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A study is presented of the generation of internal tides by barotropic tidal flow over
topography in the shape of a double ridge. An iterative map is constructed to expedite
the search for the closed ray paths that form wave attractors in this geometry. The map
connects the positions along a ray path of consecutive reflections from the surface,
which is double-valued owing to the presence of both left- and right-going waves,
but which can be made into a genuine one-dimensional map using a checkerboarding
algorithm. Calculations are then presented for the steady-state scattering of internal
tides from the barotropic tide above the double ridges. The calculations exploit a
Green function technique that distributes sources along the topography to generate
the scattering, and discretizes in space to calculate the source density via a standard
matrix inversion. When attractors are present, the numerical procedure appears to
fail, displaying no convergence with the number of grid points used in the spatial
discretizations, indicating a failure of the Green function solution. With the addition
of dissipation into the problem, these difficulties are avoided, leading to convergent
numerical solutions. The paper concludes with a comparison between theory and a
laboratory experiment.
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1. Introduction
Internal tides are oceanic internal waves of tidal period that are generated as the

barotropic (depth-independent) tide is forced to flow over topographic obstructions
on the ocean floor. Examples of strong generation sites in the ocean include the
Hawaiian island chain (Rudnick et al. 2003), the mid-Atlantic ridge (St Laurent &
Garrett 2002), the Bay of Biscay (Pingree & New 1989) and the Luzon Strait (Jan,
Lien & Ting 2008). The internal tides generated at such locations are believed to
play an important role in ocean mixing, both near the generation site where breaking
waves are reported, and in the far field where the radiated internal tide can interact
with other waves and continental shelves (Garret & Kunze 2007).

Much recent theoretical effort has been directed at calculating the flux of energy
scattered into internal tides for a range of idealized, two-dimensional topographic
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shapes and ambient physical conditions. The most popular and simple model is
due to Bell (1975), who considered topography of infinitesimal height. Balmforth,
Ierley & Young (2002) extended Bell’s results to subcritical topography, for which
the topographic slopes are everywhere less than the inclination of the scattered
gravity waves. Llewellyn Smith & Young (2003), St Laurent et al. (2003) and Pétrélis,
Llewellyn Smith & Young (2006) considered further extensions to isolated supercritical
obstructions (for which the topographic slope exceeds the ray angles somewhere along
the bottom) with the form of a ‘knife-edge’ or ridge in an ocean of finite depth.
Nycander (2006) and Balmforth & Peacock (2009) considered periodic arrays of
supercritical ridges in an infinitely deep ocean. Although these articles have painted a
picture of internal tide generation, with the geometry adopted, the scattered internal
waves always propagate away from the topography. In contrast, waves scattered from
multiple ridges in a finite-depth ocean can become repeatedly reflected and trapped
within the ridge system, converging to distinct geometrical structures known as wave
attractors. To emphasize their origin and temporal frequencies, we refer to these
tidally driven structures as ‘internal tide attractors’.

Internal-wave attractors arise because gravity waves travel at angles determined by
their intrinsic frequency and the local buoyancy and Coriolis frequencies. This leads
to a curious reflection law at a boundary, so that multiple reflections in domains of
nearly any shape can focus ray paths onto localized geometrical structures. These wave
attractors have been demonstrated and studied in closed basins both theoretically and
experimentally (Maas & Lam 1995; Maas et al. 1997; Grisouard, Staquet & Pairaud
2008; Hazewinkel et al. 2008).

The direct generation of wave attractors by tidal forcing has previously been
investigated in astrophysical contexts and planetary science (Rieutord & Valdettaro
1997, 2010; Tilgner 1999; Ogilvie & Lin 2004). For the oceanic internal tide,
double-ridge systems set the geometrical stage for attractors (Echeverri & Peacock
2010), demanding an extension of the existing tidal conversion calculations. Those
calculations construct the time-periodic steady scattering state reached under
prolonged tidal forcing, and compute the power radiated from the local spatial domain
as a function of the tidal amplitude and frequency. However, when an attractor exists,
a fraction of the scattered energy is continually focused onto the attractor within
that domain, raising the possibility that dissipation may be required in order to
yield a bounded solution (as for a resonantly forced normal mode). Indeed, inviscid
solutions describing continual wave focussing into attractors display ever sharper
spatial oscillations in the streamfunction as the attractor is approached, signifying
an impending singularity in the velocity field (Wunsch 1969; Rieutord, Georgeot &
Valdettaro 2001; Maas 2005). For continually forced inertial wave attractors in closed
trapezoids, the addition of dissipation counters the geometrical focussing to lead
to finite smooth solutions (Rieutord et al. 2001; Grisouard et al. 2008; Hazewinkel
et al. 2008). A curious feature of those solutions is that the total energy dissipation
approaches a constant value in the limit of vanishing dissipation that is independent
of both the size of the dissipation and its mathematical form (Ogilvie 2005).

