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2.1 Introduction

Non-Newtonian fluid mechanics is a vast subject that has several journals partly,
or primarily, dedicated to its investigation (Journal of Non-Newtonian Fluid
Mechanics, Rheologica Acta, Journal of Fluid Mechanics, Journal of Rheology,
amongst others). It is an area of active research, both for industrial fluid prob-
lems and for applications elsewhere, notably geophysically motivated issues such
as the flow of lava and ice, mud slides, snow avalanches and debris flows. The
main motivation for this research activity is that, apart from some annoyingly
common fluids such as air and water, virtually no fluid is actually Newtonian
(that is, having a simple linear relation between stress and strain-rate character-
ized by a constant viscosity). Several textbooks are useful sources of information;
for example, [1,2,3] are standard texts giving mathematical and engineering per-
spectives upon the subject. In these lecture notes, Ancey’s chapter on rheology
(Chap. 3) gives further introduction.

Non-Newtonian fluids arise in virtually every environment. Typical exam-
ples within our own bodies are blood and mucus. Other familiar examples are
lava, snow, suspensions of clay, mud slurries, toothpaste, tomato ketchup, paints,
molten rubber and emulsions. Chemical engineers, and engineers in general, are
faced with the (often considerable) practical difficulties of modelling a variety of
industrial processes involving the flow of some of these materials. Consequently,
much theory has been developed with this in mind, and our aim in this review is
to guide the reader through some of the developments and to indicate how and
where this theory might be used in the geophysical contexts.

2.2 Microstructure and Macroscopic Fluid Phenomena

Most non-Newtonian fluids are characterized by an underlying microstructure
that is primarily responsible for creating the macroscopic properties of the
fluid. For example, a variety of non-Newtonian fluids are particulate suspensions
– Newtonian solvents, such as water, that contain particles of another mate-
rial. The microstructure that develops in such suspensions arises from particle–
particle or particle–solvent interactions; these are often of electrostatic or chem-
ical origin.
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A common example of such a suspension is a slurry of kaolin (clay) in water.
Kaolin particles roughly take the form of flat rectangular plates with different
electrostatic charges on the faces and on the sides; their physical size is of the
order of a micron. In static fluid, the plates stack together like a giant house of
cards. This structure becomes so extensive that the electrostatic forces that hold
the structure together engender a macroscopic effect, namely the microstructure
is able to provide a certain amount of resistance to fluid flow [4].

Of course, the image of the kaolin structure within the slurry as a giant house
of cards is a gross idealization. Undoubtedly, the kaolin forms an inhomogeneous,
defective structure with a variety of length scales. Nevertheless, the important
idea is that microstructure can lead to macroscopic observable effects on the flow
of the fluid. For the kaolin slurry, we anticipate that microstructure adds to the
resistance to flow provided the shearing (rate of deformation) is not too great.
However, once the fluid is flowing and shearing over relatively long scales, the
microstructure must disintegrate – the house of cards collapses. Thus, for greater
shearing (larger rates of deformation), the fluid begins to flow more easily. This
macroscopic, non-Newtonian effect of “shear thinning” is well documented and a
key effect in suspension mechanics. The crudest model of the phenomenon is to
make the fluid viscosity a decreasing function of the rate of strain. In this simple
departure from the regular fluid behaviour, one then makes the shear stress
a nonlinear function of the strain rate. This is an example of a “constitutive
law”; we elaborate further on such laws soon, but first we continue with a brief
discussion of other non-Newtonian effects.

If the concentration of kaolin is sufficiently high, the microstructure can pro-
vide so considerable a resistance to deformation that material does not flow at
all until a certain amount of stress is exerted on the fluid. At smaller stresses,
the fluid behaves like an elastic solid, and simply returns to its original state if
the applied stress is removed. Above the critical stress, the “yield stress”, the
material begins to flow. Materials exhibiting yield behaviour are said to behave
plastically, and when they flow viscously after yield, the terminology viscoplastic
is often used.

The kaolin–water slurry is what one might call a “pure” form of mud. But,
when the mud is less pure, and contains numerous embedded particles, grains
or boulders with widely varying sizes (as in most geophysical conditions), the
clay particles still form microstructure, with the attendant macroscopic effects.
Hence muds are a classic example of a geophysical viscoplastic fluid. But there
are also other geophysical materials with microstructure. For example, snow
flakes, through a process of partial melting and refreezing, act to form a static
coherent structure; this is relevant when considering avalanches, see also Chap.
13. And lava has a microstructure of bubbles and silicate crystals suspended
within a hot viscous solvent.

