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Abstract

Wave trains, or periodic travelling waves, can evolve behind invasion fronts in
oscillatory reaction-diffusion models for predator-prey systems. Although there is a
one-parameter family of possible wave train solutions, in a particular predator in-
vasion a single member of this family is selected. Sherratt (1998) has predicted this
wave train selection, using a λ-ω system that is a valid approximation near a super-
critical Hopf bifurcation in the corresponding kinetics and when the predator and
prey diffusion coefficients are nearly equal. Away from a Hopf bifurcation or if the
diffusion coefficients differ somewhat, these predictions lose accuracy. We develop a
more general wave train selection prediction for a two-component reaction-diffusion
predator-prey system that depends on linearizations at the unstable homogeneous
steady states involved in the invasion front. This prediction retains accuracy far-
ther away from a Hopf bifurcation, and can also be applied when predator and
prey diffusion coefficients are unequal. We illustrate the selection prediction with
its application to three models of predator invasions.

Key words: reaction-diffusion, wave train selection, periodic travelling waves,

population cycles, coherent structures, predator invasion

PACS: 87.23.Cc, 05.45.-a

∗ Corresponding author. Address: Department of Mathematics, Room 121 - 1984
Mathematics Road, The University of British Columbia, Vancouver, B.C., Canada
V6T 1Z2. Ph: 1-604-822-9388 Fax: 1-604-822-6074 E-mail: merchant@math.ubc.ca

Preprint submitted to Physica D 23 February 2010



1 Introduction

The cause of temporal cycles in natural populations has been a focus of study

by ecologists for many decades. A classical hypothesis is that this oscillatory

behaviour arises from the interaction between a predator population and its

prey, and many models have been constructed and studied to support this

hypothesis (see, for example [1]). Such models have often taken the form of

kinetics systems: ordinary differential equation models that describe the time

evolution of predator and prey densities that are assumed to be spatially

constant. More recently, however, field studies have shown that in some natural

populations oscillations are not synchronized in space, and when viewed in

one spatial dimension take the form of a wave train [2–7]. Wave trains, or

periodic travelling waves, are spatio-temporal patterns that are periodic in

both time and space and have the appearance of a spatially periodic solution

that maintains its shape and moves at a constant speed. Consequently, there

has been a great deal of study recently on oscillatory reaction-diffusion systems

because these partial differential equation models possess wave train solutions

(see [8] and references therein).

One way that wave trains can arise in oscillatory reaction-diffusion systems is

following a predator invasion [9–11]. The initial condition for such a scenario

consists of the prey at carrying capacity everywhere in the spatial domain,

except a localized region in which a predator is introduced. Typically, a trav-

elling front evolves that maintains its shape and moves at a constant speed. In

some cases, behind this primary invasion front a secondary transition occurs

and the solution takes the form of a wave train. Two numerical simulations

where wave trains evolve following a predator invasion are illustrated in Fig.

1. We can see from these examples that the wave train behind the front does
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not necessarily move at the same speed, or even in the same direction, as the

invasion front itself.
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Fig. 1. Wave trains behind invasion fronts. The horizontal axis is the spatial coor-
dinate x. Shown are equally spaced plots of the density of the predator p(x, t) at
ten equal time intervals with increasing time from bottom to top.

For oscillatory reaction-diffusion systems near a Hopf bifurcation in the corre-

sponding kinetics there exists a one-parameter family of wave train solutions

and a range of corresponding speeds [12]. In a particular numerical simulation

of an invasion we typically observe only a single member of this family and

this seems robust to changes in initial or boundary conditions. Therefore, it

appears that a particular wave train is somehow selected out of the family.

We would like to find some means of predicting the selected wave train.

Sherratt (1998) has in fact already produced an explanation of the selection

mechanism and a prediction for the wave train selected behind invasion fronts

in reaction-diffusion systems with oscillatory kinetics [13]. The basis of his

prediction is an approximating lambda-omega (λ-ω) system. The behaviour

of an oscillatory reaction-diffusion system near a nondegenerate supercritical

Hopf bifurcation can be described by the simpler λ-ω system whose coefficients

are obtained from the normal form of the Hopf bifurcation in the kinetics sys-
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tem. Predictions derived in this way are applicable near the Hopf bifurcation

and when the predator and prey have nearly equal diffusion coefficients. For

more widely applicable predictions, such as in cases where there are larger

amplitude oscillations or unequal diffusion coefficients, it would be beneficial

to develop a criterion to predict the selected wave train that does not directly

depend on the λ-ω system.

In the remainder of this paper we derive and test such a criterion. We first

introduce in section 2 the class of two-component reaction-diffusion systems

we consider. These systems describe the evolution of population density dis-

tributions of two species, one a prey and the other a predator, in one space

dimension. Two spatially homogeneous steady states are relevant: an unsta-

ble prey-only state that is invaded by a travelling front, and a coexistence

state unstable to oscillatory modes that interacts with the invasion. In some

cases, such as illustrated in Fig. 1(a), there is a secondary front that invades

the coexistence state. The speed of a front invading an unstable steady state

can be predicted by the linear spreading speed (see the review [14] and refer-

ences therein) which depends only on linearization about the unstable state.

In section 3 we consider coherent structures in the complex Ginzburg-Landau

(CGL) equation [14–18], of which the λ-ω system is a special case. The unsta-

ble state in this case is the origin, which corresponds to the coexistence state

in predator-prey systems, and coherent structures represent travelling fronts

that connect the steady state to wave trains. The linear spreading speed selects

a particular coherent structure and wave train, and this retrieves the predic-

tion developed in [13]. Coherent structures have been generalized as defects in

general reaction-diffusion systems by Sandstede and Scheel (2004) in [19]. In

section 4 we extend the prediction for the λ-ω system to a new “pacemaker”

criterion for defects in predator-prey reaction-diffusion systems that connect
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the unstable prey-only state with wave trains associated with oscillatory in-

stabilities of the coexistence state. For the speed of the selected defect we take

the minimum of the linear spreading speeds for the prey-only and coexistence

states, and for the frequency of the selected wave train measured in the frame

comoving with the defect we take the frequency of the linear Hopf instabil-

ity of the coexistence state. The performance of the pacemaker criterion is

then numerically tested in section 5 on sample oscillatory reaction-diffusion

systems. We find that the pacemaker criterion gives accurate predictions for a

wider range of parameter values than the λ-ω criterion does, but still falls off

in accuracy farther away from the Hopf bifurcation. Finally, section 6 discusses

and summarizes the key results.

