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7.1 Introduction

In Chap. 2, we mentioned that lava was a non-Newtonian fluid, and discussed
a variety of state-of-the-art constitutive laws that crudely model some of the
properties of such fluids. In the current chapter, we go further in this direction
and describe more developments of a theoretical model for lava flows. Lava flows
have recently been the subject of a review by Griffiths [1] (see also Chap. 6).
Our aim here is to illustrate the use of viscoplastic rheological models in this
problem.

Viscoplastic fluid models are appropriate because silicic lava contains large
quantities of silicate crystals that provide a significant yield stress and crystallize
with temperature to produce highly temperature-dependent material properties.
Many lava formations are built from this material. For example, silicic lava forms
the bulk of the lava domes that emerged after eruptions on Katmai and Mount
St. Helens, and which are shown in Figs. 7.1 and 7.2. These structures were
gradually built up by the slow effusion of lava from a smaller vent. Other lava
flows contain less silicates, such as the basaltic lavas of Mount Etna and Hawaii.
These lavas generally have both a smaller yield stress and viscosity, with the
result that they flow much more easily and create morphology more like that of
rivers, see Fig. 7.3.

Although we have models from non-Newtonian fluid mechanics at our dis-
posal for roughly describing some of the rheology of lava, it is still a formidable
task to solve the resulting governing equations – we have a non-isothermal,
three-dimensional evolving fluid flow with a free surface and strongly varying
material properties. Though this does not rule out full-scale numerical simula-
tion as an option, it does mean that such an approach is far from straightforward.
Moreover, because we do not completely understand all the input physics, one
can justifiably question the usefulness of embarking on such a difficult exercise.
Fortunately, lava flows are often relatively shallow, and as in other fields of geo-
physical fluid dynamics, one is tempted to exploit this attribute to build simpler
theoretical models describing the phenomena. The construction amounts to an
asymptotic expansion of the governing equations, and furnishes a “shallow-lava
theory.” This is entirely analogous to theories developed for avalanches, ice, mud
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Fig. 7.1. The Novarupta dome that formed after the 1912 Katmai eruption in Alaska;
the dome has diameter 800 ft and is 200 ft high. This photograph is courtesy of the
USGS/Cascades Volcano Observatory and further details regarding this dome and
others can be found at http://vulcan.wr.usgs.gov/home.html

Fig. 7.2. The lava dome inside the crater of Mount St. Helens. Photographs courtesy
of USGS

and debris flows, as described in other chapters in this volume. Here we describe
elements of a shallow-lava theory.

Theoretical modelling of this kind can be complemented by laboratory ex-
periments: extrusions in the laboratory with fluids that act as analogues of lava
provide a controllable visualization of the important fluid mechanics. The most
commonly used analogue fluids for isothermal flows are kaolin–water slurries
[2,3], which, as we saw in earlier chapters, are approximately Herschel–Bulkley
fluids. Later in this chapter we describe some experiments with such slurries.
These experiments nicely demonstrate some of the fluid dynamical effects present
in lava flows and which can be understood with the theory. Moreover, detailed
comparisons verify that, in the simpler isothermal limit, the theory compares
quantitatively with laboratory analogues. Non-isothermal experiments have also
been conducted using wax, syrup and slurries of wax and kaolin [4,5,6] – as de-
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Fig. 7.3. Two Hawaiian lava flows. Photographs courtesy of USGS

scribed in Chap. 6, these experiments have many common morphological features
with real lava formations.

We open our discussion with the derivation of the shallow-lava theory for
axisymmetrical, cooling lava domes. Our main aim is to summarize the equa-
tions that one needs to solve for cooling domes; this theory is also relevant in
some entirely different subjects, such as spreading non-isothermal fluids in chem-
ical engineering [7]. But when we deal with explicit solutions and experimental
comparisons, we retire to the simpler isothermal limit. After discussing isother-
mal domes, we switch problems and turn to isothermal lava flows on slopes. The
mathematical formulation is much the same, and we focus on a specific geological
issue – the creation of “levees” bordering downslope flows.

7.2 Mathematical Formulation

7.2.1 Governing Equations in Axisymmetrical Geometry

Our vision of the problem (Fig. 7.4) is one in which there is a vent centred at
the origin of a cylindrical polar coordinate system (r, θ, z). The material (lava
or analogue fluid) is extruded through the vent and then spreads out laterally
over a horizontal plate located on the plane z = 0. Assuming axisymmetry and
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incompressibility, the governing equations consist of conservation of momentum,

ρ (ut + uur + wuz) = −pr + ∂rτrr + ∂zτrz +
1
r
τrr (7.1)

and
ρ (wt + uwr + wwz) = −pz − ρg + ∂rτzr + ∂zτzz +

1
r
τrz , (7.2)

continuity,
1
r
∂r(ru) + wz = 0 , (7.3)

and the heat equation,

ρcp (Tt + uTr + wTz) =
1
2
τij γ̇ij + K

[
1
r
∂r(rTr) + Tzz

]
+ S . (7.4)