The goal of the current paper is to investigate internal tide conversion and attractors
in two-dimensional double-ridge configurations. To help identify topographies that
support internal tide attractors, we first derive a simple mapping method that can be
used to locate closed ray paths. The map follows on from Maas & Lam (1995) and
constructs the relation between the horizontal positions of consecutive reflections at
the ocean surface following along each internal-wave ray. Such a mapping is inherently
double-valued owing to the presence of rays propagating both left and right, and the
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ambiguity must be removed by imposing additional rules. As a result, the construct
is not a true one-dimensional map. Nevertheless, by reorganizing the pieces of the
double-valued map on the squares of a checkerboard (Balmforth, Spiegel & Tresser
1995), the map can be rendered one-dimensional (an analogous construction is made
by Rieutord et al. 2001). Although this procedure has limited advantage for finding
wave attractors (as they can be computed from the double-valued map regardless),
it does open up the possibility of using standard methods from dynamical systems
theory to analyse the dynamics further.

To compute the internal tide scattered from the double ridges, we use the Green
function approach outlined by Pétrélis et al. (2006). In part, the aim is to gauge
how this method fares when internal tide attractors appear and the solution becomes
more irregular. In fact, as we discover, the technique fails to give reliable results once
there is an attractor. To remedy that situation, we incorporate dissipation into the
computation using either a simple type of Rayleigh drag or a normal viscosity via a
perturbative technique (which avoids the detailed imposition of the no-slip condition
and allows us to continue to use a relatively simple Green function).

Further motivation for studying this type of topography comes directly from the
ocean, and specifically the Luzon Strait, where internal tide dynamics in the vicinity of
roughly two-dimensional double ridges has been recently observed (Zhao et al. 2004).
With such applications in mind, and to make further contact with real fluid flows, we
also compare the theory with a laboratory experiment. This experiment is designed
along similar lines to the arrangements employed in two earlier, related studies
(Peacock, Echeverri & Balmforth 2008; Echeverri et al. 2009), and uses particle-image
velocimetry (PIV) to measure the wave fields shed from an obstacle towed back and
forth inside salt-stratified water.

This paper is arranged as follows. In § 2, we formulate the mathematical problem.
Section 3 develops the one-dimensional map and the Green function formulation
for internal tide generation is presented in § 4. In § 5, we present numerical results.
Theoretical results are compared with a laboratory experiment in § 6, and we conclude
in § 7.

2. Mathematical formulation
We begin with the Boussinesq equations for two-dimensional linear

gravity waves described by pressure perturbation p(x, z, t) and velocity field
(u(x, z, t), v(x, z, t), w(x, z, t)). The waves are generated by a background barotropic
tidal flow of magnitude U0 and propagate in an ocean with constant Coriolis and
buoyancy frequencies f and N . Including dissipation and denoting partial derivatives
by subscripts, the governing equations are

ut − f v + ρ−1px = −νj (−∇2)ju,

vt + f u = −νj (−∇2)j v,

wt + ρ−1pz − b = −νj (−∇2)jw,

ux + wz = 0,

bt + N2w = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.1)

where ρ is a constant reference density, whereas fluctuations due to the waves are
described by the buoyancy field b(x, z, t). The terms involving the operator

D = νj (−∇2)j (2.2)
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represent our models of dissipation, and reduce to a simple Rayleigh friction for j =0
and standard viscosity for j = 1. Rayleigh friction provides a model dissipation that
does not change the mathematical structure of the boundary-value problem that we
solve. Standard viscosity, on the other hand, is needed in order to compare theory
with experiments, although the change to the boundary conditions required by the
higher-order form of this term demands that we take a weakly dissipative limit in
order to use the same solution technique.