2 Mathematical Background

We consider predator-prey reaction-diffusion systems in one space dimension,

of the form

∂h
∂t

= Dh
∂2h
∂x2 + f(h, p)

∂p
∂t

= Dp
∂2p
∂x2 + g(h, p)

(1)

where h(x, t) is the density of prey at position x and time t and p(x, t) is

the density of predator at (x, t). Both h and p are real-valued functions. The

positive parameters Dh and Dp are the diffusion coefficients of the prey and

predator respectively, while the functions f(h, p) and g(h, p) depend on param-

eters not explicitly shown here, and describe the local population dynamics.

For the invasion scenario of interest, we require (1) to have two spatially ho-

mogeneous steady states: a prey-only steady state h(x, t) ≡ 1, p(x, t) ≡ 0 and

a coexistence steady state h(x, t) ≡ h∗, p(x, t) ≡ p∗ where both species persist
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at some non-zero levels.

We assume that both the prey-only state (1, 0) and the coexistence state

(h∗, p∗) are unstable as fixed points for the corresponding kinetics system

dh
dt

= f(h, p),

dp
dt

= g(h, p).

(2)

In particular we assume that the linearization of (2) about the prey-only state

has real eigenvalues of opposite sign, while the linearization about the coex-

istence state has complex conjugate eigenvalues with positive real part and

nonzero imaginary parts, and for some nearby parameter values the coexis-

tence state (h∗, p∗) undergoes a supercritical Hopf bifurcation for (2).

Fig. 1(a) illustrates an invasion that appears to involve two travelling fronts,

a primary front invading the unstable prey-only state, and a secondary front

invading the unstable coexistence state. The two fronts do not necessarily

travel at the same speed. Fig. 1(b) shows there may be a single front invad-

ing the prey-only state, but we consider only cases where the dynamics are

still influenced by the coexistence state. The speed at which fronts invade an

unstable steady state has been the subject of much study. A comprehensive

review of this topic is provided by [14]. In this, van Saarloos (2003) defines a

linear spreading speed ν∗ given by solving the saddle point equations



0 = S(k∗, ω∗)

0 = (∂k + ν∗∂ω)S|(k∗,ω∗)

0 = =(ω∗ − ν∗k∗)

(3)
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for (k∗, ω∗, ν∗) where S(k, ω) = 0 is the characteristic equation for the lin-

earization about the unstable steady state ahead of the front. While there

may be multiple solutions to (3), only those for which

<(D) > 0, where D =
−i(∂k + ν∗∂ω)2S

2∂ωS

∣∣∣∣∣
(k∗,ω∗)

are relevant. The equivalence of this approach with the historical pinch point

analysis is discussed in [20]. When there are several dynamically relevant sad-

dle points we take the one with the largest corresponding ν∗ to give the linear

spreading speed. Details of how to compute linear spreading speeds using (3)

for the system (1) are given in Appendix A. Fronts propagating into unstable

states are grouped into two classes: pulled fronts that travel at speed ν∗ and

are in some sense generic, and pushed fronts that travel at a speed ν > ν∗. If

initial conditions decay sufficiently rapidly in space, faster than eλ
∗x as x→∞,

where λ∗ := =(k∗), it is argued that a front invading the unstable state forms

whose asymptotic speed is ν∗ in the case of a pulled front [14]. In this paper,

we assume that all fronts we encounter are of the pulled variety, and so travel

at the speed given by (3).

Behind the front invading the prey-only state, simulations of predator-prey

reaction-diffusion models exhibit a number of different spatio-temporal pat-

terns, including the spatially homogeneous coexistence state, wave trains, and

irregular oscillations that have been identified by some as spatio-temporal

chaos [9,10,21]. In this paper we restrict our attention to cases where wave

trains appear behind the invasion front. The existence of families of wave

trains for reaction-diffusion systems has been established by a number of au-

thors [12,22,23]. For solutions that are stationary in a frame moving with speed
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c̄, (1) may be reduced to the system of ordinary differential equations

dh
dξ

= y

dp
dξ

= z

dy
dξ

= 1
Dh

(−c̄y − f(h, p))

dz
dξ

= 1
Dp

(−c̄z − g(h, p)) ,

(4)

where ξ = x− c̄t. It was shown by [12] that if diffusion coefficients Dh and Dp

are sufficiently close and the kinetics system (2) has a stable limit cycle near a

supercritical Hopf bifurcation, then there exists a one-parameter family of limit

cycle solutions for the system (4). This family of limit cycles corresponds to a

family of wave train solutions for the reaction-diffusion system (1) near a Hopf

bifurcation. In fact, it is known that families of wave trains exist for generic

reaction-diffusion systems, for example with unequal diffusion coefficients [23].

We assume that there exists a one-parameter family of wave train solutions

for (1).

In many cases, for parameters near the Hopf bifurcation, the rear of the front

invading the prey-only state in the reaction-diffusion system (1) remains near

the coexistence state for a significant distance before the solution transitions

by a secondary front to a wave train, as in Fig. 1(a). In these cases we assume

that the speeds of the two fronts are independently determined. Then we

focus on the secondary front invading the coexistence state, which connects

directly to a wave train. With this motivation, Sherratt (1998) has explained
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the selection of a wave train from a one-parameter family in the λ-ω system

∂u
∂t

= ∂2u
∂x2 + λ0u− ω0v − (λ1u+ ω1v)(u2 + v2)

∂v
∂t

= ∂2v
∂x2 + ω0u+ λ0v + (ω1u− λ1v)(u2 + v2)