In these equations, the fluid motions are described by the velocity field (u, 0, w),
the pressure p, density ρ, and temperature T . Also, g is gravity, cp is specific
heat, K is the thermal conductivity, and S denotes any latent heat release on so-
lidification or crystallization in the material. The subscripts (r, z) denote partial
derivatives, except in the case of the stress components, τij , and then we use the
notation ∂r, and so on. The material variables, cp, ρ and K, could, in principle,
be temperature dependent, but for simplicity we treat them as constants.

z=Y(r,t)

z

u(r,z,t)

r

r

θ

Top:

Pseudo-plug

Yielding region

Radial velocity

Fake yield surface

Plate

Vent

Cross-section:

z=h(r,t)

r = r
*

Thickness,

Fig. 7.4. Sketch of an expanding dome

For the cooling problem of interest here, the main source of latent heat release
is through a gradual process of crystallization: Lava is a cocktail of different min-
erals, each crystallizing at a temperature that depends upon the composition.
As a result, lava solidifies not at a single temperature, but over a range bounded
by the “liquidus” and “solidus” temperatures (where the material is completely
fluid and a crystalline solid respectively). The crystal content (expressed as a
volumetric fraction, φ) varies throughout this range, and the resulting fluid struc-
ture can be very complex. Here, we ignore the complicated physical details of
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the solidification process and opt for a simple model in which the crystal content
is a known function of the temperature alone: φ = φ(T ). Then,

S = ρL(φt + uφr + wφz) ≡ ρLφT (Tt + uTr + wTz) , (7.5)

where L is the latent heat of crystallization and φT = dφ/dT .
As discussed in Chap. 2, we adopt the Herschel–Bulkley model for the rhe-

ology of the fluid:

τij =
(
Kγ̇n−1 +

τp
γ̇

)
γ̇ij for τ ≥ τp (7.6)

and
γ̇ij = 0 for τ < τp , (7.7)

where τp is the yield stress, K is the consistency and n the power-law parameter.
Also required are the second invariants of the stress and strain rate:

τ =
√
τijτij/2 , γ̇ =

√
γ̇ij γ̇ij/2 . (7.8)

We allow for the temperature and crystal dependence of the material by allowing
the consistency and yield stress to vary: K → K(φ, T ) and τp → τp(φ, T ).
We leave the precise dependences arbitrary, but sensible choices include the
Arrhenius law and the Einstein–Roscoe relation (Chap. 2). To derive a thin
layer model, we prescribe K(φa, Ta) = K∗ and τp(φa, Ta) = τp∗ as the values
evaluated at the crystal content, φa, and temperature, Ta, relevant to the ambient
conditions.

7.2.2 Boundary Conditions for Cooling, Expanding Domes

On the plate beneath the fluid (z = 0), we impose no-slip on the velocity field.
At the vent, we must modify this condition to account for the extrusion. This
leads to the boundary conditions,

u = 0 and w = ws(r, t) on z = 0 , (7.9)

where ws(r, t) is the vertical velocity of material exiting the vent. For simplicity,
we also prescribe the heat flux on z = 0:

KTz = ρ(cp − φT L)(T − Te)ws on z = 0 , (7.10)

where Te is the “eruption” temperature. This means that the plate is insulating
away from the vent, but the arrival of hot fluid generates an incoming heat flux.

The surface of the dome, z = h(r, t), is stress-free, and so

ht + uhr = w (7.11)

and (
τrr − p τrz

τzr τzz − p
)

z=h

(−hr

1

)
=

(
0
0

)
. (7.12)
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The thermal boundary condition incorporates surface cooling:

Kn · ∇T = −F (T ) , (7.13)

where n is the outward pointing normal. Various forms are possible for F (T ),
depending on the specific physical conditions. The simplest model is Newton’s
law of cooling: F (T ) = a(T−Ta), where a is a constant. For lava, if the dominant
heat loss is through thermal radiation, the Stefan–Boltzmann black-body law is
appropriate, although forced convection of heat by wind can also be appreciable
[8]. For the experimental slurries, domes are cooled by both conduction and
convection in overlying water, each characterized by some functional form for
F (T ) [6].

7.2.3 Thin-layer Theory

The full governing equations compose a system of coupled partial differential
equations with an evolving free boundary. One could embark upon a heavy
numerical simulation using, for example, finite element calculations. However,
given the relatively thin profiles of lava domes we are also primed for an asymp-
totic reduction using thin-layer theory. The aim of the theory is to reduce the
complexity of the equations, whilst still retaining the most important physics.

