of symmetry. Both systems of
reaction-diffusion equations together with their hemispherical domains are
invariant under rotations about the polar axis of the hemisphere

(0,0) — (0,¢ +7) (15)
for any angle 7, and under the reflection
(0,9) — (0, —9). (16)

Under rotations (15), the critical eigenfunctions transform as
Uso— Usg, Uz €2 Uszy, Us o e U3 .
while under the reflection (16) they transform as
U3,0 = U3,0, U3,2 = U3,72, U3,72 = U3,2-

Therefore in the centre eigenspace (14) with coordinates (z, z, Z) the rotations
(15) are represented by

(z,2,2) = (1,% 2, e 2), (17)

12



and the reflection (16) is represented by
(x,2,2) — (x, 2, 2). (18)

It is a well-known result in centre manifold theory (Ruelle 1973) that such
symmetries carry through the centre manifold reduction, and therefore (11)
is equivariant under (17) and (18). In fact, the equivariance has already been
used to simplify the form of (11); otherwise many more terms (all of which
must vanish, due to the symmetries) would appear.

The equivariance of the bifurcation equations (11) under the symmetries
(17) and (18) has consequences which help to determine the dynamics. If we
have a solution of (11), then transforming the solution by a rotation (17) or
reflection (18) gives another solution of (11). It then follows that the z-axis
is invariant for (11): solutions starting at ¢ = 0 in the set {z = 0} remain
there for all ¢. Solutions on the z-axis correspond to solutions of the reaction-
diffusion system with circular symmetry, such as annular patterns. Another
consequence is that if there is an equilibrium solution S of (11) with z # 0,
then it is not isolated, but must belong to a continuous circle of equilibrium
solutions, each obtained by a rotation (17) of S. Such equilibrium solutions
of (11) with z # 0 correspond to patterns in the reaction-diffusion system
that do not have circular symmetry, such as dichotomous branching patterns.
These patterns must occur in continuous families, since each pattern can be
rotated any amount about the polar axis by (15) to produce another pattern
in the same family.

3.2 Pattern formation in the Brusselator model

In this subsection we give pattern formation results for the Brusselator model
(4)—(5). We first describe the linearized stability analysis of the patternless
steady state, and then the results of the centre manifold reduction to bifur-
cation equations. The bifurcation equations are analyzed, and the results
are interpreted in terms of patterns for the Brusselator model. The analysis
described here leads to basins of attraction indicating that, starting from ran-
dom noise about the patternless steady state, patterning events should give
dichotomous branching with 84% probability and annular pattern with 16%
probability. Numerical solution of the dynamics (Harrison et al., 2001) fur-
ther from the Turing instability boundary gave, in a set of 103 computations,
82% branched and 18% annular.

13



In the Brusselator equations (4), we fix all parameters except the product
bB of the rate constant b and the chemical concentration B. Then we write
(4)—(5) in the abstract form (12), taking A = bB, and the operators A, B,
C given by

Dx V2 + kU + kyV
o oy ). (19

ksU + (Dy V2 + ky)V

LLULU, + <A (UL Vo + UnV
B(/\;Ul,UQ):( A Y1Y2 d( 1V2 2 1) ’ (20)

AU = (

—ib—fU1U2 - %(Uﬂ/ﬁ + UsV1)

%C(U1U2VE’> + U UsVa + UsUs Vi) ) (21)

C\U,, U, Us) =
( LU= Us) ( _%C(U1U2V3+U1U3V2+U3U2V1)

The operators B(J;-,-) and C();-,-,-) are defined to be symmetric in their
arguments, and C' is in fact independent of \.

The eigenvalue problem (13) for the linearization of (12) about the pat-
ternless steady solution becomes

DxV?U + kU + k) V = oU,
DyV?V + k3U + k,V = oV, (22)

U(r/2,¢) =0, V(r/2,¢)=0.

We expand U and V in terms of spherical surface harmonics

U, 0) = > wmYim(®,0), V(0,0)=> vmYim,¢),  (23)
Lm Lm

where the sums are taken over only those integers [ = 0,1,2,..., =l <m <
such that the homogeneous Dirichlet boundary condition Y;,,(7/2, ¢) = 0 is
satisfied. Substituting the expansions (23) into the eigenvalue problem (22),
we obtain a sequence of algebraic eigenvalue problems for each [, m:

2
—wiDx + ky ko Upm \ Ul m
< ks ~wi Dy + ky ) ( Ulm ) - U( Ulm ) ’ (24)
where w? = [(1+1)/r%
The eigenvalues ¢ depend only on [ and are given by

20 = ki + ks — w2 (Dx + Dy) + (8% + 4ksks) /2,

14



where 3 = ky — k; — w?(Dy — Dx). We use parameter values so that 5% +
4koks > 0 for all [, and hence all the eigenvalues are real. Then we find
specific conditions for which the largest eigenvalue o0,,,, is zero. To do so,
and we maximize o with respect to w?, and find that the maximum value of
o is

Omaz = [(1+ 0)k1 + (1 — 8)ky + 55 — (8/6)]/2,

where 0 = (Dx + Dy)/(Dy — Dx). This maximum value is attained when

L (40%kks | N Ty
5“(1—52) Sy
If all parameters are fixed except for the product bB, the expression for 0,4
can be considered a smooth function of bB.
Parameter values are chosen so that the most unstable modes could cor-
respond to dichotomous branching. We set

Dx =10"° Dy =10"" A=1, (25)

a=0.045, c=18, d=0.05, (26)

and then numerically solve the nonlinear equation ,,,,(bB) = 0 for bB, to
find
bB = 0.367, (27)

with
wi = 8540. (28)

Thus, for parameter values (25)—(27), all the eigenvalues are real, and the
largest eigenvalue 0,4, is zero. All the other eigenvalues ¢ are strictly nega-
tive, and uniformly bounded away from zero.

The radius r of the hemispherical domain is selected so that the zero
eigenvalue 0,,,, = 0 corresponds to modes whose components are propor-
tional to the surface harmonics Y3 (6, ¢) and Y3 12(6, ¢). For I = 3, the value
of r corresponding to the critical value of w? given by (28) is

ro = 0.0375. (29)

We summarize the results of the linearized stability analysis: if all param-
eters except bB are fixed at the values given by (25)—(26), and if r = 7, then
for bB less than the critical value given by (27), we have 7,,,, < 0 and hence
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all eigenvalues of the eigenvalue problem (22) are negative. This implies that
the patternless steady solution U = 0, V' = 0 of (4)—(5) is asymptotically
stable. If bB increases past the critical value, then o,,,, increases past zero,
and three linearly independent modes all become unstable together. For bB
at the critical value, there is a bifurcation of steady solutions of the nonlinear
problem (4)—(5) and the analysis of the bifurcation will reveal which pattern
is selected. If r is not exactly equal to 7o, but is close to it, then the same
bifurcation occurs, but at a slightly different critical value of bB.