(5)

which can be used to approximate any two-component reaction-diffusion sys-

tem near a nondegenerate supercritical Hopf bifurcation, provided the diffu-

sion coefficients are equal, or nearly so. Here the real-valued functions u(x, t),

v(x, t) represent perturbations from the coexistence state, so the zero state

in (5) corresponds to the coexistence state in (1). The constants λ0, ω0, λ1

and ω1 are the coefficients of the normal form of the Hopf bifurcation in the

kinetics system (2), and therefore depend on the parameters of the kinetic

terms f and g. In particular, the linearization of the kinetic terms about the

zero state has eigenvalues λ0± iω0. See [24,25] for more details. We assume in

the following that λ0 > 0, ω0 > 0, λ1 > 0 and ω1 6= 0, thus the zero state is

unstable and the Hopf bifurcation in the kinetics system is nondegenerate and

supercritical. The advantage of the λ-ω system is that its one-parameter fam-

ily of wave train solutions can be explicitly written down [12]. These solutions

are

u(x, t) = r cos(kx− Ωt), v(x, t) = r sin(kx− Ωt) (6)

where Ω = −ω0 − ω1r
2 and k = ±

√
λ0 − λ1r2 are parameterized by the am-

plitude r. The wave train with amplitude r therefore has phase speed

c̄ =
Ω

k
= ± ω0 + ω1r

2

√
λ0 − λ1r2

. (7)

For the λ-ω system (5), Sherratt (1998) predicts that the wave train selected
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behind a front invading the zero state is the one with amplitude [13]

R =

[
2λ0

ω2
1

(√
λ2

1 + ω2
1 − λ1

)] 1
2

. (8)

3 Coherent structures and selection in the lambda-omega system

In this section we use the linear spreading speed of a coherent structure in

the λ-ω system to find the wave train selected behind an invading front, and

thus recover the prediction (8) of [13]. This derivation is implicit in the physics

literature cited, but we reproduce it here to motivate the more general selection

criterion we use in the case when the λ-ω system is not a good approximation

to (1). This derivation also points out that the selected wave train only requires

that initial conditions decay sufficiently rapidly in space.

3.1 Coherent structures

The λ-ω system (5) is a special case of the CGL equation, well-studied in

the physics literature (see, for example, [15]). We are interested in coherent

structures that correspond to travelling fronts connecting a steady state to a

wave train.

The one-dimensional (cubic) CGL equation is

At = εA+ (1 + ic1)Axx − (1− ic3)|A|2A, (9)

where A(x, t) is a complex-valued function, and ε, c1 and c3 are real parame-
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ters. To write (5) in this form, we put

u(x, t) + iv(x, t) =
A(x, t)√

λ1

eiω0t (10)

in (5) and obtain (9) with

ε = λ0, c1 = 0, c3 =
ω1

λ1

.

A coherent structure of the CGL equation (9) is a solution of the form

A(x, t) = e−iδta(ξ)eiφ(ξ), ξ = x− νt, (11)

where a and φ are real-valued functions and δ and ν are real parameters.

Substituting the ansatz (11) into the CGL equation (9) and defining

q = φ′, κ =
a′

a
,

we obtain a three-dimensional system of ordinary differential equations for

a(ξ), κ(ξ) and q(ξ). The existence and linearized stability of fixed points of

this three-dimensional system is conveniently summarized in [17, Appendix A].

There are two so-called L (for “linear”) fixed points (aL, κL, qL) with aL = 0,

and two N (“nonlinear”) fixed points (aN , κN , qN) with κN = 0. The L fixed

points of the three-dimensional system correspond to the homogeneous zero

steady state solution for the λ-ω system, while the N fixed points correspond

to the wave train solutions (6) of the λ-ω system.

We are interested in heteroclinic orbits of the three-dimensional system, con-

necting an L fixed point and an N fixed point. These heteroclinic orbits cor-

respond to coherent structures or travelling fronts of the λ-ω system. Due to
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symmetry, we consider only the case ν > 0, for a front travelling to the right.

Correspondingly, in the three-dimensional system we seek heteroclinic orbits

which approach an N fixed point as ξ → −∞, and approach an L fixed point

as ξ → +∞. If such orbits exist, they must leave along the unstable manifold

of the N fixed point and enter along the stable manifold of the L fixed point.

Hence, the dimensions of the local stable and unstable manifolds of the L and

N fixed points indicate whether the heteroclinic orbits that we seek are at

least possible, and whether they can be expected to be robust. Inspecting the

eigenvalues of the fixed points reveals that there is an N fixed point with a

one-dimensional local unstable manifold, and if ν > |δ|/
√
λ0 > 0 then there

is an L fixed point with a three-dimensional local stable manifold. (If δ = 0

then the three-dimensional system restricted to the invariant plane a = 0 is

orbitally equivalent to a Hamiltonian system, and in this case there is an L

fixed point with a three-dimensional local stable manifold provided ν ≥ 2
√
λ0.)

Hence, there is the possibility of a two-parameter family of heteroclinic orbits,

parameterized by ν and δ. We have not proved that such a two-parameter

family of heteroclinic orbits exists, but for various values of ν and δ we have

numerically computed heteroclinic orbits of the three-dimensional system us-

ing the continuation software package auto and the procedure described in

[26–28]. The computations suggest that a two-parameter family of heteroclinic

orbits of the three-dimensional system indeed exists.

3.2 Wave train selection

As we have just described, for given coefficients λ0, ω0, λ1 and ω1 there can

be a continuous family of heteroclinic orbits of the three-dimensional system,

parameterized by ν and δ. In a particular simulation of the λ-ω system we see
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only one of the corresponding front solutions. That is, particular values of ν,

δ and the corresponding wave train appear to be selected. Moreover, the se-

lection seems robust to changes in initial conditions and boundary conditions.

We predict the selected front and corresponding wave train in the λ-ω system,

by using the linear spreading speed of a pulled front at the zero state A(x, t) ≡

0 of the CGL equation. Application of saddle point equations (3) to the λ-ω

system (5) corresponds to selection of the L fixed point with

κ∗L = −
√
λ0 q∗L = 0,

and

ν∗ = 2
√
λ0, δ∗ = 0 (12)

(see [18, pp. 340–341] for details). For the parameter values (12), a heteroclinic

orbit connects the selected L fixed point (0, κ∗L, q
∗
L) with the corresponding N

fixed point (a∗N , 0, q
∗
N), where

a∗N =
√
λ0 − (q∗N)2, q∗N = −

√
λ0

ω1

(√
λ2

1 + ω2
1 − λ1

)
. (13)

Many authors have observed that fronts in the CGL equation indeed appear

to move at the linear spreading speed, but we have no proof that for all initial

conditions that decay sufficiently rapidly in space, the selected front must be

as predicted, a pulled front moving at the linear spreading speed given by (12).