We next assume that the tidally forced system approaches a time-periodic state
with

(u, w) = Re[e−iωt (−φz, φx)], (2.3)

where ω is the tidal forcing frequency and φ(x, z) is the baroclinic streamfunction
that must be added to the background barotropic component −U0z to specify the full
streamfunction. Elimination of all the variables in favour of φ leads to(

1 +
iD

ω

)[
N2 − ω2

(
1 +

iD

ω

)]
φxx =

[
ω2

(
1 +

iD

ω

)2

− f 2

]
φzz. (2.4)

Ignoring free-surface displacements, no normal flow through the ocean surface,
z = h0, and bottom, z = h(x), implies the boundary conditions

φ(x, h0) = 0, φ(x, h(x)) = U0h(x). (2.5)

We consider localized topography such that h(x) = 0 for |x| >a, and so gravity waves
are scattered outwards as the tide is forced to flow over that obstacle. If dissipation
is included, the far-field conditions in x demand that φ → 0 as |x| → ∞; if νj → 0,
on the other hand, we employ an outgoing wave radiation condition. The inclusion
of viscosity (j = 1) should further require us to impose the full no-slip condition on
the topography and a stress-free condition at the surface. We avoid these additional
conditions here by treating the viscous term perturbatively, as alluded to above and
described in more detail later.

Setting aside the viscous case for the moment, and considering only Rayleigh
friction for which D is simply the constant factor ν0, we rewrite the internal-wave
equation (2.4) in the form

µ2φxx = (1 + iα)2φzz, (2.6)

which proves convenient for the analysis of § 4, and contains two parameters µ

and α representing wave slope and dissipation. These parameters are determined on
separating the real and imaginary parts of the complex algebraic equation

(1 + iα)2

µ2
=

(ω + iD)2 − f 2

N2 − ω(ω + iD)
. (2.7)

For example, when D is small compared to the characteristic frequencies ω, N and f ,

µ ≈

√
N2 − ω2

ω2 − f 2
and α ≈ [N2(ω2 + f 2) − 2ω2f 2)]D

2ω(ω2 − f 2)(N2 − ω2)
. (2.8)

Equations (2.5)–(2.6) can be made dimensionless by defining the variables

X =
πx

µh0

, Z =
πz

h0

, H (X) =
πh(x)

h0

, ϕ(X, Z) =
π

U0h0

φ(x, z). (2.9)

The topography then has the dimensionless half-width A= πa/µh0 and height
B = πβ/h0, where β is the maximum dimensional height of the topography, and
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the dimensionless ocean depth is π wherever H → 0. Moreover,

ϕXX = (1 + iα)2ϕZZ, ϕ(X, H (X)) = H (X), ϕ(X, π) = 0, (2.10)

and ϕ(X, Z) → 0 or the outgoing wave condition as |X| → ∞.

3. A one-dimensional checkerboard map
In the absence of dissipation, the dimensionless problem stated in (2.10) reduces

to a standard wave equation. The characteristic curves are straight lines inclined at
45◦ in the (X, Z)-plane, corresponding to the ray paths of the internal tide (see, for
example, the discussion in Maas & Lam 1995 concerning some practicalities in solving
this equation). An internal tide attractor arises when these ray paths converge onto
a closed orbit due to repeated reflections from the boundaries. Thus, the creation
and destruction of internal tide attractors can be determined from geometry alone,
and here we develop a one-dimensional (1D) map that proves to be a convenient
tool in detecting their existence in double-ridge systems. The approach follows along
lines similar to that of Maas & Lam (1995), although we extend the construction in
order to generate a single-valued 1D map. In principle, this opens up the possibility
of using standard tools from dynamical systems theory to study more completely the
dynamics; here we use it mostly to provide a more transparent iteration scheme.