Shear thinning and yield stresses are common effects in particle suspensions,
but they are not the only type of non-Newtonian behaviour we can encounter.
Another type of behaviour arises in polymeric fluids. Here, the fluid is laced
with high molecular weight deformable molecules (polymers), whose length can



36 N.J. Balmforth and R.V. Craster

be so long that the collective effect of the deformations of individual molecules
affects the flow. Notably, because polymers coil and entangle themselves and
their neighbours through weak molecular interactions (such as hydrogen bond-
ing), they provide an effective elastic force that resists flow deformations which
separate, straighten and stretch them. Moreover, because the forces produced by
molecular rearrangements depend on their original orientations, polymeric fluids
can also display significant memory dependence; that is, the fluid “remembers”
the way in which it has been deformed. The macroscopic consequence is that the
fluid can display highly elastic effects, such as the recoil of the fluid back into a
container after it has begun to pour out of it.

Some of the effects of such “viscoelasticity” can be rather weird and surpris-
ing, and in all discussion of such fluids it is customary to mention a few examples:
The Weissenberg effects [5] include die swell [6,7], wherein fluid emerges from a
pipe and then undergoes a subsequent and sudden radial expansion downstream,
and rod climbing, where the free surface of a rotating fluid rises up around the
rod forcing it into motion (the surface of a Newtonian fluid would be depressed
there). In the flow of a viscoelastic liquid down an open channel, the free sur-
face bulges slightly to create a rounded fluid profile [8]. Viscoelastic flow past
a bubble [9] leads to a distinct cusp at the rear stagnation point due to a long
filament of highly stretched polymers in the bubble wake.

An important point that one should take from this discussion is that non-
Newtonian fluid effects can be varied and unusual. As a result, the literature on
non-Newtonian fluid mechanics contains many models of suspensions and poly-
meric fluids, each adding or encapsulating some observed effect. Unfortunately
many of these models are designed with precisely one set of effects in mind and
none adequately deal with the general non-Newtonian fluid. Consequently, be-
cause non-Newtonian effects all typically stem in some way from the underlying
fluid microstructure, one should keep the microscopic physics in mind whilst
negotiating one’s way through the minefield of rheological models to which we
now give some introduction.

2.3 Governing Equations

To begin, we must first describe the continuum approximation that underlies
the models to be discussed here. This continuum approximation assumes that
the dimensions of the flow fields we are considering, with lengthscale L, are far
greater than the lengthscale of the microstructure of the fluid l; that is, L � l.
Given this continuum hypothesis we can derive the governing equations for a
fluid using conservation of mass and examining the rate of change of momentum
within a volume of fluid with lengthscale L. If the fluid is incompressible, mass
conservation yields

∇ · u = 0 , (2.1)
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where u denotes the Eulerian velocity field (here we shall only consider incom-
pressible fluids). Conservation of momentum leads us to

�
Du
Dt

= ∇ · σ + F , (2.2)

where the fluid density is �, the convective derivative is D/Dt ≡ ∂/∂t + u · ∇,
the stress tensor is σ ≡ {σij}, and F denotes a body force, such as gravity. For
incompressible fluids, the stress tensor is conveniently split into an isotropic piece
−pI, where p is the pressure field, and a remainder, here denoted by τ ≡ {τij},
called the deviatoric stress tensor. Thus,

σ = −pI+ τ or σij = −pδij + τij , (2.3)

and the momentum equation becomes

�
Du
Dt

= −∇p+ ∇ · τ + F . (2.4)

So far, apart from the continuum hypothesis, and for brevity and practicality
assuming incompressibility, we have not made any statement about the fluid
itself; mass conservation and the momentum equation are valid for all fluids.
Thus the development so far parallels that of a Newtonian fluid, much as can be
found in textbooks such as [10].

To produce a closed model, we must further specify how the deviatoric stress
tensor τij is related to the properties of the fluid. Many non-Newtonian fluid
models do this by relating the deviatoric stress to the rate-of-strain tensor, γ̇ij ,
here defined as

γ̇ = ∇u+ (∇u)T or γ̇ij =
∂ui

∂xj
+

∂uj

∂xi
; (2.5)

where the superscript T denotes the transpose (some other authors use a mi-
nor variation with an extra factor of 1/2). Further variables are also sometimes
included, such as the strain tensor γij (which arises in linear elasticity), temper-
ature, pressure, or particulate concentration. The relationship between τij , γ̇ij

and any other variables is the constitutive relation of the fluid, and closes the
set of governing equations. This relation is the key ingredient to non-Newtonian
fluid models and contains all of the fluid microphysics; unsurprisingly, the consti-
tutive law can be extremely complicated. Indeed, there is considerable freedom
in deciding how the fluid behaves due to changes in its deformation (the in-
stantaneous strain, strain rates or strain history), or the behaviour due to its
surroundings (such as temperature or pressure).

If the fluid is temperature-dependent and in a situation where the tempera-
ture can change, as is often the case for ice or lava flows, then we also require an
energy equation. This equation describes, for example, how mechanical energy is
converted by molecular friction into heat. Such frictional heating is often negli-
gible in many fluid problems – after all we do not heat cups of coffee by stirring
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them. But in ice flows, this effect can be important (see Chap. 11). Of much more
importance in general fluid problems, however, is that a change in temperature
can affect the fluid microstructure. This may give rise to magnitudes of variation
in macroscopic material properties. Indeed, many fluids are Newtonian at fixed
temperature, but have viscosities that are dramatically affected by temperature
changes, as spreading golden syrup upon hot toast will demonstrate.