For a few cases, we have compared numerically computed heteroclinic orbits

of the reduced system to the front solutions produced by direct simulation of

the λ-ω system. In all the cases we studied, we found close agreement between

the predicted and observed coherent front solutions. From other simulations

we observe that this agreement also appears to be robust with respect to
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perturbations of the initial condition.

With the parameters given by (12), the front solution for the λ-ω system (5)

is a coherent structure

u(x, t) + iv(x, t) =
a(ξ)√
λ1

eiω0teiφ(ξ), ξ = x− ν∗t,

with frequency ω0 and moving to the right with speed ν∗ = 2
√
λ0. As ξ →

+∞ the front solution approaches the homogeneous zero steady state, and as

ξ → −∞ it approaches the wave train solution

u(x, t) + iv(x, t) =
a∗N√
λ1

eiω0teiq
∗
N ξ. (14)

To see the relation with the prediction (8) from [13], we note that a wave train

solution of the λ-ω system (5) of the form

u(x, t) + iv(x, t) = rei(kx−Ωt)

under the change of variables ξ = x− ν∗t becomes

rei(ν
∗k−Ω)teikξ.

Comparing with (14), we see that in the comoving frame the selected wave

train has temporal frequency

ν∗k − Ω = ω0 (15)

and spatial wavenumber

k = q∗N .
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Substitution of this wavenumber using (13) to find the amplitude of the se-

lected wave train r = a∗N/
√
λ1 retrieves the prediction (8) derived by [13]. We

have verified this selection with numerical simulations of the λ-ω system using

randomly-generated initial conditions. See Fig. 3(i).

We note in (15) that the frequency of the selected wave train in the frame

comoving with the selected coherent structure coincides with the imaginary

part of the complex eigenvalue λ0 +iω0 of the kinetics system for (5) linearized

around the unstable zero state. We can therefore think of the linear Hopf

frequency ω0 at the zero state as a “pacemaker”, in the sense that the selected

wave train in the frame moving with speed ν∗ = 2
√
λ0 must have the same

temporal frequency ω0.

4 Beyond the lambda-omega system: the pacemaker criterion

In this section we consider wave train selection behind invading fronts in the

predator-prey reaction-diffusion systems described in section 2. In general for

the full oscillatory reaction-diffusion systems (1), wave trains are not sinusoidal

and we do not have exact solutions for them, so a prediction of the form (8) is

not possible. However, as shown in Fig. 1, numerical simulations of predator

invasions in the full system even well away from the Hopf bifurcation in the

kinetics still appear to have travelling fronts connecting steady states to wave

trains. For the full system we assume there exist two wave train selection

regimes, which we refer to here as Case I and Case II.

In Case I, suggested by Fig. 1(a), we assume there is a primary front invading

the prey-only state with speed cinv that connects to the coexistence state and

that is stationary in the frame comoving with speed cinv, and a secondary
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front invading the coexistence state with speed csec that connects to a wave

train and is temporally periodic in the frame comoving with speed csec. We

assume the two fronts can be treated independently, and the relevant front

for selection is the secondary one connecting the coexistence state to the wave

train. In this case selection is directly analogous to selection in the λ-ω system.

In Case II we assume there is a front with speed cinv, temporally periodic in

the frame comoving with speed cinv, that connects the prey-only state directly

with the selected wave train, as suggested by Fig. 1(b). In addition, we as-

sume that there exists, at least nearby, a front with speed csec connecting the

coexistence state to the wave train. In both cases we assume the fronts are

pulled and so the speeds cinv and csec are the linear spreading speeds obtained

by linearization about the spatially homogeneous prey-only and coexistence

steady states respectively.

In both Cases I and II, we propose that the speed ccoh of the front that selects

the wave train is the minimum of the two speeds defined above,

ccoh := min{csec, cinv},

and we assume the front moves to the right: ccoh > 0 (for fronts moving to the

left, replace x with −x). Our justification for this value of the selecting front

speed is as follows. First, if csec < cinv then we predict that the tail of the

primary invasion front decays to the coexistence state (h∗, p∗) and behind the

primary front a secondary transition occurs from the coexistence state via a

front with speed ccoh = csec. This corresponds to Case I of the criterion. If, on

the other hand csec > cinv, such a secondary front could not exist for long since

it would catch up to the primary front. In this case, we therefore predict that

eventually the primary invasion front moving with speed ccoh = cinv will not
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decay to the coexistence steady state and instead connect directly from the

prey-only state to the selected wave train, which is Case II. With this picture

in mind, we will sometimes refer to Case I as “separated” and to Case II as

“attached” to aid in remembering them.

In analogy with the selection criterion (15) for the CGL equation we conjecture

that in the comoving frame of speed ccoh the selected wave train has the

frequency ωcoh of the linear unstable oscillatory mode of the coexistence state.

To express this selection criterion in terms of the wave train parameters, let

L > 0 be the spatial period, cwtrain be the phase speed and T = L/cwtrain be

the (signed) temporal period of the selected wave train. Then the frequency

of the wave train in the comoving frame of speed ccoh is (2π/L)ccoh − (2π/T ).

Our criterion for the selected wave train is that it satisfies

2π

L
ccoh −

2π

T
= ωcoh (16)

where the “pacemaker” frequency ωcoh is the imaginary part of the eigenvalue

of the linearization of the kinetics system about the coexistence state:

ωcoh = −sgn(ω0ω1)
1

2

√√√√−(∂f
∂h
− ∂g

∂p

)2

− 4
∂f

∂p

∂g

∂h

∣∣∣∣∣∣∣
(h∗,p∗).