The mapping variable that we exploit is the horizontal position along the surface
where a ray is reflected for the nth time, denoted by Xn. Unfortunately, a description
using this variable alone is problematic as it cannot distinguish between leftward and
rightward propagating waves. The ambiguity is illustrated in figure 1, which (in the
inset to figure 1a) plots a sample ray path reflecting between the ocean surface and
a double-cosine ridge with

H (X) =

⎧⎨
⎩B

[
1 − cos

(
2πX

A

)]
, |X| � A,

0, |X| > A,

(3.1)

for the specific values of A= 1.6π and B = 1. (Note that this topography becomes
supercritical for B >A/2π, which implicitly contains the actual ray slope µ in view
of our non-dimensionalization in (2.9).) The ray enters the ridge system from the left,
and is subsequently reflected back and forth before exiting to the right. However, the
path is exactly traversed in the opposite direction by a ray entering from the right. In
other words, for each surface reflection, there are two possible subsequent reflections.
Thus, the map Xn+1 = f (Xn) that relates consecutive values of Xn is double-valued,
as illustrated in figure 1(a). Note also that the map has a number of discontinuities
which arise because supercritical topography casts shadows that abruptly appear and
disappear as X varies.

To lift the double-valued degeneracy of the mapping points, we exploit the
checkerboard construction of Balmforth et al. (1995). More specifically, we focus
attention on the region −L < X <L containing the topography (i.e. A<L), and ignore
ray paths once they leave or before they intersect this region (since H =0, such future
or past itineraries are easily constructed). We then distinguish the reflection points of
the two types of rays by defining the new coordinates Yn =Xn + L or Yn =Xn − L for
the right-going and left-going rays, respectively, and employ the single-valued map
Yn+1 = F (Yn). The reflection points of right-going rays are thereby positioned in the
first and fourth quadrants of the larger square −2L < Yn < 2L and the leftward rays
are placed in the second and third quadrants. Right-going reflections that continue
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Figure 1. A sample ray path reflecting between the ocean surface and the topography
(3.1) with A = 1.6π and B = 1. (a) The ray path (inset) and the corresponding orbit for
the double-valued map that relates consecutive values of Xn (the surface reflection points,
labelled by n). (b) The checkerboard map that removes the double-valuedness of the map in
(a); the shaded slender box at the origin indicates where rays incident from beyond the region
of interest −L � Xn � L enter the map. L = 11.

to the right at the next reflection lead to sections of the map that are placed in the
first quadrant, but if the subsequent reflection becomes left-going, the corresponding
piece of the map is placed in the fourth quadrant, thereby accounting for the change
in direction automatically. Similarly, left-going rays that continue left appear in the
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Figure 2. Closed orbits and checkerboard map for the double-cosine ridge (3.1). (a) The two
closed ray paths with right-propagating surface reflections that exist at A = 1.6π and B = 1.15.
The orbit that is stable is indicated by the arrows. Because of the symmetry of the topography,
there are two identical orbits with rays propagating in the opposite direction (with left-going
surface reflections), for which the sense of stability is interchanged. (b) A bifurcation diagram
of the right-going surface reflection positions against B , with stable (unstable) orbits shown
by solid (dashed) lines. (c) The checkerboard map corresponding to the orbit appearing in (a),
with a magnification showing the structure near the two fixed points.

third quadrant, but left-going rays that are later reflected back to the right lie in the
second quadrant. In other words, by placing the original sections of the double-valued
map into appropriate squares of the checkerboard, we can automatically account for
the transition rules between the right-going and left-going rays. Figure 1 illustrates
the construction and the resulting removal of the degeneracy (taking L =11). Note
that rays from outside the region of interest enter the map through the Yn+1-axis, and
we have placed a thin box over the relevant line to highlight this feature.

There are no closed orbits in the double-ridge configuration in figure 1. For A= 1.6π
and B = 1.15, however, closed orbits exist, as illustrated in figure 2. The stability of
these orbits, i.e. whether ray paths converge onto them, can be easily determined by
computing the slope F ′(Yn) of the map Yn+1 = F (Yn) at the corresponding fixed points
(or at all the surface reflections if the attractor is geometrically more complicated).
For right-going surface reflection (clockwise rays), one of the orbits in figure 2 is
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stable, and therefore a wave attractor, whereas the other is unstable. Because the
double ridges of (3.1) are symmetrical, there is a corresponding pair of closed orbits
corresponding to left-going waves (anticlockwise rays), one of which is again an
attractor, and which appear in the lower left corner of the map in figure 2(c). By
varying B and tracking the orbits (see the bifurcation diagram in figure 2c), we
find that the pairs appear in saddle-node bifurcations for smaller B , but disappear
abruptly at higher B when the fixed points collide with discontinuities in the map
(corresponding to the ray reflecting from a critical point on the topography). The
saddle-node bifurcation point can be determined analytically by recognizing that the
orbit must be reflected from the inner slopes of the topography at X = Z = π/2,
implying B = π/[2(1 − cos(π2/A))].