Following the steps outlined in Section 2 and the Appendix, we reduce
the Brusselator model to the bifurcation equations (11). For r = ry and the
parameter values (25)—(27), we obtain numerical values for the coefficients
in (11):

B; = —0.00498, By = Bs = —5B; = 0.0249, (30)

Cy = —0.00605, Cy = —0.0956, C5=—0.356, C,= —0.0681. (31)

For more details of the computations, see the Appendix.

We now gather information on the branches of equilibrium solutions as-
sociated with the bifurcation at the critical value of bB characterized by
Omaz = 0. To find equilibrium solutions of (11) with z # 0, we solve

0 = Opmaa® + B12° + By|z|* + C12° + Cox2)?,
0 = Omax + Bsz + Cs2” + Cy|z]*. (32)

There is a transcritical bifurcation at o,,,, = 0, x = 0, |2| = 0. We use the
second equation in (32) to eliminate |z|? and find a saddle-node bifurcation
at Opmar = 01 = —0.00131, x = 0.105, |z| = 0.115. Solutions on the branches
given by (32) correspond to steady patterns for the Brusselator model that are
not rotationally symmetric. These are circles of solutions with the same value
of |z|, corresponding to dichotomous branching patterns for the Brusselator
that are related by the rotations (6, ¢) — (0, ¢+ 7). We label these solutions
as DB+ and DB—. The Brusselator dichotomous branching patterns are
approximated at leading order by U whose components are specific linear
combinations of the surface harmonics Y3(6, ¢), Y32(0, ¢) and Y3 _2(0, ¢). A
typical dichotomous branching pattern is illustrated in Figure 1.
On the z-axis, an invariant subspace, the dynamics are given by z = 0
and
& = Omaat + B12* + Cha. (33)
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Figure 1: Plan view (i.e. projection of the hemispherical shell onto its equa-
torial plane) of a dichotomous branching pattern for the Brusselator model,
colour-coded for concentration of the morphogen X (dark red, highest; dark
blue, lowest) as described in Harrison et al. (2001). This pattern corresponds
approximately to a linear combination of Y3y and Y54 with a slightly larger
coefficient for the latter. Branching will occur if X catalyzes growth of the
initially hemispherical surface.
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Figure 2: An annular pattern, colour-coded as Figure 1. This pattern is quite
close to Y34. X-catalyzed growth would lead to a cup-shaped or crater-like
tip, which is sometimes observed as an aberrant form in plant growth where
the normal development is branching.

The origin = 0 is always an equilibrium solution of (33), corresponding to
the patternless steady solution of the Brusselator model. Nonzero equilibrium
solutions are given by

0 = Omas + Brz + C12% (34)

There is a transcritical bifurcation at ¢,,,, = 0, z = 0, z = 0, and we locate
a saddle-node bifurcation at o4, = 0o = —0.00102, 2 = —B,/(2C)) =
—0.412, z = 0. Solutions on the branches given by (34), labelled A+ and
A—, correspond to steady annular patterns with circular symmetry in the
Brusselator model. To leading order, the patterns are approximated by vector
functions U whose components are both proportional to the surface harmonic
Y50(0,¢). See Figure 2.

The stability of solutions on the branches are determined by linearizing
the reduced equations (11) about the equilibrium solutions. The results
are summarized in the bifurcation diagram Figure 3, where the amplitudes
of the equilibrium solutions are plotted against the values of the parameter
Omaz- The stability of the equilibrium solutions on the branches are indicated.
On the branches of dichotomous branching solutions DB+ and DB—, the
linearizations about the equilibria each have a zero eigenvalue, corresponding
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Figure 3: Schematic bifurcation diagram for the Brusselator model. Values
of o are plotted along the horizontal axis, and the amplitudes of the
equilibrium solutions are plotted along the vertical axis. Solid lines represent
branches of stable solutions, and dashed lines represent branches of unstable
solutions. O indicates the patternless solution, DB+ and DB— indicate
circles of dichotomous branching pattern solutions (Figure 1), A4+ and A—
indicate annular pattern solutions (Figure 2).
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Figure 4: Phase portrait of the bifurcation equations for Brusselator model
when 0,,,. < o1. The patternless solution O is stable. In this and sub-
sequent two-dimensional phase portraits, the horizontal direction represents
the z-coordinate, while the vertical direction represents the amplitude |z|
of the z-coordinate, and the origin is the point O. The three-dimensional
phase portraits for (11) are generated by rotating the two-dimensional phase
portraits about the horizontal axis.

the fact that perturbations of the solutions that are simply rotations along
the circles of solutions (translations along group orbits) (6, ¢) — (0,¢ + 1)
neither grow nor decay. The growth or decay of perturbations in directions
transverse to the rotations or group orbits determine the stability of the
dichotomous branching solutions.

For 0,4 < 07 the local phase portrait of (11) has a single, asymptotically
stable (or attracting), equilibrium solution O at the origin. See Figure 4. For
the Brusselator model, locally only the patternless steady solution U = 0
exists when o,,,, < 01, and it is stable.

For 01 < 0pae < 09 the origin O is still a stable equilibrium solution, but
also there are two circles of equilibrium solutions DB+ and DB— for (11)
with constant |z|. In the directions normal to these circles, the DB+ solu-
tions are attracting while the D B— solutions have a saddle structure, hence
are unstable. See Figure 5. This situation corresponds in the Brusselator
to the existence of two families of dichotomous branching patterned solu-
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Figure 5: Phase portrait of the bifurcation equations for the Brusselator
model when o1 < 0,4, < 09. The patternless solution O and dichotomous
branching pattern solutions DB+ are stable. The dichotomous branching
pattern solutions DB— are unstable.

tions, one of which (DB+) consists of stable solutions and the other (DB—)
consists of unstable solutions.