(17)

where ω0 and ω1 are two of the normal form coefficients of the Hopf bifurcation

in the corresponding kinetic system. We note that since here the selection

criterion depends on these kinetic normal form coefficients we are assuming

that the system is sufficiently close to a supercritical Hopf bifurcation in the

kinetics.

If f(h, p) and g(h, p) are given by the kinetics of the λ-ω system, the selec-

tion criterion (16) is the same as the selection criterion (15) using the linear
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spreading speed for the λ-ω system, with ωcoh = ±ω0, ccoh = 2
√
λ0, L = 2π/|k|

and T = ±2π/Ω, and so we have in some sense extended the prediction for

the λ-ω system to one that may be used on the full system. We acknowledge

that in Case II (attached), as in Fig. 1(b), the coexistence state (h∗, p∗) is

not approached and so there is no good reason to expect that the pacemaker

frequency ωcoh plays a role as the frequency in the selection criterion. Never-

theless, it performs surprisingly well as a predictor in numerical simulations

and so we continue to use it for the selection criterion.

While the motivation for the criterion has a fairly sound mathematical basis,

the criterion itself is a somewhat naive extension of those ideas. Essentially, we

are assuming that a generalized temporally periodic “coherent front” solution

exists that connects a steady state (either prey-only or coexistence) to the

selected wave train solution. Furthermore, we are assuming that this coherent

front is of the pulled variety and, critically, we are assuming that we know

the period 2π/ωcoh of this coherent front. The criterion (16) therefore has the

drawbacks that these assumptions may be false. However, the criterion has a

number of advantages. Most obviously, it may be applied to systems other than

the λ-ω system. In addition, although the motivation for the criterion depends

on the diffusion coefficients of the two species being equal, the criterion itself

does not require this.

5 The Criterion in Practice

To study the validity of the criterion (16) we have considered three particular

forms for the kinetic equations in the oscillatory reaction-diffusion system (1)

as well as a λ-ω system. That is, we consider the four sets of kinetics
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(i) f(h, p) = λ0h− ω0p− (λ1h+ ω1p)(h2 + p2) (ii) f(h, p) = h(1− h)− hp
h+C

g(h, p) = ω0h+ λ0p+ (ω1h− λ1p)(h2 + p2) g(h, p) = −Bp+A hp
h+C

(iii) f(h, p) = h(1− h)− p
(
1− e−Bh

)
(iv) f(h, p) = h(1− h)−A hp

h+C

g(h, p) = Cp
(
A− 1−Ae−Bh

)
g(h, p) = Bp

(
1− p

h

)

where ω0, ω1, λ0, λ1, A, B and C are parameters. Models (ii)-(iv) all assume

a logistic growth for the prey species in absence of the predator and assume

a saturating functional response for the predation term, but differ in how

this saturation and resulting predator growth are modelled [1]. In addition,

(ii)-(iv) have all been utilized in the past to model predator invasions and the

production of wave trains following the primary invasion front [9,10]. Our goal

here is to both illustrate how one would apply the selection criterion (16), as

well as to study the accuracy of the criterion for these well-known kinetics and

compare with the prediction that would be arrived at using the λ-ω system.

5.1 Equal Diffusion Coefficients

For each model we set Dh = Dp = 1 and chose a bifurcation parameter (B for

models (ii)-(iv) and λ0 for model (i)) for which the coexistence steady state

in the kinetic system undergoes a supercritical Hopf bifurcation as this pa-

rameter is varied. All other parameters of each model were fixed at the values

shown in Table 1. For each of models (ii)-(iv) we computed the corresponding

normal form parameters for the kinetics, and note that in this normal form

the bifurcation parameter B is linearly related to the parameter λ0 of the λ-ω

system kinetics (i) by the relation shown in the final row of Table 1, with the
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supercritical Hopf bifurcation occurring at λ0 = 0. Also, for computational

convenience, the remaining parameters, A and C for (ii)-(iv) and λ1, ω0 and

ω1 for (i), were fixed at values that resulted in the same values of the corre-

sponding normal form parameters ω0 and c3 = ω1/λ1. Hence, for a given value

of the parameter λ0, all models have the same predictions for selected speeds

of wave trains using the λ-ω system.

Table 1
Parameter Values for Models (i)-(iv)

Model (i) (ii) (iii) (iv)

A - 0.15 3.02173 6.92368

C - 0.2 0.02923 0.63542

ω0 0.14142 - - -

λ1 9.25926 - - -

ω1 -14.32219 - - -

λ0 - 8(0.1−B) 0.03684(B − 2.54504) 0.02268−B

For each of the models (i)-(iv) we computed the predicted selected wave train

using (16) by numerical continuation with the software package auto. We

continued the system (4) in the kinetic bifurcation parameter λ0 as a bound-

ary value problem with periodic boundary conditions subject to the constraint

(16). In tandem with this, we also continue the linear spreading speed equa-

tions as outlined in Appendix A for the speeds csec and cinv that correspond

to Cases I (separated) and II (attached) of the criterion respectively. We note

that since the secondary front speed goes to zero at the Hopf bifurcation, Case

I of the criterion applies near the Hopf bifurcation at λ0 = 0 and Case II may

apply farther away from the bifurcation point, with the exchange between the

two cases occurring if these two curves cross.

We briefly mention here how we determined initial solutions for the contin-
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uation of the selection criterion. Two different means were used to find an

initial wave train that satisfies (16). Case I (separated) of the criterion always

applies close to the Hopf bifurcation in the kinetics and so in this case we start

at λ0 = 0.0001 and use the analytical criterion (8) from the λ-ω system to

find an approximate wave train speed to start. We then continue in the speed

parameter the system (4) from the Hopf bifurcation to a wave train of the

desired speed. For Case II (attached) of the criterion we started the continu-

ation at λ0 = 0.005 and so the λ-ω system may not be a good approximation.

In this case, we first generated a series of wave trains of different speeds by

continuation in c̄ of system (4). For each of these wave trains we computed the

temporal frequency (2π/L)cinv − (2π/T ) in the cinv frame and the wave train

with temporal frequency nearest to ωcoh was used as the starting point for the

continuation. The speeds of these predicted wave trains found by continuation

are shown as curves in Fig. 3. In this figure solid curves correspond to criterion

(18) with ccoh = csec, dashed curves use the criterion with ccoh = cinv and the

criterion with the proposed speed ccoh = min{csec, cinv} corresponds to the

uppermost of these two curves.