The internal tide attractors in figure 2 are the simplest types of closed orbits
that can arise in a symmetrical double-ridge system. A multitude of more complex
orbits involving multiple surface reflections appear in different regions of the (A, B)-
parameter space via a rich bifurcation sequence. Moreover, if we desymmetrize the
ridges, the orbit structures and their bifurcations are complicated still further. For
the purpose of the current paper, we consider only the simplest types of attractors, as
these are more robust and therefore more likely to be realized in either a laboratory
experiment or a geophysical system such as the ocean.

4. Internal tide generation
4.1. Green function solution

By distributing an array of sources with density γ (x) along the topography, the
streamfunction of the time-periodic problem (2.10) can be written down in terms of
a Green function G(X, X′, Z, Z′) (cf. Pétrélis et al. 2006):

ϕ(X, Z) =

∫ A

−A

γ (X′)G(X, X′, Z, H (X′)) dX′. (4.1)

The Green function, constructed below, naturally incorporates the boundary
conditions on the ocean surface (Z = π) and in the far field (|X| → ∞). However,
to enforce the boundary condition on the topography Z = H (X), we must suitably
choose the (currently unknown) source density, which leads to an integral equation
for that function.

To calculate the Green function, we first note the equation it satisfies:

GXX − (1 + iα)2GZZ = iδ(X − X′)δ(Z − Z′), (4.2)

where δ is the Dirac delta function. We consider the Fourier series representation
(expansion in vertical modes, with p being the mode number):

G(X, X′, Z, Z′) =

∞∑
p=1

Gp(X, X′, Z′) sin pZ (4.3)

and

Gp(X, X′, Z′) =
2

π

∫ π

0

G(X, X′, Z, Z′) sinpZ dZ. (4.4)

Projecting the Green function equation onto sinpZ:

∂2Gp

∂X2
+ (1 + iα)2p2Gp =

2i

π
δ(X − X′) sinpZ′, (4.5)
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which has the solution

Gp(X, X′, Z′) =
sinpZ′

πp(1 + iα)
eip|X−X′ |(1+iα). (4.6)

Thus,

G(X, X′, Z, Z′) =

∞∑
p=1

sinpZ sinpZ′

πp(1 + iα)
eip|X−X′ |(1+iα). (4.7)

To satisfy the boundary condition ϕ(X, H ) = H , the source density γ (X) must solve
the integral equation

H (X) =

∞∑
p=1

sin pH

πp(1 + iα)

∫ A

−A

γ (X′) sinpH ′ eip|X−X′ |(1+iα) dX′, (4.8)

where H = H (X) and H ′ = H (X′). Equations (4.1), (4.7) and (4.8) are the generalization
of the inviscid theory presented by Pétrélis et al. (2006) and Balmforth & Peacock
(2009) to incorporate the effects of Rayleigh friction. These articles also present
formulae for the energy conversion rate, and we follow their example below. However,
we take a different route in our derivation, attacking the wave equation and boundary
conditions satisfied by ϕ(X, Z) directly, which allows us to incorporate friction and
clarify its physical role.