The energy equation is:

�c
DT
Dt

=
1
2
τij γ̇ij + ∇ · (K∇T ) . (2.6)

The parameters c and K are the specific heat (at constant pressure or volume, as
the fluid is incompressible) and conductivity. In deriving this equation we have
assumed that the thermal expansion coefficient for the fluid is negligible, and
we have ignored other energy sources or sinks, such as from plastic or elastic
work, or from inelastic collisions between particles within the microstructure.
The energy equation describes how the temperature field evolves in the fluid as
a result of advection, diffusion and frictional heating. Such thermal evolution
subsequently affects fluid microstructure and, thence, material properties. In
turn, this modifies the fluid flow according to the constitutive law.

2.4 Constitutive Models

Newtonian fluids are characterized by an isotropic microstructure of passive
spherical molecules that do not chemically interact with one another. The con-
stitutive law is particularly simple: the deviatoric stress is linearly proportional
to the rate of strain and the coefficient of proportionality is the viscosity, µ. Thus

τij = µ γ̇ij ,

and (2.2) reduces to the more familiar Navier–Stokes equation,

�
Du
Dt

= −∇p+ µ ∇2u+ F .

For non-Newtonian fluids the constitutive relations can be much more compli-
cated and must be built to reflect the macroscopic properties engendered by
the fluid microstructure. There are several ways in which one goes about this
construction; here we mention four different styles.

The first kind of approach is theoretical and “kinetic”: one assembles a model
of the molecular anatomy of the fluid and then builds a kinetic theory for the
fluid microstructure. Sometimes, this goes by way of an investigation of the
flow around a single idealized model polymer, or emulsion droplet, and then
the generation of the appropriate constitutive equation for a dilute suspension
via an averaging procedure [11]. But other routes are also possible, including
the representation of the fluid microstructure as a regular lattice or network of
interacting elements [12]. These theories furnish a fluid model directly from the
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input microscopic physics, and in an idealized world would be the most sensible
approach. Unfortunately, such kinetic approaches have only recently become
possible, and even then only for very simple fluids. Moreover, the mathematics
behind them is often based upon physical approximations rather than asymptotic
analysis. The problem is that it is currently technically impossible to build a
kinetic theory for anything more than a very simple range of molecular models.
For example, a popular model in visco-elasticity is a perfect network of identical
elastic rods. But real fluids never conform to the idealizations necessary in order
to fabricate kinetic theories, and even the simplest of such theories can lead to
constitutive laws with very convoluted forms. Nevertheless, much progress has
been made in the recent non-Newtonian fluid literature in this direction.

A second style of approach is purely phenomenological: one simply writes
down a convenient model equation that represents how one imagines the fluid
microstructure to affect the flow. Historically, this type of approach was the
first used in non-Newtonian fluid mechanics. For example, Maxwell’s model of
a viscoelastic fluid was largely phenomenological – the stresses have a “fading
memory” of the strain rates, which models the relaxation of the fluid to applied
deformation at a molecular level.

The third approach was taken somewhat after the first phenomenological
models and is largely an attempt to improve on them. The phenomenological
theories provided a set of simple constitutive relations that at times did not
possess some of the symmetries of the fluid. For example, the original Maxwell
model was not “objective” when written in three dimensions, meaning that it
took different forms in different frames of reference (see later). The third ap-
proach was therefore to write down the simplest kinds of constitutive models
that possessed the same symmetries as the fluid. Thus Oldroyd wrote down a
general constitutive model for a linear visco-elastic fluid model. This “Oldroyd-
8” model contains a set of free parameters and has been claimed to work well in
several situations. Moreover, several kinetic theories have also eventually led to
the same kinds of models.

The difficulty in proceeding theoretically to furnish the constitutive law has
led to a very popular fourth approach which is practical, but empirical. One
performs various experiments upon the fluid using, for example, a viscome-
ter, and then postulates a plausible stress strain-rate relation. Experiments for
non-Newtonian fluids are not necessarily easy to perform [6] and a consider-
able amount of effort is sometimes required to neatly design experiments that
isolate a particular factor. This empirical approach focusses on the macroscopic
behaviour of the fluid and to a large extent simply takes the fluid microstructure
for granted. Needless to say, the empirical models that one derives in this way are
dangerous in that they are derived for specific experimental conditions and are
not necessarily suitable once one changes those conditions. However, given some
non-Newtonian fluid with a complicated and possibly unknown microstructure,
the empirical approach is often the most expedient way forward.

This discussion should illustrate to the reader how non-Newtonian fluid me-
chanics has a certain schizophrenic aspect to it. On the one hand, the theory is
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mathematically complicated and furnishes unwieldy constitutive laws. And on
the other, there is a pragmatic approach that provides workable, but potentially
unreliable, models. Below we give some examples of the forbidden fruit of the
marriage of the two.....