To compare with these predictions, we performed numerical simulations of

each system over a range of the bifurcation parameter. Simulations were per-

formed using a finite-difference discretization of the system (forward differ-

ences in time and centered differences in space) in the comoving frame of speed

−ccoh (computed as above) on the interval [−l, 0] with boundary conditions

h(−l, t) = 1, p(−l, t) = 0
∂h

∂ξ
(0, t) = 0,

∂p

∂ξ
(0, t) = 0
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for models (ii)-(iv), and for model (i)

h(−l, t) = 0, p(−l, t) = 0
∂h

∂ξ
(0, t) = 0,

∂p

∂ξ
(0, t) = 0.

where ξ = x + ccoht. We note that our numerical simulations are of leftward

moving fronts for computational convenience and so we perform the coordinate

transformation ξ 7→ −ξ for later comparison with predictions made from the

criterion (16). The domain length l was chosen so that the primary invasion

front remained far from the left boundary for the duration of the simulation;

we set

l =


2000 + Tend(cinv − csec), csec < cinv

2000, csec ≥ cinv

where Tend is the final time for the numerical simulation. The initial condition

used for simulations of models (ii)-(iv) was

h(ξ, 0) =


h∗, ξ ≥ −1000

1, ξ < −1000

, p(ξ, 0) =


p∗, ξ ≥ −1000

0, ξ < −1000

and for model (i) we initialized the system at the (h, p) = (0, 0) state every-

where with the addition of white noise of magnitude ε = 0.001 on the subin-

terval [−1000, 0]. Most simulations were run up to a final time Tend = 10000,

with a few cases run to Tend = 20000 for the model (iv) because the evolu-

tion of the selected wave train in these cases was so slow that no wave train

was observed at time t = 10000. A snapshot of the spatial distribution of the

predator and prey populations was saved at times t = 981, 982, 983, ..., 1000,

t = 1981, 1982, ..., 2000 etc. for the computation of the “observed” speed of

the wave train selected by the primary front.
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Similarly to the reaction-diffusion systems, linear spreading speeds may also

be computed for finite difference systems such as our discretization here and

in general differ from the continuum system (for example, see [20]). Since the

linear spreading speed ccoh is a key component of our selection criterion, we

chose the spatial mesh size ∆ξ and the timestep ∆t so that the linear spreading

speed for the discretized system was within 0.5% of the continuum value. This

required different choices for ∆ξ and ∆t in different parameter regions for each

of the models, which we summarize Table 2.

Table 2
Mesh Interval and Timestep for Numerical Simulations

Range in λ0

(i) (ii) (iii) (iv)

Dh = 1, Dp ≤ 1

∆ξ = 1
4
, ∆t = 1

50
[0.02,0.295] [0.023,0.199] [0.03,0.195] [0.014,0.022]

∆ξ = 1
8
, ∆t = 1

200
[0.005,0.015] [0.007,0.021] [0.005,0.025] [0.007,0.0135]

∆ξ = 1
16
, ∆t = 1

800
- [0.003,0.005] - [0.002,0.0065]

Dh = 1, Dp = 2
∆ξ = 1

4
, ∆t = 1

100
- [0.025,0.195] [0.03,0.19] -

∆ξ = 1
8
, ∆t = 1

400
- [0.005,0.02] [0.005,0.01] -

For each set of parameter values, the spatial profiles were plotted at times t =

1000, 2000, 3000, ... and visually inspected. For the majority of cases, a wave

train did appear to evolve behind the primary invasion front and maintained

its form over time. For some parameter sets of models (ii) and (iii) in the Case I

(separated) parameter region, however, a selected wave train was only observed

transiently. In these cases, there does initially appear to be a secondary “front”

of speed csec that selects a wave train, but after some finite time the secondary

transition moves faster than the predicted speed csec, as illustrated in Fig. 2,

and the region behind the invasion became irregular for later times.

For the speeds of wave trains in the simulations, the final set of 20 profiles was

used to compute this speed if the wave train remained regular throughout the

timeseries. If, however, the wave train in the final data set appeared irregular

as in Fig. 2, then we instead used the last set of profiles prior to the change in
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Fig. 2. Example of a transiently observed selected wave train. Shown are vertically
spaced plots of the predator density at times (from bottom to top) t=1000, t=2000,
..., t=10000 for the model (iii) with parameters as in Table 1 and λ0 = 0.015,
Dh = 1, Dp = 1.

speed of the secondary transition. In all cases the speed of the wave train was

computed as cwtrain = d/19 − ccoh where d is the distance travelled over the

course of the 19 time units by the second peak of the wave train behind the

primary invasion front. The distance d was numerically computed by a simple

routine that tracked locations of local maxima chronologically through the set

of profiles in the timeseries. These “observed” speeds for the various models

are shown in comparison with the predicted speeds in Fig. 3.

We can see from the results shown in Fig. 3 that the performance of the

criterion (16) is dependent on the particular model considered, as well as how

far the parameter values are from the Hopf bifurcation in the kinetics. We first

note that for the λ-ω model (i), the selection criterion developed in [13] and

also here using the CGL equation performs extremely well, providing evidence

that this selection mechanism is indeed valid at least for the λ-ω system. We

can also observe from the data shown in Fig. 3 that for all three models (ii)-

(iv) the criterion appears to provide a higher order prediction than the λ-ω

system prediction near the Hopf bifurcation and so retains accuracy farther

from it. For models (ii) and (iii), we eventually see the loss of accuracy for the

pacemaker criterion as the parameter values are increased still farther from the
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Fig. 3. Wave train speeds in numerical simulations compared with predictions for
cases with equal diffusion coefficients. Horizontal axis is the bifurcation parame-
ter λ0. Vertical axis are the corresponding wave train speeds cwtrain. Predictions
using the λ-ω criterion (8) are dot-dashed lines. Predictions using the new pace-
maker criterion (16) are solid lines for Case I (separated) and dashed lines for Case
II (attached). Simulation observations are point symbols. Solid circles are speeds
computed with final time t = 10000. Squares in the kinetics (iv) plot are speeds
computed with final time t = 20000. Open circles are cases where the selected wave
train was only observed transiently and speeds were then computed as described in
the text. Inset of (ii) shows the region nearest the kinetic Hopf bifurcation.
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bifurcation point. In the case of model (ii) this occurs after there is an apparent

switch from Case I (separated) to Case II (attached) of the criterion whereas

for model (iii) the observed speeds fall away from the prediction while still

in the Case I region. In contrast, the pacemaker criterion performs extremely

well for the entire parameter range chosen for model (iv).