To perform the analysis, it is first expedient to non-dimensionalize the equa-
tions as follows: we take H, a characteristic thickness of the fluid layer, as the
dimension of the vertical coordinate, and L as a horizontal length-scale. We mea-
sure the velocities, u and w, by V and HV/L respectively, and time by L/V .
Then we set

r = Lr̃ , z = Hz̃ , u = V ũ , w = (V H/L)w̃ , (7.14)

t = (L/V )t̃ h = Hh̃ and p = ρgH p̃ ; (7.15)

the tilde decoration denotes the non-dimensional variables. The temperature
field is non-dimensionalized using the temperature drop between eruption and
ambient temperature:

T = Ta + (Te − Ta)Θ ≡ Ta +∆TΘ . (7.16)

Now, given our non-dimensional units, we may measure the stresses by the
quantity, ρgH2/L. However, units for the stresses can also be given based on the
constants of the constitutive model. As a result, there is a relationship amongst
the various units that we may choose to have the form,

V n =
ρgHn+2

K∗L
. (7.17)

This relation also reflects a balance of terms in the momentum equations (the
horizontal pressure gradient with the force from the vertical shear stress) which
is standard in “lubrication theory”.
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Thin-layer theory proceeds by introducing the scalings above into the gov-
erning equations and then taking the limit, H/L = ε → 0, with a number of
non-dimensional numbers held fixed [9]. To leading order, the governing equa-
tions become

pr − ∂zτrz = 0 , pz + 1 = 0 , (7.18)

1
r
∂r(ru) + wz = 0 (7.19)

and
Θt + uΘr + wΘz = κΘzz , (7.20)

where

κ =
(

1 − φT L
cp

)−1 KL
ρcpV H2

is a dimensionless, effective diffusivity (an inverse Peclet number) depending on
temperature. The acceleration terms disappear from the momentum equations
because the Reynolds number can be taken to be small (the flow is typically lam-
inar), and viscous heating can be ignored for lava and most laboratory analogue
fluids (the “Brinkman number” is small). The crucial parameter in the energy
equation is κ: If κ 
 1, the diffusive term is dominant in the energy equation,
and further asymptotic simplification follows [9]. This limit corresponds to rapid
heat diffusion, and in the lava literature this is sometimes called the thermally
mixed limit. However, for lava and many analogue materials, κ is order one, and
heat diffuses relatively slowly. In this circumstance, we are faced with dealing
with the heat equation as a partial differential equation at leading order.

The rescaling of the constitutive equation leads to

τrz =
1
γ̇

[A(Θ)γ̇n + B(Θ)]uz for B(Θ) < τ , (7.21)

uz = 0 for B(Θ) > τ , (7.22)

where
τ ≡ |τrz| and γ̇ = |uz| , (7.23)

and, given that φ = φ(Θ),

A(Θ) =
K(φ, T )
K∗

, B(Θ) = B
τp(φ, T )
τp∗

and B =
τp∗L
ρgH2 . (7.24)

The “Bingham number”, B, is a dimensionless measure of the yield stress.
The boundary conditions become

u = 0 , w = ws , κΘz = (Θ − 1)ws on z = 0 , (7.25)

and

ht + uhr = w , τrz = p = 0 , Θz = −αΘ on z = h(r, t) , (7.26)
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where α denotes the non-dimensional “cooling law”,

α(Θ) =
H

K∆T F (T ) . (7.27)

The momentum equations (7.18) can be integrated once:

p = h− z , τrz = −hr(h− z) , τ = (h− z)|hr| . (7.28)

The magnitude of the shear stress is measured by τ . This decreases from a
maximal value of τ(r, z = 0, t) = h|hr| on the base of the fluid, to zero on the
stress-free surface. If h|hr| < B[Θ(r, 0, t)], the fluid is not stressed sufficiently to
yield anywhere over its depth, and the dome is stationary. But, when h|hr| >
B[Θ(r, 0, t)], the fluid near the base of the dome must yield and flow. In this
case, because τ decreases with z to zero, there is a surface, z = Y (r, t), on which
τ = B, given by

Y (r, t) = h+
B[Θ(r, Y, t)]

hr
. (7.29)

Above this surface, the stress apparently fall beneath the yield stress, and so
the fluid is predicted to flow like an unyielded, rigid “plug” with uz = 0. This
result is surprising given that the dome is expanding – such spreading flows
are divergent, and so the fluid cannot be truly rigid. In the past this apparent
contradiction has mistakenly led to the belief that lubrication-style analyses of
the sort described here are not self-consistent. The mistake is to identify the flow
in z > Y (r, t) as a true “plug flow” – a more refined asymptotic analysis shows
that this region is actually weakly yielding [10], and sufficiently so to account
for the spreading of the dome. A better terminology is to refer to the weakly
yielding region as a “pseudo-plug.” (One sees this feature also in Chap. 22).

Equations (7.21) and (7.28) can now be combined into

uz =
{

−h(1−n)/n
r [A(Θ)]−1/n(Y − z)1/nhr z < Y (r, t)

0 z ≥ Y (r, t)
(7.30)

(at least to leading order), which means that the flow is approximately parabolic
in the lower, yielding region and constant in the pseudo-plug (see the definition
sketch in Fig. 7.4).