When 09 < 0jer < 0, the reduced system (11) has a stable equilibrium
solution O at the origin, the two circles of equilibrium solutions DB+ and
D B— described previously, and in addition a pair of equilibrium solutions on
the z-axis, one (A+) stable and the other (A—) unstable. See Figure 6. The
solutions A4+ and A— on the x-axis for (11) correspond to steady annular
patterned solutions for the Brusselator system.

The same types of patterned solutions exist for o,,,. > 0, except that
their relative positions in phase space change from the previous case, and
the origin O is now unstable. See Figure 7.

From the bifurcation analysis, we see that for the Brusselator model, there
are stable dichotomous branching solutions even for parameter values for
which the patternless solution is still stable. For ¢,,,, > o1 there are multiple
attractors, and which pattern is selected depends on the initial condition.
However, if we take a random distribution of initial conditions clustered in a
small enough neighbourhood of the patternless solution O, for ¢,,.,, < 0 most
solutions will decay to the patternless solution as ¢ — oo. In contrast, for

21



. DB+

~

Figure 6: Phase portrait of the bifurcation equations for the Brusselator
model when o9 < 0,4, < 0. The patternless solution O, annular pattern
solution A+ and dichotomous branching pattern solutions DB+ are stable.
The annular pattern solution A— and dichotomous branching pattern solu-
tions DB— are unstable.
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Figure 7: Phase portrait of the bifurcation equations for the Brusselator
model when o,,,, > 0. The annular pattern solution A+ and dichotomous
branching pattern solutions DB+ are stable. The patternless solution O,
the annular pattern solution A— and the dichotomous branching pattern
solutions DB — are unstable.
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Omaz > 0 solutions that start at ¢ = 0 near the patternless solution approach
one of the dichotomous branching or annular patterned solutions as t — oco.
The amplitudes of these solutions are already well developed at the critical
parameter values for which the patternless solution loses its stability.

For 0,4 > 0, we estimate the probability that a randomly selected initial
condition near the patternless state will lead to one pattern or another. In
Figure 7 we see that the basin boundary between the DB+ and A+ solutions
is determined by the positions of the unstable D B— solutions. The location
of the D B— solutions can be approximated from the truncated equations

0= Omaz + leQ + 82‘2’2,
0 = Oz + Bsx, (35)

from which we obtain
xr = _Umax/B37 |Z| = Umax(B3 - Bl)1/2/(B§BQ)1/2‘

Hence the solid cone C' in the three-dimensional (z,z) space with vertex
the origin O and side containing the circle of unstable equilibrium solutions
D B— has a cross-section that makes the angle o with the z-axis at the origin,
where tan o = (B; — By)Y2/By/> = (6/5)'/2. We approximate the basin of
attraction of the equilibrium point A+ by the interior of C'. The interior
of the cone C' intersected with the interior of a sphere centred at the origin
O occupies a relative volume of (1 — cosa))/2 = 0.16 with respect to the
sphere. Thus we estimate that if initial conditions are chosen at random
near the patternless solution for the Brusselator system, approximately 16%
of them will generate solutions that approach the stable annular patterned
solution as ¢ — oo, while the remaining 84% will approach one of the stable
dichotomous branching patterned solutions. Since, in equation (61) of the
Appendix, the coefficients By, By and Bs are all proportional to the same
parameter-dependent expression, the angle o for the basin of attraction is
independent of parameters.

3.3 Pattern formation in the hyperchirality model

Now we consider the onset of patterns in the hyperchirality model (9)—(10).
The reduction to bifurcation equations is similar to that for the Brussela-
tor model, but simpler due to the lack of quadratic nonlinear terms. The
symmetry in the hyperchirality model that is not present in the Brusselator
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model can be exploited to give additional information about the patterns
that appear. The analysis indicates that patterning events should give di-
chotomous branching with 88% probability and annular pattern with 12%.
Numerical solution of the dynamics (Harrison et al., 2001) gave, in a set of
415 computations, three types of pattern: branching 73%, annular 14%, and
a pattern described as “keyhole” 13%.

In (9) we consider all parameters as fixed, except the rate constant kxx,
which we treat as a control parameter. We write (9)—(10) in the abstract
form (12) with A = kxx, and

(36)

AU = < (DxV? + k1o + kip)U + kV )

kU + (DyV2 + k4)V
0
B()\; U1,U2) = < 0 ) ) (37)

COU,, Uy, Us) = < —k1,U1UUs — %k5(U1V2V3 + Ui Vs 4 UsVi Va) (>38)

—%l%(UlUQV:s + U1UsVa + Uy Us Vi)

The eigenvalue problem (13) to determine the linearized stability of the
patternless state U = 0 in the hyperchirality model takes the same form
(22) as for the Brusselator if we put ky = ki, + k1, and the analysis is very
similar. Fixing parameter values

Dy =44x107° Dy =55x10"% A=1 B=1, (39)

Px=1 Py=1, kyy =02 kyx=1.1, (40)
we solve 0,,,. = 0 to find

kxx = 0.643. (41)
If the radius r of the hemisphere H, is fixed at

ro = 0.0772, (42)

then the modes that correspond to the zero eigenvalue o,,,, = 0 have com-
ponents that are proportional to Y, (0, ¢) with [ = 3 and m = 0, £2. Thus,
if r = o and all parameter values except kx x are fixed according to (39) and
(40), and if kxy is increased through the critical value (41), then the largest
eigenvalue o,,,, increases through zero, as three linearly independent modes
all lose stability.
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The fact that there are only cubic nonlinear reaction terms in the hy-
perchirality model allows us to take advantage of the resulting symmetry,
and obtain some useful information about the solutions. Since B = 0, the
hyperchirality system written as (12) is odd under the operation

U— -U.

Because of this additional symmetry, we can use results of Field et al. (1991)
on bifurcation on hemispheres: we find solutions of (12) on the surface of
the hemisphere H,, of radius 7y, with homogeneous Dirichlet boundary con-
ditions, by first extending the domain of the problem to the surface of the
sphere S,, with the same radius, and then seeking solutions of the extended
problem on S, that are odd about the equator. The restrictions of such
solutions to the upper hemisphere H,, recover all solutions of the original
Dirichlet boundary value problem. The bifurcation problem on the spheri-
cal domain &, is symmetric with repect to the group of orthogonal 3 x 3
matrices, and the generic bifurcations of steady solutions in the presence of
O(3)-symmetry have been classified by Chossat et al. (1990).