5.2 Unequal Diffusion Coefficients

We also conducted a limited study for models (i) and (iv) with Dh = 1,

Dp = 0.5 and models (ii) and (iii) with Dh = 1, Dp = 2. All other parameters

were taken as in Table 1 and the procedure used is as described for equal

diffusion coefficients above. In this case, initial solutions for the continuation

of the selection criterion are obtained from the equal diffusion cases by first

continuing to the appropriate value of the diffusion coefficient parameter Dp.

With unequal diffusion coefficients the analytical prediction (8) breaks down,

and so we illustrate that in this case the criterion (16) provides an improved

prediction even for the kinetics (i). The results for the numerical simulations

and the predicted speeds using (16) are shown in Fig. 4.

The results of this study for the case of unequal diffusion coefficients show

that, at least for these examples, this criterion performs quite well even in

the case of unequal diffusion coefficients. This suggests some promise for this

criterion to apply to the more general and biologically relevant case of unequal

predator and prey diffusion coefficients.
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Fig. 4. Wave train speeds in numerical simulations compared with predictions for
cases with unequal diffusion coefficients. Horizontal axis is the bifurcation parameter
λ0. Vertical axis are the corresponding wave train speeds cwtrain. Curves and point
symbols are as described for Fig. 3. For model (i), the analytical prediction (8)
assuming Dh = 1 = Dp is shown (dot-dashed curve) for comparison.

6 Discussion

The pacemaker criterion (16) developed here provides a relatively simple

method for predicting the selection of wave trains following predator inva-
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sions in oscillatory reaction-diffusion models. Our study of the performance of

the pacemaker criterion for models (ii)-(iv) suggests that this criterion may in

general give a good prediction for some range of parameters near the Hopf bi-

furcation in the kinetics. However, the performance of the pacemaker criterion

is clearly model-dependent, and indeed since for each of the models chosen we

studied only a small slice of parameter space it is possible that it would also be

parameter-dependent. In fact, we have no a priori means of predicting when

the pacemaker criterion will provide an accurate prediction. We can, however,

identify a number of factors that may be responsible for deviation from the

predictions of the pacemaker conjecture and suggest areas for future work.

Our development of the criterion assumes that there exists a front between a

spatially homogeneous steady state (whether prey-only or coexistence) and the

selected wave train. While visual inspection of numerical simulations suggests

that such fronts do exist, we have no mathematical proof of this. Fronts of the

type we assume to exist are called defects in [19]; they are solutions that are

temporally periodic in some comoving frame and asymptotic in space to wave

trains (or steady states). Defects are heteroclinic connections in an infinite-

dimensional space of temporally periodic functions, and what is required is a

proof that these heteroclinic connections indeed exist in the reaction-diffusion

systems we consider. We also assume that this heteroclinic connection has

the particular frequency ωcoh, given by the imaginary part of the eigenvalues

of the linearization of the kinetics at the coexistence steady state. We chose

this frequency because it extends the λ-ω system prediction and seems to

perform well for the criterion. For Case I (separated) this is natural, and it

is somewhat surprising that it can perform well even for Case II (attached)

where the primary front does not approach the coexistence state.
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Clearly, if our assumptions about the existence and frequency of the hetero-

clinic connection are false then we cannot expect the pacemaker criterion to

be accurate. In fact, it is known that when there exist wave trains of the same

speed cinv as the primary invasion front the invasion may take place through a

point-to-periodic heteroclinic connection in a single frame moving with speed

cinv, as studied by [29]. We performed a few numerical simulations in this

parameter region for model (ii) with Dh = 1, Dp = 2 (beyond the parameter

range shown in Fig. 4) and found that wave trains of speed cinv appeared to

be selected, rather than those predicted by the selection mechanism described

here. One possible reason for the failure of our selection mechanism in this case

is that for these parameter regions, which are far from the Hopf bifurcation

in the kinetics, the heteroclinic connection we conjecture may not exist. We

think it is therefore important to establish the existence of such heteroclinic

connections for the full model under study, rather than just the λ-ω system.

The coherent front solutions for the CGL equation are a special case of the

more general “coherent pattern forming fronts” discussed in [14] and there may

be a method to compute such coherent pattern forming fronts numerically by

continuation in auto using the techniques described in [30] and references

therein. While the numerical computation of these heteroclinic connections

would not rigorously prove their existence, it would offer additional evidence

for this proposed wave train selection mechanism and could open a path to

further numerical work on the multiplicity and stability of such structures.

In this study we have made no reference to the stability of the wave trains and

heteroclinic connections considered. In fact, in our simulations we observe two

potential instabilities. The first is as shown in Fig. 2 where a front of (approx-

imately) the predicted speed is only observed transiently. One possible reason

for this transient behaviour is that the heteroclinic connection is unstable.
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Fig. 5. Example of an unstable selected wave train. Shown are vertically spaced
plots of the predator density in the stationary frame at times (from bottom to top)
t=1000, t=2000, ..., t=10000 for the model (ii) with parameters as in Table 1 and
λ0 = 0.04, Dh = 1, Dp = 1.

Since our numerical simulations are for finite times, it is in fact possible that

even the simulations that remained regular (closed circles in Figs. 3 and 4) are

transients. The study of the stability of the heteroclinic connections assumed

by the selection criterion would therefore be an important area of future study.

A second form of instability that we see in our simulations is shown in Fig.