We next integrate the continuity equation (7.19) in z, using the boundary
conditions at the surface and base, to obtain an evolution equation for the height
h(r, t):

ht +
1
r
∂r (rU) = ws , (7.31)

where

U(r, t) =
∫ h

0
udz = σh2|hr|1/n

∫ η

0

(1 − ζ)(η − ζ)1/n

[A(Θ)]1/n
dζ , (7.32)

with σ = sgn(hr) and η = Y/h (ζ ≡ z/h). Because η depends on temperature,
we cannot integrate this equation without solving the energy equation (7.20),



172 N.J. Balmforth, A.S. Burbidge, and R.V. Craster

and we cannot evolve that equation without knowing h(r, t) and the velocity
field. Thus, our shallow-lava theory now grinds to a halt analytically, leaving a
coupled, integro-differential system for h(r, t) and Θ(r, z, t). Though this system
is still rather complicated, it is simpler than the original governing equations.

7.3 Isothermal Domes

7.3.1 Shallow Isothermal Domes

The shallow-lava theory simplifies significantly if the temperature dependence
of the fluid drops out of the problem. Such is the case if the fluid did not have
time to cool, or cooled to the ambient temperature immediately. Then we may
omit the heat equation and set A = 1 and B = B, leaving only a single evolution
equation for the height field:

ht +
1
r
∂r (rU) = ws , U = −nηh

2(1 + 2n− nη)
(n+ 1)(2n+ 1)

|hhrη|1/nsgn(hr) , (7.33)

where η = Max(1 −B/|hhr|, 0).
Representative solutions of these equations are shown in Fig. 7.5 for n =

1 and an influx given by ws = 0.1 Max(r2∗ − r2, 0), where r∗ = 0.15 is the
dimensionless vent radius. We also pre-wet the plate beneath the dome (by
taking initial conditions with h(r, t) small but everywhere finite) in order to
avoid mathematical complications associated with contact lines at the rim of
the dome. Figure 7.5 shows the height and yield surfaces for three values of
the Bingham number B. Newtonian-like domes (with B � 1, as in panel (a))
spread laterally much further than yield-stress-dominated domes (with B ∼ 0.1
or larger, as in panel (c)); the latter rise to greater heights due to the conspiracy
between the viscous and yield stress.1

For Newtonian domes (B = 0), η = 1, and one can find a similarity solution
to the thin-layer equations for point sources [11]. This solution predicts that
R(t) ∼ t1/2 and h(0, t) ∼ t0, which also follow directly from dimensional scaling
analysis of the full governing equations [4].

In yield-stress dominated domes, only a thin fluid layer near the base yields.
Hence, η → 0, giving h ≈ −B/hr, and then

h =
{√

2B(R− r) r < R
0 r > R .

(7.34)

1 Formally speaking, the thin-layer theory is not valid at the vent, where hr → 0, and
at the rim, where radial gradients become as sharp as vertical ones. The condition
hr(0, t) = 0 also leads to the curious behaviour of the apparent yield surfaces in Fig.
7.5 near r = 0. Neither problem is especially important to the overall evolution of
the dome. A similar difficulty arises in shallow-ice theory, and a later chapter by
Hutter is partly motivated by them.
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Fig. 7.5. Evolution of the height field, h(r, t), together with the “yield” surface, Y (r, t)
(shown by the dotted lines) for various values of B; snapshots of the solution are shown
every 500 time units. In panel (a), B = 10−5 and the dome is effectively Newtonian.
For panel (b) B = 0.01, and the dome in panel (c) with B = 0.1 is dominated by the
yield stress

The time rate of change of the radius, R(t), is dictated by the mass conservation
law,

d
dt

∫ ∞

0
h(r, t)rdr =

∫ ∞

0
ws(r, t)rdr . (7.35)

With a constant inflow rate, Q,

R(t) =
1

(2B)1/5

(
15Qt
8π

)2/5

, h(0, t) = (2BR)1/2 , (7.36)

an asymptotic result also deduced by Nye [12].
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7.3.2 Restoring the Dimensions

One convenient test of a theory is how it compares to experiments designed as
laboratory analogues. To generate such theoretical comparisons, we must first
restore the dimensions in our numerical solutions, thus reversing our earlier non-
dimensionalization. To do this we need to estimate the physical length scales, L
and H, and the characteristic velocity, V . In the experiments, we fix the vent
radius, R∗, and set the extrusion rate, Q. These values can be compared to
the dimensional vent radius, r∗L = 0.15L, and extrusion rate, 0.05πr4∗LHV ≈
8×10−5LHV , used in the computations. Hence, L = 1 cm andHV = 1.26×106Q
(with Q in mks units). We also have the relation (7.17), from which it follows
that

H =
(
KL

ρg

)1/(n+2) (
1.26 × 106Q

)n/(n+2)
. (7.37)

This allows us to compute H, V and B given ρ, Q and the rheological parameters
of the fluid, and thereby reconstruct the dimensional radius, height and time.