We therefore extend the spatial domain of our problem by considering the
bifurcation of steady solutions for the hyperchirality model defined on the
surface of the sphere S,, of radius ry, so that the new bifurcation problem
has O(3)-symmetry. For the case [ = 3, generically there are precisely three
branches of steady solutions that bifurcate when the patternless solution
loses stability. The solution branches are characterized by the symmetries
(conjugacy classes of isotropy subgroups) possessed by the solutions. One
branch of steady solutions has isotropy subgroup (conjugate to) O(2)~, and
these solutions are invariant under all rotations about an axis through the
origin, and are odd under reflections through the plane perpendicular to the
axis of rotational symmetry. Another branch of steady solutions has isotropy
subgroup O~; these solutions have a kind of octahedral symmetry, invariant
under rotations of 7/2 radians about any of three mutually orthogonal axes
through the origin composed with a reflection. On the remaining branch
of steady solutions are sector solutions with isotropy subgroup D¢, that are
invariant under rotations of 77/3 about an axis of symmetry composed with a
reflection. For the sector solutions there are three nodal circles on the surface
of the sphere that intersect the axis of symmetry. The branches of steady
solutions described in this paragraph consist of group orbits of solutions —
families of solutions that can be transformed into one another by the action
of any matrix in O(3), such as rotations about an axis of symmetry, or
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reflections across a plane of symmetry. Corresponding to each of the three
isotropy subgroups are fixed-point subspaces, which are finite-dimensional
subspaces that are invariant under the time evolution of the hyperchirality
system on the surface of the sphere. For each steady solution on a branch,
the fixed-point subspace is one-dimensional, however, each of the bifurcating
steady solutions belongs to a continuous family of bifurcating steady solutions
on the same group orbit of solutions.

Following Field et al. (1991) we look for the bifurcating steady solutions
on the surface of the sphere S,, that are odd about reflections through the
equatorial mid-plane. For solutions on the branch with isotropy subgroup
O(2)~, there is a pair of solutions that are odd about the equator: a solution
that is invariant under rotations about the polar axis, and its negative. The
restrictions of these two solutions to the upper hemisphere H,, are a pair
of annular patterns similar to those for the Brusselator model (Figure 2).
Among the solutions with isotropy subgroup O™, those that are odd about
the equator are invariant under rotations of 7/2 radians about the polar
axis composed with a reflection. The restrictions of these solutions to H,,
comprise a family of dichotomous branching patterns that can be transformed
into one another by rotations about the polar axis. See Figure 8.  Sector
solutions with isotropy subgroup D¢ are odd about the equator if the axis
of symmetry lies in the equatorial mid-plane and one of the three nodal
circles coincides with the equator. Restricting these solutions to the upper
hemisphere H,, gives a family of sector patterns that are transformed into
each other by rotations about the polar axis. See Figure 9. Since the subset
U of all solutions of the hyperchirality system, defined on the surface of the
entire sphere §,, and that are odd about the equator, are invariant under
the time evolution of the system, it follows that the fixed-point subspaces for
each of the bifurcating steady solutions that are odd about the equator are
also invariant under the time evolution of the system restricted to /. Hence
these fixed-point subspaces can be considered as invariant under the time
evolution of the system on the surface of the hemisphere H,,. Thus using only
the symmetry properties of the model, it is predicted that generically there
are precisely three types of bifurcating solutions for the hyperchirality model
on the hemisphere, corresponding to the patterns represented by Figures 2,
8 and 9. Furthermore, each steady solution belongs to a linear subspace that
is invariant under the time evolution of the hyperchirality model (9)—(10).

In order to verify that the bifurcation is indeed generic, and also to deter-
mine the stability of the bifurcating steady solutions, we reduce the hyper-
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Figure 8: Dichotomous branching pattern for the hyperchirality model, cor-
responding to the isotropy group O~. This pattern is quite close to Yss.
While branching processes are diverse in their details, Figures 1 and 9 are
probably better representations of the commonest growth patterns than is
this figure.

Figure 9: Sector pattern for the hyperchirality model, corresponding to the
isotropy group DZ. This pattern is quite close to a particular linear combi-
nation of Y3, and Y3 .
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chirality model to the bifurcation equations (11). Following the procedure
outlined in Section 2, we obtain expressions for the coefficients in (11). Due
to the absence of quadratic reaction terms (37) in the hyperchirality model,
we have

By = By, = B3 =0, (43)

thus the reduced equations representing the dynamics on the local centre
manifold are

T = x(amax + 015172 + 02”2‘2)7
5 = 2(Opmaz + C32? + Cy|2[%), (44)
z= E(O-ma:v + 031E2 + O4|Z|2)

From the cubic reaction terms (38) we obtain numerical values for the coef-
ficients in (44),

¢y = -0.0911, Cy = —-0.200, C5= —0.100, C,= —0.170. (45)

See the Appendix for more details.

The bifurcation analysis is simpler than in the Brusselator case, due to
the vanishing of the quadratic coefficients. Symmetry also simplifies com-
putations: since the centre manifold reduction preserves symmetry, it also
preserves the fixed-point subspaces of the bifurcating steady solutions.

The fixed-point subspace for the pair of annular patterns is represented in
the reduced equations (44) by the z-axis, which can be seen to be invariant
under time evolution. On the z-axis we have

i = Opmaet + C11°, (46)

from which we see, since C; < 0, that there is a supercritical bifurcation of
a pair of nontrivial equilibrium solutions on the x-axis, = +c'/2 /(—C})/?
for 0,4 > 0. In the hyperchirality model, these solutions correspond to the
two steady annular patterns predicted by the symmetry arguments. The
steady annular patterns for the hyperchirality model are given by U =
U304+ 0O(|z|?), thus to leading order both components of the annular pattern
solutions are scalar multiples of the surface harmonic Y34(0, ¢).

For the dichotomous branching patterns, the fixed-point subspaces are

represented in (44) by lines through the origin in the complex z-plane, which

29



can be seen to be invariant under the time evolution of (44) (arg z(¢) remains
constant). On any such line we have

2= Omaz? + 04]2\22, (47)

which, since Cy < 0, implies that there is a supercritical bifurcation of a
circle of equilibrium solutions in the complex z-plane with radius |z| =
o2 /(—Cy)Y? when 0,4, > 0. Each of these equilibrium solutions cor-
responds to a steady dichotomous branching pattern in the hyperchirality
model, and moving around the circle of equilibria in the z-plane corresponds
to rotating the patterned solution of the hyperchirality model about the po-
lar axis of the hemisphere. The steady dichotomous branching patterns for
the hyperchirality model have the form U = zU35 + zU3 2 + O(|(2, 2)|?),
thus to leading order both components are linear combinations of the real
and imaginary parts of Y34(6, ¢), or, equivalently, rotations about the polar
axis of the real part of Y34(6, ¢).