4.2. The conversion rate

Applying the operator ∂2
X − (1 + iα)2∂2

Z to the definition of ϕ in (4.1) gives

ϕXX − (1 + iα)2ϕZZ = iγ (X)δ(Z − H (X)). (4.9)

Now

ϕ∗[ϕXX − (1 + iα)2ϕZZ] − ϕ[ϕ∗
XX − (1 − iα)2ϕ∗

ZZ] = 2iγr (X)H (X)δ(Z − H (X)), (4.10)

where γr is the real part of γ , which can be rearranged into

∇ · J =
∂JX

∂X
+

∂JZ

∂Z
= 2γrHδ(Z − H ) − D, (4.11)

where J = (JX, JZ), with

JX = i(ϕϕ∗
X − ϕ∗ϕX) (4.12)

and

JZ = −i(ϕϕ∗
Z − ϕ∗ϕZ), (4.13)

is equivalent to the dimensionless phase-averaged inviscid energy flux (cf. Balmforth
et al. 2002), and

D = 4α|ϕZ|2 + iα2(ϕϕ∗
Z − ϕ∗ϕZ)Z − 2α|ϕ|2ZZ (4.14)

is a dissipative term.
We now integrate (4.11) over the region above but not including the topography,

−A � X � A and H (X) < Z � π, where the source term disappears. Then,∫ A

−A

∫ π

H (X)+
∇ · J dZ dX = −

∫ A

−A

∫ π

H (X)+
D dZ dX, (4.15)
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where Z = H (X)+ is to be interpreted as the limiting value from above. However,
Gauss’s Theorem indicates that the left-hand side of this expression is equal to∫ π

0

JX(A, Z) dZ −
∫ π

0

JX(−A, Z) dZ −
∫ A

−A

[JZ − HXJX]Z=H+ dX ≡ R + L − T,

(4.16)

which contains the analogue of the right-going and left-going inviscid energy fluxes
just beyond the topography, R and L, together with the analogue of the flux
emanating from immediately above the topography itself, T. The expression

T − L − R =

∫ A

−A

∫ π

H (X)

D dZ dX (4.17)

therefore corresponds to balancing the energy dissipation with the difference between
the fluxes into and out of the region.

Instead of integrating over the region above the topography, we may also integrate
over the domain −A � X � A and 0 � Z � π. In this case, we pick up the contribution
of the source, together with integrals over the region below the topography. In that
region, the solution is simply ϕ = Z (satisfying the only two relevant conditions
ϕ(X, 0) = 0 and ϕ(X, H ) = H ), and the corresponding integrals vanish leaving∫ π

0

JX(A, Z) dZ −
∫ π

0

JX(−A, Z) dZ ≡ R + L (4.18)

= 2

∫ A

−A

γr (X)H (X) dX −
∫ A

−A

∫ π

H (X)

D dZ dX. (4.19)

Comparing the integral expression above with (4.16) provides the useful identity

T ≡
∫ A

−A

[JZ − HXJX]Z=H+ dX = 2

∫ A

−A

γr (X)H (X) dX (4.20)

(the derivation of the inviscid version of this relation by Pétrélis et al. 2006 is more
indirect and obscures its physical origin).

Alternative formulae for the leftward and rightward energy fluxes are provided by
noting that

ϕ(X, Z) =

∞∑
p=1

γ ±
p

p(1 + iα)
sinpZ e±ipX(1+iα), (4.21)

with

γ ±
p =

1

π

∫ π

0

γ (X′) sinpH (X′) e∓ipX′(1+iα) dX′, (4.22)

for X � A or X � − A, respectively. Hence,∫ π

0

JX(±A, Z) dZ ≡ ±
∞∑

p=1

π

p
|γ̂ ±

p |2, (4.23)

where

γ̂ ±
p = γ ±

p e−αpA =
1

π

∫ π

0

γ (X′) sin pH (X′) e∓ipX′
e−αp(A∓X′) dX′. (4.24)

The Fourier series coefficients γ ±
p are weighted by the dissipative exponential factor

exp(−αp(A ∓ X′)), which can be interpreted as the spatial decay incurred as a wave
launched at the position X′ on the topography travels to X = ±A.
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Thus, we take T to represent the total energy conversion from the barotropic
tide and R + L to provide the total flux that reaches the edges of the topography
and propagates beyond. The two differ by the energy dissipation that occurs within
the fluid volume above the topography. If there are no waves that become confined
within the bumps, then we expect that T and L + R should be comparable in
the limit of small dissipation. However, if there are attractors, the two fluxes may
systematically disagree, as a fraction of the energy flux must be focused onto the
attractor and dissipated there. Moreover, without dissipation, the focused energy
cannot be removed, and the repercussions on the time-periodic problem are unclear.