7.3.3 Experiments

The experiments have an uncomplicated design consisting of a piston that ex-
trudes a controlled volume flux of slurry onto a horizontal plate. For the domes
that then form (which were always axisymmetrical), we record the radius and
height above the vent. The slurry is a suspension of kaolin (Dry Branch Kaolin
Company) in de-ionized water, and different mixtures of water and kaolin are
used in order to vary the rheological parameters. For each mixture, we fit the
rheological data using a Herschel–Bulkley model; the rheological properties of
the slurries are summarized in Table 2.1 and Fig. 2.2 of Chap. 2. A variety of
(time-independent) flow rates, Q, is also used; we quote results for the fastest
and slowest of these (0.18 cm3/s and 0.54 cm3/s).

The heights and radii are shown versus time in Fig. 7.6 and 7.7 for kaolin–
water slurries mixed in the ratio 0.6:1 and 0.8:1 by weight. The theoretical curves
from the shallow lava theory are added for comparison, and are in fair agreement.
The dome heights compare least favourably, but this should be tempered by the
fact that there were some experimental difficulties in taking this measurement.
The figures also show the asymptotic result for large yield stress (Nye’s theory),
which overestimates the radii and underestimates the heights (Blake [3] uses an
empirical correction to account for this error). More paste-like materials with
kaolin to water ratios of 1:1 and 1.2:1 were modelled with similar accuracy by
the thin-layer theory. Typically these had larger Bingham numbers, ∼ 0.19, and
were also adequately modelled using Nye’s solution.

In Chap. 2 we mentioned that kaolin slurries show some hysteresis in their
stress-strain-rate relations, suggesting that the fluid microstructure does not
reform in the same way as it is destroyed. In the extrusion experiments, the
microstructure disintegrates as the fluid is pushed up the vent, and then re-
forms as the dome spreads and the stresses gradually decline. This means that
the “down-curve” is most suitable for modelling the experiments. We illustrate
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Fig. 7.6. Experimental and theoretical comparisons of dome radii for kaolin–water
domes. The solid line gives the result found from shallow lava theory, the circles are
the experimental data and the dot-dash line is Nye’s result for large B. The values of
B are estimated as described in Sect. 7.3.2

the importance of this choice by using another material, Celacol (Courtaulds),
also described in Chap. 2, that shows pronounced hysteresis. The comparison
between theory and experiment for this material is shown in Fig. 7.8. The two
are in agreement only if rheological data from the down curve are used to fit
the parameters of the Herschel–Bulkley model; use of the data from the “up-
curve” leads to significant disagreement. Evidently, the best model for Celacol
would be one accounting for hysteresis, but if we insist on using a model like
Herschel–Bulkley we should exercise care in interpreting the rheological data.

7.4 Flows on Inclined Planes

7.4.1 Shallow Flow Dynamics

If the plate beneath the fluid is inclined, the circular symmetry of an expanding
dome is broken. Instead, the fluid slumps downslope, leading to elliptical domes
for low inclinations, and fully fledged channel flows on larger slopes. We now turn
to a theoretical consideration of these structures, again specializing to isothermal
conditions.

To generalize the theory it is first helpful to consider a new, Cartesian co-
ordinate system, (x, y, z), in which z = 0 again coincides with the base of the
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fluid, which is now on an inclined plane. As shown in Fig. 7.9, we also take
the coordinate x to lie in the downslope direction, and φ to be the angle of the
plane’s inclination from the horizontal. From here we could again write down
the governing equations, non-dimensionalize, expand asymptotically, and finally
arrive at a relevant thin-layer model [10] (see also Chap. 22). We will not go
through the details here, and instead offer some simple arguments that indicate
how we should generalize (7.33).

Y(x,y,t)

h(x,y,t)

x
g

z

φ

y

x

Top view:

Cross-section:

Pseudo-plug

Yielding region

u(x,y,z,t)

v(x,y,z,t)

u(x,y,z,t)

Fig. 7.9. Sketch of a flow on an inclined plane. φ is the angle of inclination

The key feature of the thin-fluid dynamics is that thickness variations drive
a flow that is down-gradient with respect to the height field: U ∼ −|hr|1/n−1hr.
A natural generalization is therefore to introduce an analogous depth-integrated
lateral velocity, V, and take (U ,V) ∼ −s1/n−1(hx, hy), where s =

√
h2x + h2y is

the mean surface gradient. This naturally accounts for the shape of the fluid,
but not the background slope, which also forces flow in the x−direction. To take
account of the slope we make the replacement hx → hx −S, where S = ε−1 tanφ
is a measure of the slope relative to the fluid’s typical aspect ratio (assumed to
be order one, so that the slope must be sufficiently gentle). Thence, with other
dependences as before,

ht+Ux+Vy = ws ,

(U
V

)
=
nηh2(sηh)1/n(1 + 2n− nη)

s(n+ 1)(2n+ 1)

(
S − hx

−hy

)
, (7.38)

with

η = Max
(

1 − B

hs
, 0

)
and s =

√
(S − hx)2 + h2y (7.39)

(once again, ws denotes the extrusion speed above any vents and Y = hη is the
fake yield surface), which also results from a proper expansion (see Chap. 22).
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7.4.2 Inclined Domes

Experiments illustrating how domes slump downhill and lose symmetry are
shown in Fig. 7.10. The slurry used in these experiments is a mixture of wa-
ter and “joint compound” (a commonly available, kaolin-based material). Some
more careful experiments with a true kaolin slurry are shown in Chap. 6 and
explored further in [15].