The fixed-point subspaces for the sector patterns in the hyperchirality
model appear in the reduced equations (44) as straight lines through the
origin making an angle  with the z-axis, where tan a = (Cy — C5)/2/(C} —
C3)'/? = (3/10)"/2. The dynamics on the line, projected onto the z-axis, are
given by

3
T = Opmaz® + <Cl + 1_002> ZE3, (48)

thus there is a supercritical bifurcation of a pair of circles of equilibrium so-
lutions with = = +0/2 /(—C} —3C5/10)"/? and |z| = (3/10)*/2¢}/2 /(—C} —
3C,/10)Y2. Each of these solutions corresponds to a steady sector pattern in
the hyperchirality model. Moving around each of the two circles of equilibria
corresponds to rotating a sector patterned solution (Figure 9) of the hyper-
chirality model about the polar axis of the hemisphere, and the solutions on
one circle of equilibria are the negatives of the solutions on the other circle.
The steady sector patterns are given by U = £(10/3)22|U3s + 2U3, +
zZU3 _5 + O(|(2,2)[%), thus to leading order the components are scalar mul-
tiples of a rotation of Y53(6,¢) by 7/2 radians about an axis through the
centre of the sphere and lying in the equatorial plane.

The stability of the bifurcating solutions is determined by linearizing the
reduced equations (44) about each of the solutions. We find that the annular
and dichotomous branching patterns are stable, and the sector patterns are
unstable. See the bifurcation diagram, Figure 10, and the phase portrait
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Figure 10: Schematic bifurcation diagram for the hyperchirality model. Val-
ues of 0,4, are plotted along the horizontal axis, and the amplitudes of the
equilibrium solutions are plotted along the vertical axis. Solid lines represent
branches of stable solutions, and dashed lines represent branches of unsta-
ble solutions. O indicates the patternless solution, and A+, A— indicate
an annular pattern solution (Figure 2) together with its negative. DB in-
dicates a circle of dichotomous branching pattern solutions (Figure 8). S+,
S— indicate a pair of circles of sector pattern solutions (Figure 9).

~ Nty

Figure 11: Phase portrait of the bifurcation equations for the hyperchirality
model when o,,,, > 0. The annular pattern solutions A+ and A—, and the
dichotomous branching pattern solutions DB are stable. The patternless
solution O and the sector pattern solutions S+ and S— are unstable.
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when 0,,,, > 0, Figure 11. For 0,,,, > 0 there are multiple attractors for
the hyperchirality model. If we take a random distribution of initial con-
ditions near the patternless steady solution when o,,,, > 0, then some will
decay to a dichotomous branching pattern, and some will decay to an annu-
lar pattern. The basin boundary between the attractors is the double cone
C formed in (z, z)-space by the fixed-point subspaces of the unstable striped
patterns. The vertex of C'is the origin and, as noted above, the sides make
an angle o with the z-axis, where tan o = (3/10)'/2. The basin of attraction
for the pair of annular patterns is the interior of the double cone C', which
intersects the interior of a sphere of initial conditions centred at the origin
occupying a relative volume of 1 — cosa = 0.12 with respect to the volume
of the sphere. Thus aproximately 12% of initial conditions chosen at random
near the patternless steady state will decay to one of the two annular pat-
terns when o,,,, > 0, and the remaining 88% will decay to a dichotomous
branching pattern. As is the case with the Brusselator model, the coefficients
for the hyperchirality model that determine the angle o are all proportional
to the same parameter-dependent expression: see equation (73) in the Ap-
pendix. Thus « itself does not depend on parameters, and the 88%-12%
splitting of a spherically symmetric distribution of initial conditions about
the patternless steady state is, to leading order, independent of parameters.

4 Conclusion

We have studied two chemical reaction-diffusion systems and shown that ei-
ther can model the emergence of morphogen prepatterns for dichotomous
branching in the growing tips of plants. Both the Brusselator and the hyper-
chirality reaction-diffusion systems, considered on a hemispherical domain
with Dirichlet boundary conditions, undergo bifurcations from a patternless
solution to a stable dichotomous branching patterned solution. The two mod-
els differ in the details of the dichotomous branching solutions, and in the
bifurcation structures. For both models there are also bifurcations of stable
annular pattern solutions that represent failure to branch. By estimating the
basins of attraction of the two types of solutions for both models we predict
the proportions of small random perturbations of the patternless solution
that lead to each type of solution: for the Brusselator model 84% give di-
chotomous branching and the remaining 16% give an annular pattern, while
for the hyperchirality model 88% give dichotomous branching and 12% give
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an annular pattern. For different parameter values, where the patterns are
more strongly developed, numerical simulations using the reaction-diffusion
equations show roughly similar statistics (Harrison et al., 2001).

In both models, symmetries due to the assumption of a hemispherical
domain were used to simplify the analysis. In the hyperchirality model,
the presence of only cubic nonlinear reaction terms allowed the problem to
be extended to a spherical domain so that additional information on the
structure of the patterned solutions was determined by using general results
on bifurcations with spherical symmetry.

For the Brusselator model the bifurcation analysis predicts subcritical bi-
furcation of patterned solutions, so that stable dichotomous branching and
annular pattern solutions exist for a range of parameter values for which
the patternless solution is also stable. This range of parameter values is
rather small (see below) and would likely be missed by simulations if the
subcritical bifurcations were not suspected. One consequence of the subcrit-
ical bifurcations is that for parameter values just beyond the threshold of
instability for the patternless solution, the amplitudes of the stable annular
and dichotomous branching patterned solutions are relatively large. For su-
percritical bifurcations, such as in the hyperchirality model, the amplitudes
of the stable patterned solutions are relatively small near the threshold of in-
stability. Numerical simulations of the Brusselator reaction-diffusion system
for parameters near the Turing instability boundary show the same quali-
tative behavior as that predicted by the bifurcation analysis, although the
bifurcations occur at somewhat different parameter values than those pre-
dicted by our analysis. For parameter values (25)—(26), r = 1o = 0.0375, and
B =1, the value of 7,,,, = 01 for the saddle-node bifurcation of dichotomous
branching pattern solutions corresponds to a value of b = 0.363. Simulations
of the Brusselator system locate the saddle-node bifurcation at approximately
b = 0.362. The value of 7,,,, = 09 for the saddle-node bifurcation of annu-
lar pattern solutions corresponds to b = 0.364, while simulations locate the
same bifurcation at about b = 0.366. The simulations agree with the location
of the transcritical bifurcation predicted at b = 0.367 (0,4 = 0). For the
hyperchirality model, simulations of the reaction-diffusion system near the
boundary of the Turing instability show close agreement with predictions of
the bifurcation analysis.