2.5 Generalized Newtonian Models

Generalized Newtonian fluid models assume a fairly simple constitutive rela-
tion in which one modifies the linear relationship between the stresses and the
strain rates by making the constant of proportionality, the viscosity, a prescribed
function of strain-rate, temperature or particulate concentration. Thus,

τij = µ(γ̇, T, φ) γ̇ij (Generalized Newtonian model) , (2.7)

where we use τ and γ̇ to represent the second invariants of the stress and strain
rate,

τ =
√

τijτij/2 , γ̇ =
√

γ̇ij γ̇ij/2 ; (2.8)

(γ̇ can be thought of as a measure of the magnitude of the deformation rate)
and φ is the particle concentration.

2.5.1 Power-law Fluids and the Herschel–Bulkley Model

A popular example of this kind of model is the power law fluid:

µ(γ̇) = Kγ̇n−1 (power law model) . (2.9)

This viscosity function has two parameters, the consistency K and the index n. If
n = 1 we revert to Newtonian behaviour and the consistency is just the viscosity.
If n < 1, the effective viscosity decreases with the amount of deformation. Thus
this models the disintegration of fluid structure under shear, the shear thinning
effect mentioned earlier.

Conversely, if n > 1, the viscosity increases with the amount of shearing,
which implies that the fluid microstructure is build up by the fluid motion.
This kind of effect can occur if the molecules of the microstructure can bind
together on contact; during increasing flow these molecules can come into contact
more regularly and thus larger structures are created. Examples of such “shear
thickening” materials are corn flour (which is used to thicken soup) and highly
concentrated suspensions. The latter show shear thickening due to dilatancy [3]:
at low shear rates the particles are closely packed together and a small amount
of fluid lubricates the flow of particles. But, at higher shear rates, the close
packing is disrupted and the material expands (dilates) and there is no longer
enough fluid to lubricate particle–particle interactions. The resistance to flow
then increases substantially.

The empirical power law model is a useful fit to the observed data, and
can often provide good quantitative results over many decades of the shear rate.
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However, it does not capture the effects of yield stress. Probably the most popular
model that incorporates both shear thinning or thickening and a yield stress is
the Herschel–Bulkley model [13]:

τij =
(
Kγ̇n−1 + τp/γ̇

)
γ̇ij for τ ≥ τp

γ̇ij = 0 for τ < τp
(Herschel − Bulkley model) .

(2.10)
The new parameter τp that we introduce is the yield stress. This formula also
contains an even simpler model, the Bingham fluid, which is given by (2.10)
with n = 1. For this model, the fluid flows as a Newtonian fluid, with strain
rate proportional to the difference between the applied and yield stresses, once
it has yielded. With n 
= 1, the Herschel–Bulkley model allows also for shear
thinning or thickening beyond yielding. Two recent review articles upon yield
stress phenomena are [14] and [15] and the model often appears in geophysical
models, as illustrated in several other chapters in this volume.

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

Herschel−Bulkley

Power law

S
he

ar
 s

tr
es

s,
 τ

Strain rate

(a)

Newtonian       
Bingham         
Shear thinning  
Shear thickening

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

S
he

ar
 s

tr
es

s,
 τ

Strain rate

(c)

Bingham   
Bi−viscous

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

S
he

ar
 s

tr
es

s,
 τ

Strain rate

(b)

Power law
Carreau  

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

S
he

ar
 s

tr
es

s,
 τ

Strain rate

(d)

Shear thinning
Thixotropic   

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

S
he

ar
 s

tr
es

s,
 τ

Strain rate

(e)

Shear thickening
Rheopectic      

Fig. 2.1. Non-Newtonian fluid models. A sketch of the constitutive models for a variety
of rheological models. In (a) we show the power-law and Herschel–Bulkley models.
Three curves are shown in each case, displaying shear-thinning and shear-thickening
flow curves. The Bingham fluid and a Newtonian fluid are also shown. In panel (b) we
display the Carreau model, µ(γ̇) = µ∞+(µ0 −µ∞)/[1+(λγ̇)2](1−n)/2 (µ0, µ∞, λ and n
are constants), which regularizes the infinite viscosity of the shear-thinning power-law
fluid at zero strain rate. In (c) we show the bi-viscous regularization of the Bingham
model, which allows flow for all strain rates. Panels (d) and (e) show thixotropic and
rheopectic hysteresis curves. The scales are arbitrary
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2.5.2 Variants and Deviants