Fig. 7.10. Slumped domes on inclined planes. Shown are domes on slopes with in-
clinations of roughly 0, 10 and 20 degrees. The slurry, a mixture of water and “joint
compound” (a kaolin-based material that is commonly available at hardware shops), is
fed onto the plane through a narrow tube from a reservoir held just above. An inclined
mirror at the top of each pictures gives a side view of the domes. For the second two
domes, a marker indicates the position of the feeder from the reservoir

To compare with experimental images like these we solve the thin-layer equa-
tions numerically. As for symmetrical domes we take ws = 0.1 Max(0.152−r2, 0),
and use a numerical scheme: VLUGR2 [16]. One such computation is shown in
Fig. 7.11. This shows a dome with B = 0.01 and n = 1 on a slope with S = 0.5.
As indicated by the fake yield surfaces, this dome is not far from being New-
tonian. The yield stress has most effect upstream of the vent where the fluid
becomes almost stationary over longer times. The overall appearance of the
dome is similar to the experimental pictures.

When η → 0 (large B), and the dome is dominated by yield stress, the thin-
layer model simplifies substantially. From the condition, η ≈ 0, we obtain the
nonlinear first-order partial differential equation,

(S − hx)2 + h2y = B2/h2 . (7.40)

This simpler equation determines the structure of domes that are either domi-
nated by the yield-stress, or slump to rest at the termination of an extrusion. We
can solve the equation using Charpit’s method [14]: First we scale the equations
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Fig. 7.11. Slumped domes on inclined planes, computed numerically using the thin-
layer model. The top row of pictures show three snapshots of the domes at times 333,
666 and 1000. Directly below are the corresponding height profiles and yield surfaces
along the midsection (y = 0). The lower panels show a sequence of curves showing the
dome’s edge (the curves show the edge every 6.66 time units), and the evolution of the
cross-stream half-thickness (Ys), the downslope and upslope lengths (Xl and Xu), and
the maximum height (H)

to eliminate some distracting constants; set

X = Sx/H , Y = Sy/H , h = Hu and b = B/(HS) , (7.41)

where H is the dome height at x = y = 0. Then,

(1 − uX)2 + u2Y =
b2

u2
. (7.42)
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Following the convention usually used for nonlinear partial differential equations,
we set p = uX and q = uY , and write the characteristic equations as:

Ẋ = 2(1−p) , Ẏ = −2q , u̇ = 2p(1−p)−2q2 , and
ṗ

p
=
q̇

q
=

2b2

u3
, (7.43)

in which the dot denotes differentiation with respect to the independent variable,
τ , the coordinate along each characteristic curve. Suitable initial conditions at
τ = 0 are u = 1 at X = Y = 0, together with parameterized conditions for p
and q that satisfy (7.40) at u = 1. Two relations follow straightforwardly from
the characteristic equations:

q = ap and aX − Y = 2aτ , (7.44)

where a is a constant of integration that parameterizes the initial data. We use
the second relation of (7.44) to eliminate τ = (aX−Y )/2a. Two further integrals
then provide the implicit solution,

X = −
∫ 1

u

[1 − p(û)]dû
p(û)[1 − p(û)(1 + a2)]

, Y = a
∫ 1

u

dû
[1 − p(û)(1 + a2)]

, (7.45)

in which we can exploit the original equation (7.42) to write

p(u) =
u± √

b2(1 + a2) − u2a2
u(1 + a2)

, (7.46)

The ambiguity in the construction of p(u) arises because there are two possible
solutions for u(X,Y ), one upslope and the other downslope of a special curve
on the (X,Y )−plane. The functions Φ(u, a) and Ψ(u, a) have analytical, though
convoluted, expressions that we shall not burden the reader with.

Explicit solutions follow for a = 0 and a
 1: For a = 0, Y = 0 and

X =
{
u− 1 + b log[(u− b)/(1 − b)], X > 0
u− 1 − b log[(u+ b)/(1 + b)], X < 0, (7.47)

as in [15] (see also Chap. 6 and [17]). For a
 1,

X = −1 + u− b

2
log

[
(b− 1)(b+ u)
(b+ 1)(b− u)

]
(7.48)

and
Y = ±

(√
b2 − u2 −

√
b2 − 1

)
. (7.49)

This second second curve is the junction dividing the two pieces of the solution
for u(X,Y ).