In the bifurcation analysis, we neglected higher-order terms in the expan-
sions about the bifurcation points. For the Brusselator model, the neglected
terms in (11) are O(|omaz||(z, 2, 2) |+ |(z, 2, 2)|*), while for the hyperchirality
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model, due to the additional symmetry, the neglected higher-order terms are
O(|omae| (7, 2,2)|2 + |(z, 2, 2)|?). The lower order of terms neglected in the
analysis of the Brusselator model is the likely reason for the larger quantita-
tive differences, between the simulations of the reaction-diffusion systems for
parameter values near the Turing instability boundary and the predictions
of the bifurcation analysis, compared to the hyperchirality model.

Our bifurcation analysis of the Brusselator model could be made more
mathematically rigourous if it was done in terms of an unfolding of a degen-
erate point where the coefficients B, By and Bs of the quadratic-order terms
in the bifurcation equations were all equal to zero. For the parameter values
we consider, the numerical values of these coefficients are small, but there
is no degenerate point for any parameter values reasonably close to those
considered by Harrison et al. (2001). Thus, although our analytical predic-
tions agree qualitatively with numerical simulations for parameter values near
the Turing instability as well as farther away, it would be difficult to prove
rigourously that this must be the case. However, the calculations leading to
the results about percentages of initial conditions do not depend on using de-
generacies and unfoldings. The 84%-16% splitting of a spherically symmetric
distribution of trajectories starting near the patternless steady state depends
only on the lowest-order terms, and it could be proved in a straightforward
way that higher-order terms do not affect this splitting. What we have not
proved rigourously is that the ultimate destination of these two classes of
trajectories, for the Brusselator model, must be a dichotomous branching
pattern or an annular pattern.

In estimating the probabilities that a randomly chosen small perturbation
of the patternless state will evolve into a dichotomous branching pattern or
an annular pattern, we assumed that the decay of modal components of the
perturbations in directions transverse to the centre manifold takes place on a
much shorter time scale than evolution on the centre manifold itself. Numer-
ical simulations of the full reaction diffusion systems near bifurcation show
just such rapid decay, and only minor effects due to components transverse
to the centre manifolds. Therefore we have neglected these effects entirely in
estimating the probabilities.

In each model the choice of bifurcation parameter is motivated by math-
ematical convenience — the ease with which the dependence of the largest
eigenvalue 0,,,, on the bifurcation parameter could be isolated, in order to
find the critical value that makes o,,,, = 0. However, a different parameter
could be used as a bifurcation parameter, such as the radius r of the hemi-
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spherical domain (i.e. the size of the growing tip), or the concentration A or
B of an initial reactant. The only requirement is for o,,,, to move through
zero in a generic way as the bifurcation parameter changes.

In both models, a significant minority of small perturbations of the pat-
ternless state evolve, as t — oo, to an annular pattern which corresponds
to failure to branch. Harrison at al. (2001) discuss the possibility that the
earlier parts of transients, rather than later parts, could be more impor-
tant for morphology, in which case dichotomous branching would be selected
more robustly using both models. However, in conventional reaction-diffusion
modelling it is assumed that the behavior as ¢ — oo determines the morpho-
logical patterns that appear. It is interesting to note that in an experimental
study of many genetically identical somatic embryos of a hybrid larch, von
Aderkas (2000) reports a distribution in the number (from 0 to 15) of cotely-
dons forming in the embryos, with about 20% of them ending in an annular
pattern with no cotelydons.

In more realistic models one could have symmetries “broken externally”
by removing the idealizations that correspond to the symmetries. For ex-
ample, the growing tip could be modelled as not exactly hemispherical, and
we could consider a more irregular, perhaps more realistic, domain. In the
hyperchirality model, the kinematics of the pair of activator substances with
concentrations Xp and X, or of the pair of inhibitor substances with con-
centrations Yp and Y could be modelled as not exactly identical. If we
consider only small departures from the idealized conditions that we have
assumed in this paper, our predictions are easily modified by considering
generic perturbations of the symmetric systems. Isolated stable equilibria
such as those corresponding to the annular pattern solutions will persist with
only small distortions in the circular symmetry, while the circles of equilibria
corresponding to the continuous families of dichotomous branching patterns
would typically be perturbed into a pair of such equilibria, one stable and
one unstable, that corresponded to dichotomous branching patterns with spe-
cific orientations with respect to the domain. The circles of equilibria would
be replaced by invariant circles containing equilibria, with very slow evolu-
tion along the circles between the equilibria. The corresponding solutions
of the reaction-diffusion models would evolve relatively quickly into some-
thing resembling a dichotomous branching pattern, then there would be a
very slow rotation of the pattern towards a specific orientation. The propor-
tions of small random perturbations of the patternless state that eventually
approach an annular pattern or a dichotomous branching pattern would re-
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main approximately the same. In general, compared to a direct study of a
model that lacks symmetry, analysis of a nearly symmetric model is easier
and more information is gained if we assume symmetry is present, exploit
the symmetry to obtain results, then modify the results to take account of
generic perturbations that break the symmetry.

We have considered behavior in the two models for parameters close to the
threshold of instability of the patternless solution, i.e. the Turing instability
boundary. The bifurcations of solutions represent the initial appearance of
reaction-diffusion patterns in a growing tip of a plant, and we have shown
that both models predict the coexistence of stable final patterned states, both
annular and dichotomously branched. Harrison et al. (2001) use numerical
simulation to investigate behavior for parameters farther from the Turing
instability boundary, for which patterns of various kinds are more strongly
developed. For the Brusselator and hyperchirality models, randomly chosen
initial conditions give rise to annular patterns in roughly 20% of cases, a
somewhat larger proportion than what we have predicted analytically for
parameters close to the Turing instability boundary. In this paper, attention
is restricted to a hemispherical tip whose shape is unchanged. Harrison
et al. (2001) discuss incorporating the reaction-diffusion patterning into a
larger model that includes morphological change, following growing tips in
three dimensions that branch, change shape and grow sequentially to form
repeatedly branched structures that can model plant growth.