There are many other empirical equations that provide stress-strain-rate re-
lations within the generalized Newtonian framework, although the power law,
Bingham and Herschel–Bulkley models are those most widely used; an illustra-
tion showing these models is in Fig. 2.1. However, this is not to say that they are
uniformly accepted. Indeed, there is much discussion in the recent literature over
whether these models are physically plausible. For example, the shear-thinning
power law fluid predicts an infinite viscosity at zero strain rate. Even the con-
cept of a yield stress has received much recent criticism, with evidence presented
to suggest that most materials weakly yield or creep near zero strain rate [15].
Moreover, from a mathematical perspective, the discontinuous surface defined
by the yield condition, τ = τp, introduces several undesirable features into the
non-Newtonian fluid model, mainly because this surface is difficult to track ac-
curately. Such criticisms have fuelled the introduction of further models that go
some way to avoid the problems (see [3] p. 14, and [1]). For example, the Carreau
model regularizes the infinite viscosity of the shear-thinning power-law fluid (see
Fig. 2.1). And various regularizations of the Herschel–Bulkley or Bingham fluid
modify the constitutive law so that, for γ̇ → 0, the stress abruptly decreases
to zero in the manner of a Newtonian fluid with a large viscosity. The latter
regularizations allows flow to occur even at very low strain rates and are partic-
ularly useful for numerical work, [16,17,18]. A popular, although not necessarily
optimal, regularization is to adopt a biviscous model, as shown in Fig. 2.1.

Many geophysical materials such as muds [19,20], debris flows and snow
avalanches (see Chaps. 13 and 21) display behaviour that can be crudely cap-
tured by the Herschel–Bulkley model. However, there are probably many other
properties of these flows that cannot [21]. Nevertheless, at the very least, the
Herschel–Bulkley model can be used as the starting point for more elaborate
models. This model has also been used for lavas (see Chap. 7). Here, the mi-
crostructure is provided by a combination of bubbles and crystals. Bubbles de-
form with the fluid motion; numerical computations with bubbly viscous fluids
suggest that shear thinning can result [22]. Crystals, however, may have the
opposite effect [23]: crystallization can be induced by the shearing motion of
the fluid and so microstructure can be build up in a shear thickening fashion.
Both effects may compete in lava, and which dominates depends on the ambient
conditions.

2.5.3 Temperature Dependence

Many materials have strongly temperature-dependent microstructure. For gen-
eralized Newtonian fluids, the most common way of accounting for this depen-
dence is to make the viscosity a function of temperature. A popular choice is an
exponential, Arrhenius, dependence:

µ(T ) = µ∗ exp(Q/RT ) (2.11)



2 Geophysical Aspects of Non-Newtonian Fluid Mechanics 43

where µ∗ is the viscosity value evaluated at some reference temperature, Q is
the activation energy and R is the universal gas constant. Sometimes it is more
convenient to use the approximation,

µ(T ) = µ∗ exp[−G̃(T − Ta)] , (2.12)

where Ta and G̃ are two more prescribed constants. Provided the temperature
variation is relatively small, (2.12) can be considered as an approximation to
(2.11); in some other contexts, this is referred to as the Frank–Kamenetski ap-
proximation. Exponential forms for the temperature dependence are commonly
used for lavas [23,24,25,26,27], laboratory materials used to model magma and
lava (such as wax, paraffin and corn syrup [28,29]), muds [30,31,32], and ice
sheets [33].

Some fluids display both strong temperature dependence and other non-
Newtonian effects, like shear thinning or yield behaviour. Lava and ice are two
such materials. Within those subjects there have been attempts to generate
empirical models incorporating all these features. Typically, they proceed by
simply combining the earlier models. For example, one particular model that
has found a niche of geophysical importance is Glen’s Law [34,35] for the flow of
ice. It has the stress-strain-rate relation,

µ(γ̇, T ) = exp(Q/nRT )γ̇(n−1)/n, n ∼ 3 , (2.13)

and combines an Arrhenius temperature dependence with shear thinning. Typi-
cally the constitutive law is written in terms of the second invariant of the stress,
rather than the strain rate, for reasons of algebraic ease in subsequent analysis.
However, despite the wide usage of this law, there is significant disagreement
between measurements taken in various laboratory experiments and from ac-
tual ice flows [36]. Part of the reason for this disagreement seems to be that
ice relaxes under stress only over long times, and this relaxation has not been
correctly taken into account in most measurements.

2.5.4 Concentration Dependence

Another issue that often arises in fluid suspensions is how the microstructural
effects depend upon the particle concentration, φ. For Newtonian fluids, the
Einstein relation was deduced to give the viscosity correction due to a dilute
suspension of rigid spheres within a solvent of viscosity µ0:

µ = µ0

(
1 +

5
2
φ

)
. (2.14)

Strictly speaking, this model is only suitable if the suspension is very dilute.
A simple resummation of (2.14) that attempts to extend the formula to much
larger concentrations is the Einstein–Roscoe relation:

µ = µ0

(
1 − φ

φm

)−α

. (2.15)
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The quantity φm is a maximum packing fraction beyond which the suspension
cannot flow; for a suspension of solid spheres, φm ≈ 0.68, but this quantity
depends on the shape of the particles and how they organize themselves into a
lattice structure. Experiments with concentrated non-colloidal suspensions [37]
suggest that a good empirical fit is achieved if α ≈ 1.82. Other related models
are reviewed in [38]. Similar approximations have been developed for lava, where
one argues that the role of the suspended particles is played by silicate crystals
[39], and in temperate ice (a binary mixture of ice and water at the melting
temperature), where the concentration does not refer to particles at all, but to
the water content [40].