Sample solutions are shown in Fig. 7.12. As b → 1, the domes are increasingly
slumped (b ∝ S−1, so a decrease in b corresponds to an increase of the slope).
The limiting solution for b → 1 is shown in Fig. 7.13. The solution does not
work if b < 1, indicating that the dome is no longer able to support itself against
gravity.
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Fig. 7.12. Contours of constant height for yield-stress dominated domes on sloping
planes. The dotted curves show the junction between the two parts of the solution
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Fig. 7.13. Contours of constant height for the limiting shape as b → 1. Also shown is
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relation of (7.47), and the thickness profile in Y far downstream (X � 1), which is a
semicircle
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7.4.3 Streams and Hulme’s Solution

When the slope is larger, the fluid flows downhill and forms a coherent stream
rather than a slumping dome. Such streams are often observed for basaltic lavas,
and, aside from explosive eruptions, are one of the most pictured volcanic phe-
nomena. Such observations prompted Hulme to write down an approximate solu-
tion for one-dimensional flow down an inclined plane [2]. Argued more from plau-
sibility than mathematical deduction, Hulme’s model assumes that the stream
is composed of a central flowing core flanked by stationary “levees”, as illus-
trated in Fig. 7.14; the flow is purely downhill, and there is no variation in the
downslope direction. By assuming that the levees were composed of fluid that
naturally came to rest as the flow settled to its asymptotic state, Hulme further
argued that the levees should be supported by stresses that were precisely at the
yield value. This leads to the important conclusion that one can use observations
of the shape of the levee to estimate the yield stress, a fact frequently exploited
by volcanologists. However, Hulme’s solution has lately been criticized [18], and
so we briefly consider its merits.

LeveeLevee Flowing core

Fig. 7.14. Sketch of Hulme’s solution for flow down an inclined plane

Because thin-layer theory is significantly simpler than the governing equa-
tions, one can easily look for solutions of the model that correspond to Hulme’s.
If we insist that the flow is purely downhill and varies only with y, then one
concludes that

V = hy = 0 , h = 1 , η = 1 − B

S
and s = S , (7.50)

in regions where the fluid yields. That is, a uniform flow. In the levee, on the
other hand, the fluid is on the brink of yielding, which implies that η = 0, or

B = h
√
S2 + h2y ≥ SHl , (7.51)

where Hl is the maximal thickness of the levee. Unless Hl < 1 (and the levee
is shallower than the core), this contradicts the flowing solution which requires
that η = 1 − B/S > 0. In other words, one cannot connect the central flowing
channel with the stationary levee. This difficulty is not simply a problem with
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thin-layer theory – even if one begins from the governing fluid equations, Hulme’s
construction still appears to be impossible for the same reasons.

The problem with Hulme’s construction is that it uses a one-dimensional
version of the Bingham fluid model, and consequently does not have the correct,
two-dimensional yield criterion: Hulme shapes the levee according to Nye’s so-
lution, B = |hhy|, which predicts a parabolic profile, rather than (7.51) (which
indicates the profile far downstream is semicircular – see Fig. 7.13). In other
words, one assumes that the lateral structure of the levee is the same as the
shape the fluid would take on a flat plane – the yielding induced by the down-
stream flow is ignored. When one takes the extra degree of yield into account,
one is led to the inescapable conclusion that, if the levees are to remain as thick
as the main channel, the shape of the levees forces lateral flow.

A simple demonstration that the downstream flow affects the lateral shape
is afforded by the following experiment with kaolin slurry: We allow a corridor
of fluid to slump laterally to a static equilibrium on a horizontal plate. We then
tilt the plate in the direction of the central axis of the fluid to create a channel
flow. As shown in Fig. 7.15, the main effect of the flow is to allow further lateral
spreading of the fluid (except near the upper end of the column, where the
thickness remains roughly the same, but some of the fluid drains away). Note
also the creation of streamwise flow dependence.

Fig. 7.15. Photographs from an experiment in which a column of viscoplastic fluid (a
mixture of water and joint compound) was first allowed to slump to rest on a horizontal
plane (first panel). The plane was then tilted at an angle of roughly 25 degrees and
as fluid flowed downhill, the column spread laterally and downstream (second panel).
The two photographs have the same scale

Because of the theoretical difficulties with Hulme’s model, Coussot & Proust
suggested another solution taking account of the true yield criterion: Let the flow
be independent of time, but not of the streamwise coordinate, x. The thin-layer
model equations then become

[F(S − hx)]x = [Fhy]y , F =
nηh2(sηh)1/n(1 + 2n− nη)

s(n+ 1)(2n+ 1)
, (7.52)

with η and s as before, and assuming no vertical mass flux (the source of fluid
is upstream). Because there is now streamwise variation, the free surface is not



184 N.J. Balmforth, A.S. Burbidge, and R.V. Craster

necessarily flat, and Coussot & Proust [18] construct solutions with some corre-
spondence with experiments (see also [19]). Actually, Coussot & Proust do not
use the full equation (7.52), but an approximation obtained by neglecting hx

and hy in comparison with S. Thus s becomes S and we arrive at the parabolic
equation SFx = [Fhy]y, with F as above and η = Max(1 − B/Sh, 0). This ap-
proximation cannot be accurate at the edges of the stream where the gradients
of h(x, y) diverge, but these regions are also where the thin-layer model breaks
down.