A Appendix: Reduction to bifurcation equa-
tions

In this Appendix, we give more details of the calculations used to find values
for the coefficients By, By, Bz, C, Cy, C5 and C} in the bifurcation equations
(11) that govern the dynamics on the centre manifold.

We observe that A(\))U“ = 0 for any vector function U belonging to
the centre eigenspace E¢ given by (14). The span of the eigenfunctions cor-
responding to the remaining, infinitely many, eigenvalues with negative real
parts, is the stable eigenspace E°. The stable eigenspace is invariant under
A(Ny), i.e., if a vector function U*® belongs to E*, then so does A(X\o)U”.

For two vector functions U; = (U;(0,),V;(0,¢))", j = 1,2, we define
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their inner product by

L) = [ [ 100, 00:0.0) + Vi(0, 0V 9N} smo o ds, (19)

and the corresponding L?-norm of a vector function by

2m 7r/2 1/2
U = (U, U2 = {// )24 V(0, ¢)2]sm9d9d¢} . (50)

For any A, the adjoint operator to A(\) is defined to be the linear operator
A(N)* that satisfies

(ANU,U") = (U, AN)'U™")

for all vector functions U and U*. It then follows that the adjoint eigenvalue
problem

ANU* = oU* (51)

has the same eigenvalues as the eigenvalue problem (13), and corresponding
to the zero eigenvalue for (51) when A = )¢ are three linearly independent
adjoint vector eigenfunctions, which we may choose as

U§,07 U§,27 U;,—Qa
so that orthonormality conditions

<U3,m17 U;,mg) = 6m1m2 (52)

are satisfied, where 0,,,,n, is the Kronecker delta. Moreover, each of the
adjoint eigenfunctions Uy, m = 0,42, is orthogonal to any vector function
in the stable eigenspace E*. The linear operator P¢ defined by

PU = JZ'U370 + ZU3,2 + 2U3,,2,

where

T = <U7 U§,0>7 z = <U7 U§,2>7 z = <U7 U;,—2>

for any vector function U, is a projection onto the centre eigenspace E°, with
null space equal to the stable eigenspace E°. Then I — P°, where I is the
identity operator, is a projection onto £, with null space equal to £°. Both
the projections P and I — P commute with A(\o).
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We use centre manifold theory to express a vector function lying in the
local centre manifold Wy ., when A = Ay, as a Taylor series

U = IU370 + ZU372 + 5U37_2 + ZEQU(Q()()) + IZU(H()) + ZEEU(l()l) (53)
+ ZQU(OQ()) + ZEU(OH) + 22U(002) + O(’(JZ’, Z, 2)’3)

in the small parameters (z,z,%). The vector functions U ;, j,j,) with j; +
J2 + 73 > 2 all belong to the stable eigenspace E° and can be calculated by
substituting the expansion (53) into the projection I — P¢ of the system (12)
onto £® when A = Ay, and collecting terms in powers of x, z and z. For
example, collecting terms in 22 gives

0= A()\())U(Qoo) + (I - PC)B()\(), U370, U3’0).

This is a nonhomogeneous system of linear partial differential equations,
which may be solved for U (a0p). The other vector functions U 110y, U 101,
etc. in (53) can be computed similarly. It turns out that only a few of the
vector functions U (;, j,;,) are needed explicitly for the Brusselator model, and
none of them are needed for the hyperchirality model.

The three ordinary differential equations that govern the dynamics on the
local centre manifold W, are found by substituting the expansion (53) into
the full system (12) and then taking inner products with each of the three
adjoint eigenfunctions U3, U3z, and Uy _,. To determine bifurcation and
stability of solutions when \ is near A, it is sufficient to expand (12) about
Ao, neglecting higher-order dependence of the nonlinear parts B and C' on
A. Thus we obtain the system of ordinary differential equations

i = (AU + (A=) A (\)U + B(\; U, U) + C(\; U, U, U), U3 ),
z2= (AU + (A = X)A' (M)U + B(\; U, U) + C(A\; U, U, U ), U3 _y),
)

where U 1is given by the expansion (53).

The linear terms in (54) simplify if we recall that A()y) applied to
any of the eigenfunctions in E° gives zero, and that A()g) applied to any
vector function in E® remains in E°  hence is orthogonal to any adjoint
eigenfunction Uj,,. Further simplification is obtained by approximating
(A=X0)A'(Xo)U3, by 01naxUs.m when Us,, is an eigenfunction in E¢, where
Omaz = O(JA — Ao|) is the largest eigenvalue of the eigenvalue problem (13)
when A is near Ao (0,4, is the growth rate of the fastest growing modes).
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When A is near \g, we have i) 0,4, < 01f A < A, i1) Opae = 01 X = Ao, and
111) Omaz > 0 1if A > XAg. With these considerations, the system of ordinary
differential equations (54) becomes

T = Omaz® + (B(Mo; U, U), U3z ) +(C(\; U, U, U),U3),
2.5 = Omaz? + <B()\0, Ua U): U§,2> + <C()\07 U: Ua U): U§,2>7 (55)
2= Opaez + (BAo; U, U), U5 _,) + (C(\; U, U,U),Uj ),
where we neglect higher-order terms O(|XA—Xo|?|(x, 2, 2)|+|A—Xol|(z, 2, Z) |?).
Substituting the Taylor series (53) for U into (55), we expand and then collect

terms in powers of x, z and z. For example, collecting terms in z? in the
equation for Z, we obtain

& = Opmaa® + Bra? + -,
where the coefficient of 22 is given by the integral
By = <B()\0; Usp, U3,0)7 U§,0>-

For the Brusselator, the eigenfunctions of the eigenvalue problem (22)
that correspond to the eigenvalue o,,,, = 0 at the critical parameter values
are

- kaYa0(0, ¢)
Uso = N3y < kz}/zg(ﬁ,qb) ) ’
k 0
i = toa (52000 ) "

where
k5 = WQDX — kl,

and the normalization constants V3, are chosen as

7 7

Nyg = 4| ——r— Nog=Ng g=|— 57
30 o (k2 + k2) 32 = 18,2 \/2407?(k§+k§)’ (57)

so that the L2-norms of the eigenfunctions satisfy

| Usml| =1, m =0, 2.
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The corresponding adjoint eigenfunctions are

* * k’ﬁ/}),o(g, ¢)
Uso = Nao ( k5Ya0(0,0) )
ko * k3Y;3,2(07 ¢)
U3,2 - N3,2 ( lﬂ5Y€3,2(9,¢) ) (58)

where the normalization constants Nj,, are chosen as

7(k3 + k2) Nt 7(k3 + k2) (59)
V2r (koks + k2)’ B2 A0m (koks + K2)

so that the inner products of the adjoint eigenfunctions with the eigenfunc-
tions satisfy the orthonormalization conditions (52).