Particle concentration also affects the yield stress in viscoplastic fluids [14],
and so we need another formula for τp(φ) in the constitutive law. In geophysi-
cal contexts, the combined effect of concentration dependence on viscosity and
yield stress may be important for lava (because crystallization occurs when the
temperature falls) and for some debris flows.

Given that the fluid properties depend on particle concentration, one should
also add an equation that determines φ. In some situations, it may be possible
to treat the concentration as though it were homogeneous; then φ is simply a
parameter. However, the origin of many effects observed in suspensions can be
traced to the appearance of an inhomogeneous particle distribution. A notable
example that plagues chemical engineers is wall slip. Many rheometers operate
by creating a shear flow inside the fluid by rotating the walls containing the
material. Often it is observed that high shear layers build up near these walls in
which the particle concentration is depleted. Because the fluid is then relatively
dilute in these region, and they are frequently extremely thin, they act like
lubricating “slip” layers. As a result, the direct measurements taken with the
instrument can be in error.

Another example that may be of geophysical relevance is viscous resuspen-
sion. The observation here is that particles in a shearing suspension tend to
migrate away from regions with relatively large shear. This migration provides
an uplift in flows over plates that can oppose and even dominate the natural
tendency to sediment [41].

To deal with concentration variations, we need a conservation equation for
φ. One relevant to viscous resuspension is [42] :

Dφ

Dt
+ ∇ · [Jc + Jµ] = 0 (2.16)

Jc = −Kca
2φ∇(φγ̇) , Jµ = −Kµγ̇φ

2 a
2

µ

dµ
dφ

∇φ . (2.17)

Here Jc and Jµ are the fluxes due to particle collisions and spatially varying
viscosity; the particular forms quoted are given by heuristic arguments in [42].
The parameters Kc and Kµ are constants determined experimentally and a is
the particle radius.

In lava, particle diffusion and migration may be unimportant for silicate
crystals. However, crystals form when the temperature decreases, and so one
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should add sources and sinks associated with the phase change of solidification.
Moreover, as in ice, the crystal structure may form anisotropically and with a
broad distribution of sizes. The particle concentration φ in lava could equally
well be considered to be the concentration of bubbles or dissolved volatiles.
We mentioned earlier the effect of bubbles, but volatiles add chemical effects
that can also modify microstructure (for example, OH− ions are observed to
inhibit polymerization of silicon–oxygen bonds). Furthermore, as temperature
and pressure changes, the bubble and volatile content can also change, with
one being converted to the other. Overall, this makes the modelling of lava an
extremely challenging problem.

2.5.5 Hysteresis

There are complicating issues that the generalized Newtonian models do not cap-
ture. One often overlooked issue is hysteresis. As described above, for a static
viscoplastic material there is a microstructure that prevents flow until the yield
stress is exceeded. Once flowing the structure is gradually broken down with
increasing shear, and this gradual attrition of the microstructure leads to non-
linear stress strain-rate behaviour. The reverse situation, in which the strain-rate
is decreased until the structure reforms, is conceptually identical. However, there
is no pressing reason why structure should reform in the same way that it dis-
integrates; in practice some hysteresis occurs. As a result the stress-strain-rate
relation is not identical when the same material is measured with increasing or
decreasing strain-rates. That is, the “up-curves” and “down-curves” on the γ̇–τ
plane are different.

The most common types of hysteretic curves are illustrated in the final two
panels of Fig. 2.1. The “thixotropic” fluid is shear thinning, and microstructure
disintegrates due to the flow of the fluid. Thus the viscosity decreases during
the experiment. The “rheopectic” fluid is shear thickening and structure builds
up during the experiment. Both thixotropic and rheopectic behaviour have been
observed in lavas [23]; thixotropy may be associated with the effects of bubbles,
whereas shear-induced crystallization may be responsible for the rheopexy.

We illustrate hysteresis with some rheological measurements for a kaolin–
water slurry and a celacol (Methyl–Cellulose) solution. The data is taken with
a TI Instruments CSL 500 controlled-stress, cone-and-plate rheometer (6 cm,
2 degree measurement geometry). The results are shown in Fig. 2.2; this also
shows the Herschel–Bulkley models that were used to fit the data. Hysteresis is
certainly evident for the kaolin slurry. There are also some sharp changes in the
up-curves that are possibly indicative of wall slip in the cone and plate device.
The extreme example of celacol shows a material that behaves viscoplastically at
first, but the destruction of the microstructure is permanent, and on decreasing
the applied stress the material behaves viscously.