The analytical solution pictured in Fig. 7.13 shows similar features to Cous-
sot & Proust’s downstream spreading flows. Further numerical computations are
shown in Fig. 7.16. In this case, with B = 0.06 and S = 2, the fluid immedi-
ately slumps downhill without forming a dome, and creates a gradually widening
stream.

A laboratory illustration of a stream flow is shown in Fig. 7.17. This inclined
flow has well-defined levees bordering the flow but also spreads laterally with
distance downstream. Similar features can be seen in Osmond & Griffiths’s domes
(Chap. 6 and [15]). Thus, although Hulme’s “solution” is not actually a solution
of the equations, the image is not entirely wrong: the stationary levees supported
by stresses at the yield value do exist – Hulme’s precise construction is invalid
because the flow spreads downstream and the levees are not shaped according to
Nye’s solution. Thus Hulme’s image is qualitatively correct, if not quantitatively.

Although the final conclusion is that Hulme’s solution is in error, the ram-
ifications in geology regarding estimations of yield stress are probably inconse-
quential: Rheological measurements of lava are exceptionally difficult because of
its extreme temperature, and it is probably fair to say that actual values of the
yield stress are not known to within orders of magnitude. Hence, although the
correction to the shape of the levee given the slope S will certainly change the
inferred value of the yield stress by an order one amount, this is insignificant
in comparison to other rheological uncertainty. Osmond & Griffiths [15] discuss
further how to infer yield stresses given the proper yield condition.

7.5 Concluding Remarks

The purpose of a thin-layer theory is to reduce the full, governing fluid me-
chanical equations to a more manageable form. For non-isothermal lava flows,
because heat conduction occurs relatively slowly, the thin layer theory remains
fairly complicated, as in shallow-ice theories. However, the reduced equations
contain all the relevant physics in a concise form, and filter out any compli-
cating, but inessential details. The analogue experiments for isothermal domes
show that thin-layer theory is accurate over a wide range of extrusion rates and
rheological parameters. Some related experiments, with fluid flowing down an
inclined plane (and performed to test similar theory for mud flow), show a com-
parable degree of agreement [13]. Hence shallow-fluid theory appears to be a
useful route to take whilst modelling geophysical viscoplastic fluids.
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Fig. 7.16. A flow down an inclined planes, computed numerically using the thin-layer
model. The top row of pictures show three snapshots of the domes at times 333, 666
and 1000. Directly below are the corresponding height profiles and yield surfaces along
the midsection (y = 0). The lower panel shows a sequence of curves showing the dome’s
edge (the curves show the edge every 6.66 time units)

Fig. 7.17. Photographs from an experiment in which viscoplastic fluid (a mixture of
water and joint compound) was extruded onto a sloping plane (inclined by roughly
30 degrees). Shown is the final shape after the extrusion was terminated and the fluid
allowed to come to rest on the plane



186 N.J. Balmforth, A.S. Burbidge, and R.V. Craster

There are several extensions to the theory that must be pursued for a de-
scription of lava flows, and the subject is rich with problems to examine. For
example, it is essential to solve the non-isothermal problem outlined at the be-
ginning of this article. But there are several other issues that we have not dwelt
upon here, such as the detailed mechanics at the edge of the fluid where the
flow over-rides the substrate. Notably, the analogue experiments should also be
taken further, and theoretical computations should be compared systematically
with non-isothermal extrusions.

Beyond the formulation and testing of a shallow-lava theory lies the applica-
tions to real geological problems. The shallow-lava theory provides a computa-
tionally convenient tool to analyze lava flows in geological settings. For example,
one might wish to predict the direction of a lava flow over complex terrain and
assess possible hazards. Alternatively, the goal may be to predict which lava
domes are most likely to allow the internal build up of hot gas, which could
lead to structural failure, explosions and pyroclastic flows (Chap. 8). Of course,
we already have some answers to such questions, based on cruder theoretical
models (such as approximating the lava as an isothermal viscous fluid) or quali-
tative arguments (for example, if the lava has a yield stress, a dome can sustain
large internal pressures, thus trapping gas within the dome). The real question
is whether our more quantitative modelling has any advantage over these sim-
pler arguments, given the uncertainties, idealizations and approximations in the
theory. We cannot answer this particular question until we have fully formulated
a usable non-isothermal shallow-lava theory, but the hope is that the theory will
significantly improve our predictive capabilities, and place the modelling of lava
flows on a more solid foundation.
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