In order to find the coefficients By, Bs, Bs for the quadratic terms in (11)
for the Brusselator model, it suffices to take

* o
Ng,o =

U= IU370 + ZU372 + 5U37_2
in (55), since only quadratic terms are needed. Thus

By = (B(A;U30,Usp), Us ),
By = (B(M\o;Us2, U3 2) + B(A\o; U3, 2,Us35),Us ), (60)
By = (B(M\o;Us0,U32) + B(Ao; Us2,U3p), Uz ).

Using expressions (20), (56) and (58) for B, Us,, and Uj,, in (60), we
evaluate the inner products using (49), and obtain

7V 14 35v/14 35v/14

- By = — By = —
LT sal TPT Tsya P Tsya

(61)

where

dbB 2caA ko(ks — k
n= ( ko k7> ( 2( > 7)

ad d koks + k2)\/k3 + k2

For parameter values (25)—(27) we obtain the numerical values (30) given in
Section 3.2.
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To find the coefficients C, Cy, C3, Cy of the cubic terms in (11) for the
Brusselator requires more work. Substituting the expansion (53) for U into
(55), and collecting cubic terms in (z, z, Z), we obtain

C1 = (C(A; U3, Us0,Usp) + B(Ao; Us 0, Uo0)), Us ),
Cy = (C(M; Us0,Us2,Us,2) + B(Ao; Uso,Uor1)) + B(Ao; Us 2, Ugron))
+ B(Ao; Us —2,U110)), U3 ), (62)
Oy = (C(M; Us0,U30,Usz) + B(Mo; Uso, Uguag))
+ B(Ao; Us 2, Uaon)), Us o),
Cy = (C(A;U32,U32,Us —2) + B(Ao; U3 2, Uomn))
+B(Xo; Us,—2,U(ox)), U3 o).

We do not need all of the U;, ;,j,) explicitly, but only U 200y, U 110y, U (101),
U (011) and U (o20).

The vector functions U, ,j,) can be found by substituting the Taylor
series (53) into the projection I — P¢ of the system (12) onto the stable
eigenspace E° when A = )y, and then collecting terms in powers of (z, z, Z).
For example, collecting terms in z? gives

A()\())U(QO()) = —(I - PC>B()\07 U3,07 US,O)a (63)
while collecting terms in zz gives
A()\())U(Ho) - —(I — PC)B()\O7 Ug,o, U372). (64)

Similarly, we get

A()\O)U(IOI) = —(I - PC>B()\O§ U3,0, U3,72)7 (65)

A()\O)U(Oll) = —(I - PC)[B()\O; U3,27 U3,72)7 (66)
and

A(/\())U(OQO) == —(I — PC)B()\O; U372, U372). (67)

Equations (63)—(67) are nonhomogeneous systems of linear partial differential
equations, which may be solved for the U ;, )

To solve the equations, we substitute the explicit expressions (56) for
the Brusselator eigenfunctions into the right hand sides of (63)—(67), and,
using the expression (20) for B, expand in series of surface harmonics which
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satisfy the Dirichlet boundary condition. The projection I — P* affects only
those nonzero terms in the expansions corresponding to [ = 3 and m = 0 or
+2. By expanding both components of the required U ;, j,;,) in series of the
same surface harmonics, the coefficients are solved for term by term. The
resulting series expressions for the required U ;, ;,j,) are used, together with
the expressions (20), (21), (56) and (58) for B, C, Us,, and Uy,,, in the
inner products (62) to obtain series of real numbers for the cubic coeffients
Ch, Oy, C5, C4. We use the computer algebra program Maple to evaluate the
terms in each series and then to sum the terms numerically. We accept the
series as converged when additional terms in the series do not affect the sum
to ten significant digits, and obtain the values (31) given in Section 3.2.

For the hyperchirality model, the eigenfunctions for the eigenvalue 7,4, =
0 at the critical parameter values are

ko Ys0(0, ¢)
Uso = Nao ( EYso(0. 0) )
ks Vi o(6
v = (5500 ) "
koYs o0, ¢)
Us—2= N3 < kiYi,_z(Ga ?) ) ’

where
ky = WQDX — kig — ko,

and the normalization constants NNs,, are chosen as

7 7
Nog=4/—— Nsog=N3_og=/——"— 69
30 \/ 21 (k3 + k%)’ 32 32 \/2407?(k§ + k2)’ (69)

so that
| Usml =1, m =0, +2.

The adjoint eigenfunctions are chosen as

: (70)



where

7(k3 + k2 7(k3 + k2

3,0 ( = 7) ) N§2:N§—2: ( : 7) ) (71)
’ vV 27T(l€21€3 -+ k%) ’ ' vV 2407T(l€2]€3 + k%)

so that the orthonormalization conditions (52) are satisfied.

The computations to determine the coefficients of the equations (11) gov-
erning the dynamics on the centre manifold for the hyperchirality model are
much shorter, since there are no quadratic reaction terms in the reaction-
diffusion system (9), thus B = 0 in (12). We immediately have

*

and the Taylor series (53) is known to be
U = JZ'U3,0 + ZU372 + §U3772 + O(’(JZ’, Z, 2)’3).

The expressions for the cubic coefficients in (11) simplify from (62) to

C1 = (C(M\o; U3, U30,Usy), U§70>,

Cy = <C()\o; U3,0, U3,2, U3,72), U;,,()), (72)
C3 = (C(A; U3, Usyp, Uspy), U§,2>,

Cy = <C()\o; U3,2, U3,2, U3,72), U§,2>-

By using the expressions (38), (68) and (70) for C, Us,, and U3, in (72),
the inner products give
1687 371 371 315

_ Co=—2 0y o= —2 ) == 73
3070 T TimR O et G i (B

1=

where

 kiak3ks + kskokZks + kek3k?

- (k3 + k2)(koks + k2)
Evaluating the expressions (73) at the critical parameter values give the
numerical values (45) stated in Section 3.3.
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