Another form of hysterisis occurs if the yield strength is itself time dependent,
with a distinct gellation timescale. In this case, the structure that creates the
yield strength takes time to form. Thus the material may have different yield
strengths dependent upon when we choose to disturb it or bring it to rest [43].
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Table 2.1. The properties of the experimental materials; the ratios are kaolin:water
on a weight basis. Also shown are the parameters of the Herschel–Bulkley model from
down-curves of stress sweeps with virgin material (see Fig. 2.2) using 6 cm 2 degree
plate with CSL 500 Carrimed. †The Celacol data is taken from the up-curve

Material 0.6:1 0.8:1 1:1 1.2:1 Syrup Celacol†

Density � (g/cm3) 1.1 1.2 1.33 1.47 1.0 1.0

Yield stress τp (dyne/cm2) 20 130.0 500.0 1320.0 0.0 0.0

Consistency K (units) 61 240 408 946 690 28.5

Index n 0.5 0.75 0.54 0.42 1.0 0.08
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Fig. 2.2. The rheological data collected using a controlled stress sweep. Panels (a) and
(b) show the stress strain-rate curves for the 0.6:1 and 0.8:1 kaolin–water mixtures. The
up- and down-curves relate to whether the data was collected whilst the applied stress
was increasing or decreasing; the dot-dash lines show the Herschel–Bulkley fit using the
parameters of Table 2.1. Panel (c) shows the 0.6:1 data over a substantially extended
range of strain-rates. The rheology of the celacol solution is shown in panel (d)



2 Geophysical Aspects of Non-Newtonian Fluid Mechanics 47

2.6 Viscoelasticity

Under some circumstances a material will exhibit both elastic and viscous be-
haviour; in response to some applied shear many materials show initially viscous
behaviour and then ‘relax’ to elastic behaviour. The generalized Newtonian fluid
model does not incorporate any elastic effects whatsoever, and so is inappropri-
ate for such flows. Instead, it is usually necessary to introduce the strains as
well as strain rates into the constitutive law. This is apparent from the form the
constitutive law must take in the extreme limits: an incompressible linear elastic
material has the stress is proportional to the strain, whereas a Newtonian fluid
has the stress proportional to the rate of strain. Thus, for a general viscoelastic
fluid, the constitutive law takes the form of an evolution equation.

The appearance of time evolution terms in the rheology relation reflects the
relaxational character of the fluid stresses, and leads to the notion of a character-
istic relaxation timescale. Many rheological measurement devices for viscoelastic
fluids are designed with this in mind. One standard experiment is to apply in-
stantaneously a shear at the surface of a sample material. If the material is
linearly elastic the resulting stress is zero before the application of the shear,
and constant immediately afterwards. On the other hand, if the material is a
Newtonian fluid, the stress is infinite at the instant the stress is applied, but
thereafter is zero. Thus elastic and viscous responses are markedly different, and
many real materials have elements of both types of response. A viscoelastic ma-
terial will have an initially large stress due to the viscous component, but the
stress then decreases over the relaxation time to a constant value arising due to
the intrinsic elasticity.

If we assume that the relation between the deviatoric stress and the strain
rates is purely linear, then a general constitutive law can be stated:

τij =
∫ t

−∞
G(t − τ)γ̇ij(τ)dτ . (2.18)

Here, G(t) is called the relaxation function, and builds in the elastic and viscous
behaviour. Implicitly, the shape of the function G(t) determines the character-
istic relaxation timescale (or timescales if there are more than one).

The relaxation time is important because it characterizes whether viscoelas-
ticity is likely to be important within an experimental or observational timescale.
For example, we might consider the continents upon the earth’s surface as solid
over a timescale based upon the human lifespan, but upon a geological timescale
they could be considered as a viscous, or viscoelastic, fluid. Many fluids, partic-
ularly those in industrial situations containing polymers or emulsion droplets,
exhibit both elastic and viscous responses on an experimental or observational
timescale.

For a Newtonian fluid, G(t) = µδ(t) and relaxation is immediate. For a linear
elastic material, G(t) = µH(t). If we denote the relaxation time by λ then the
simplest viscoelastic model, the Maxwell model, has G(t) = µ exp(−t/λ)/λ and
the integral relation above can be recast in the form of a differential constitutive
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relation,
τij + λτ̇ij = µγ̇ . (2.19)

Much can be achieved with this simple extension to the Newtonian constitu-
tive model, and in many circumstances, particularly if one wishes to investigate
whether viscoelasticity can be important, this linear theory suffices. Extensions
to multiple relaxation times with a sequence of relaxation functions are also
straightforward.

Unfortunately, the Maxwell model (2.19) has at least one major failing – it
is not frame indifferent (objective). That is, if we change to a moving coordinate
frame the equations also change. Since we are concerned with material behaviour
this should not occur. One crude, effective and ad-hoc cure is to replace the
time derivatives in (2.19) with more complicated operators that build in the
convection, rotation and stretching of the fluid motion. These operators, called
either Oldroyd or Jaumann derivatives, render the equations frame indifferent; in

usual tensor notation, the Oldroyd (upper convected) derivative,
�
b, for a tensor

b is
�
b =

Db
Dt

−b·(∇u)−(∇u)T ·b or
�
b ij = ḃij+ukbij,k−uj,kbki−ui,kbkj . (2.20)

These derivatives involve the local fluid motion, and so substantially complicate
the constitutive law, and therefore computations using them.