5. This figure is shown in the stationary frame for illustration. In this case,

a selected wave train is observed behind the initial predator invasion front,

but becomes irregular further back, a solution form that has been noted for

predator invasions in a number of studies and attributed to the instability of

the wave train [8,31]. The physics literature has long noted that wave trains

may be either convectively or absolutely unstable [32]. When a solution is

convectively unstable in a given frame of reference, localized perturbations

will grow, but will be convected away quickly enough that at a fixed position

in the frame of reference the perturbation in fact decays. If the solution is

absolutely unstable in the frame of reference, however, perturbations grow at

any fixed position. In our simulations in the comoving frame ccoh, irregularities

such as those shown in Fig. 5 were convected away through the boundary and

so these selected wave trains are presumably only convectively unstable. It
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would be interesting to determine whether this is generally the case or whether

absolutely unstable wave trains may also be selected. We expect that methods

developed in [33] would be useful to numerically study this problem, and these

have recently been applied by Sherratt et al (2009) to wave train solutions of

λ-ω systems [31]. For the other predator-prey models studied here we have

used these methods to compute the essential spectra of wave trains for a few

cases and found the selected wave trains to be unstable. However, we have

been unable to compute the absolute spectra of non-sinusoidal wave trains

and so the nature of instabilities of selected wave trains in general remains an

open problem.

Finally, as we saw in our study of models with unequal predator and prey

diffusion coefficients the developed criterion appears to be useful for prediction

of wave train selection when the predator and prey species do not diffuse

with the same strength. Since in natural systems species likely have different

movement rates, this would be a substantial advance. However, we have only

shown here a few cases and so the application of the criterion to unequal

diffusion coefficients in general requires further study. Here again rigourous

mathematical work on the existence of the assumed heteroclinic connections

should be useful.
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A Linear Spreading Speeds

In this appendix we describe how to compute the linear spreading speeds using

(3) for the oscillatory reaction-diffusion system (1). We assume the exponential

ansatz h, p ∼ ei(kx−ωt) for perturbations of the linearized system. This gives

the characteristic equation with

S(k, ω) = −ω2 + iω [−k2(Dh +Dp) + a1,1 + a2,2] +DhDpk
4

−Dpa1,1k
2 −Dha2,2k

2 + a1,1a2,2 − a1,2a2,1

(A.1)

where

a =


∂f
∂h

∂f
∂p

∂g
∂h

∂g
∂p


(h0,p0)

is the linearization matrix about the steady state (h0, p0). Therefore, for the

system (1) the linear spreading speed equations (3) are (dropping the stars)

0 =−ω2 + iω
[
−(Dh +Dp)k

2 + a1,1 + a2,2

]
+DhDpk

4 −Dpa1,1k
2 (A.2)

−Dha2,2k
2 + a1,1a2,2 − a1,2a2,1

0 =−2iω(Dh +Dp)k + 4DhDpk
3 − 2Dha2,2k − 2Dpa1,1k − 2νω (A.3)

−iν(Dh +Dp)k
2 + iν(a1,1 + a2,2)

0 ==(ω − νk) (A.4)
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Typically, for given values of a, Dh and Dp the system of equations (A.2)-

(A.4) and hence the linear spreading speed ν∗ must be solved for numerically.

Indeed, for our use in this study we numerically continued solutions of (A.2)-

(A.4) as 5 real equations in tandem with the wave train selection criterion. In

addition, we track the quantity

D =
−ω(Dh +Dp)− 6iDhDpk

2 + iDha2,2 + iDpa1,1 − 2ν(Dh +Dp)k + iν2

−2ω − i(Dh +Dp)k2 + ia1,1 + ia2,2

to ensure that we are at a dynamically relevant saddle point. For the special

case Dh = Dp = 1 considered for models (i)-(iv) in this study, we can solve

for the linear spreading speeds cinv and csec analytically, as we show in the

following section. We use these analytical results as the initial solution for the

continuation of (A.2)-(A.4). For the unequal diffusion cases in this study we

begin from the analytical prediction for Dh = Dp = 1 and first continue in the

diffusion coefficient Dp.

A.1 Linear Spreading Speeds for the Equal Diffusion Cases

When Dh = Dp = 1 we have from (A.3) that either ν = −2ik or ω =

−ik2 + i(a1,1 + a2,2)/2. The second case is in general inconsistent with (A.2)

and so we assume the first case, ie. that ν = −2ik. In this case, k must be

purely imaginary and taking k = iγ, γ ∈ R in (A.4) gives =(ω) = 2γ2. Hence,

we take ω = α+ 2iγ2, α ∈ R in (A.2) and get the following two real equations

for α and γ.

0 = γ4 + γ2(−a1,1 − a2,2)− α2 + a1,1a2,2 − a1,2a2,1

0 = α(2γ2 − a1,1 − a2,2).

(A.5)
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Computing csec for Dh = Dp = 1:

This is the speed obtained by linearizing about the spatially homogeneous

coexistence steady state (h0, p0) = (h∗, p∗). The second equation in (A.5) has

the possible solution α = 0. In this case, solution of the first equation for γ

using α = 0 yields

γ2 =
a1,1 + a2,2

2
± 1

2

√
(a1,1 − a2,2)2 + 4a1,2a2,1.

We assume for the selection criterion that ωcoh as defined in (17) is real and so

the expression on the right has non-zero imaginary part. We therefore assume

α 6= 0 and so from the second equation of (A.5) we have γ2 = (a1,1 + a2,2)/2.

Then using ν∗ = 2γ we have the linear spreading speed

csec =
√

2(a1,1 + a2,2)

for rightward moving fronts emanating from the coexistence steady state.

Computing cinv for Dh = Dp = 1:

This is the linear spreading speed for fronts emanating from the spatially

homogeneous prey-only steady state (h0, p0) = (1, 0). In this case, for models

(ii)-(iv) we have a1,1 < 0, a1,2 < 0, a2,1 = 0 and a2,2 > 0. Therefore, if α 6= 0

the first equation of (A.5) gives

α2 = −1

4
(a1,1 + a2,2)2 + a1,1a2,2
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which contradicts α being real. We therefore take α = 0 and solve to get

γ2 = a2,2. We thus have the linear spreading speed

cinv = 2
√
a2,2

for rightward moving fronts emanating from the prey-only steady state.
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