Although we introduce these derivatives as a mathematical device to improve
the linear model, one can also obtain these derivatives by working with dilute
suspensions and low Reynold’s number hydrodynamics – the kinetic approach
mentioned earlier. By studying the fluid motion around a single elastic sphere,
emulsion droplet, or a dumbbell connected with an elastic spring, and then
analyzing the force exerted by the droplet upon the fluid, one can construct
constitutive relations. Rather pleasingly these also involve Oldroyd, or Jaumann,
derivatives and so the apparently crude mathematical fix has some physical basis.
Further details of this approach can be found in [44] or [1].

A popular, more refined version of the Maxwell model is the so-called Oldroyd-
B model; a simplification of his Oldroyd-8 model. The Oldroyd-B model takes
account of the stresses due to both the Newtonian solvent and the polymeric
constituents:

τ = τ s + τ p . (2.21)

The total viscosity µ is also written as the sum of solvent and polymeric viscosi-
ties, µ = µs + µp. Thus, if η = µs/(µs + µp), the stress is written as

τ = µ[ηγ̇ + (1 − η)a] . (2.22)

The constitutive equation for the extra stress tensor a takes the form,

a+ λ
�
a = γ̇ , (2.23)

where λ is the polymer relaxation time. There are several problems with the
Oldroyd-B model [45], which suggest that it should not be used indiscriminately
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to model viscoelastic flows. On the other hand, this model gives a reasonable
description for some flows of dilute polymeric suspensions in highly viscous sol-
vents with a single characteristic relaxation time (“Boger fluids” – [46]), and
has been used extensively in attempting to characterize and interpret fluid flows
[47,48].

One might imagine that because viscoelasticity is commonly engendered by
dissolved polymers, there are few geophysical fluids which behave in this fashion.
In fact, somewhat surprisingly, lava has been observed to show some viscoelastic
non-Newtonian effects. For example, the Weissenberg effect (rod climbing) was
observed in some laboratory experiments, and upward bulges have been seen
on lava flows on Mount Etna [23]. Also, prolonged time-dependent relaxational
effects are seen in measurements of density, pressure and sound speed [49]; re-
laxation times range from seconds to weeks.

2.7 Concluding Remarks

In this chapter we have given a brief overview of some phenomena and rheo-
logical models of non-Newtonian fluid mechanics. However, this is a notoriously
involved subject, mainly due to the wide range of often complex and sometimes
unexpected behaviours that real fluids and fluid-like materials exhibit. We can
only hope to scratch the surface of the subject here, provide references to allow
the interested reader to delve further into the subject, and draw together the
underlying theory required in later chapters.

It is also important to appreciate the limitations of the models we have
described. Indeed, this subject is not like Newtonian fluid mechanics where the
Navier–Stokes equation is uniformly accepted; there is still much debate over
which constitutive models are appropriate for different materials, and this is
particularly prevalent for viscoelastic fluids. The generalized Newtonian models
that seem easiest to use are empirical, and the explanation for the experimentally
observed behaviour is based upon heuristic microstructural arguments. However,
the models are essentially curve fits to observed data that have a convenient
mathematical form. Some of the viscoelastic models have a sounder physical
foundation, but they are typically far more complicated and are often designed
with a specific phenomenon in mind and fail to incorporate the behaviour one
wishes to model. None the less, many models exist with a spectrum of degrees of
sophistication that build in both physical behaviour and mathematical niceties.

Despite all of these efforts much remains to be understood for non-Newtonian
flows in general. Later chapters on debris flows, ice, snow avalanches and lava
highlight aspects of the behaviours we have discussed in this chapter: yield stress,
shear thinning, temperature dependence and particle concentration dependence.
These chapters also describe the current modelling difficulties that remain. For
example, the Bingham and Herschel–Bulkley models have had some success for
concentrated mud flows containing fine particles [50,51], but have been less suc-
cessful for flows containing larger particles [21]. Debris flows (Chap. 21) incor-
porate a range of particle sizes, that at one extreme may be so significant that
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we violate the continuum approximation. The detailed failure of the Herschel–
Bulkley model in these cases is due to several effects. The model does not allow
for fluid motion relative to solid debris, it does not incorporate energy dissipa-
tion for the solid boulders and grains interacting, or for the way that such large
objects can slide or roll along the base of the flow. None the less for primarily
shear-dominated flows of concentrated suspensions of fine particles, Bingham-
like models can provide good predicative and quantitative information. Indeed,
in a later chapter we shall adopt the Herschel–Bulkley model to analyse some
isothermal viscoplastic lava flows.

Lastly, we have focussed exclusively on fluids in this chapter. Yet some geo-
physical materials ought probably not to be treated as fluids at all. For example,
the bubbly magma that rises through the conduits within volcanos (see Chap.
8) is much closer to being a foam, and dry landslides and avalanches and some
debris flows [52] are fully fledged granular media (see Chap. 4).
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