Finally, we define the conversion rate to be

M =
T

πB2
, (4.25)

which corresponds to the dimensionless energy flux using a slightly different scaling
for the relevant vertical length (the topographic height, rather than the ocean depth;
cf. Nycander 2006; Balmforth & Peacock 2009).

4.3. Viscous perturbation theory

For standard viscosity, we cannot proceed immediately down the path outlined above
because D is a differential operator and formally one requires additional boundary
conditions. Instead, as mentioned earlier, we take a perturbative approach that
incorporates viscous effects purely as corrections to the inviscid model. The method
follows along the lines outlined by Hurley & Keady (1997) in a related internal-wave
problem, and was successful in allowing us to match theory with experiments in
earlier tidal conversion problems (Peacock et al. 2008; Echeverri et al. 2009). In view
of our intention to make further experimental comparisons, we ignore rotation and
set f = 0.

The key idea is that when we look for solutions to the internal-wave equation in
the form of a Fourier series in Z, the inviscid modes satisfy a second-order differential
equation related to (4.5). With standard viscosity (and f = 0), on the other hand,
away from the topography that problem becomes fourth order:(

1 − iωD

N2 − ω2

)
∂2G

∂X2
+

(
1 +

iD

ω

)
p2Gp = 0, D → π2ν1

h2
0

(µ−2∂2
X − p2), (4.26)

where we have now fixed µ =
√

(N2/ω2 − 1). Provided the kinematic viscosity ν1

remains small, we may perturbatively calculate the weakly viscous, exponential
solutions to (4.26) that decay as |X| → ∞ and which correspond to the inviscid
solutions to (4.5). From these two solutions, we may build a Green function equivalent
to (4.6), except that the constant α is now replaced by the quantity α2p

2, where

α2 =
ν1

2ω

(
π

h0

)2 (
N2

N2 − ω2

)2

(4.27)

(cf. (2.8)). However, in constructing the Green function in this manner, we ignore
the other pair of solutions to the fourth-order viscous problem. That pair can
be interpreted as viscous boundary-layer solutions which are essential if one is to
incorporate properly the full no-slip condition on the topography. Thus, by dropping
those solutions and using the modified Green function, we effectively consider only
the effects of viscous smoothing on the radiated inviscid wave field. Though non-
rigorous, this does lead to a simpler solution technique that turns out to work well in
comparison to experiments.
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Figure 3. A subcritical solution for A = 1.6π and B = 0.5, with α = 10−3 (K =P = 4000).
(a, b) The real and imaginary parts of the source density scaled by the topography (the
inviscid results, with α = 0, are also included as dotted lines for comparison). A snapshot of
φx , which is proportional to the buoyancy perturbation, is shown in (c).

In summary, to incorporate the effects of molecular viscosity, we use (4.7) and
(4.8) with α = α2p

2. This allows us to build a Green function solution for the weakly
viscous problem. With this solution in hand, we then compute the conversion rate
M = T/πB2 using (4.20), again in a perturbative sense.

5. Numerical results
5.1. Wave fields

The integral equation (4.8) for γ (X) is solved numerically by breaking the integration
up into a uniform grid and applying the approximations described by Pétrélis
et al. (2006) to evaluate each sub-integral, thereby turning the integral equation
into an algebraic equation. We use a spatial grid containing K intervals and truncate
the Fourier sum for the Green function at p = P ; practically, we take K = P = 1000 or
higher. With this numerical method, the inviscid boundary condition is satisfied exactly
on the grid points and in between to the order of the accuracy of the quadrature rule
(see Pétrélis et al. 2006 for further details). Results for the symmetrical double-cosine
ridge system in (3.1) are used for illustration.

Three sample solutions are shown in figures 3–5. In the first example, presented
in figure 3, the topography is subcritical and the wave field (shown in terms of
the perturbed buoyancy field, which is proportional to ϕX) is dominated by waves
scattered from the steepest parts of the topography (cf. Balmforth et al. 2002); a
coincidence of the ray paths produces the strongest features. Note that we have
plotted source densities γ (X) = γr (X) + iγi(X), with an additional scaling of H (X);
otherwise, sharp singular features dominate the source density at the locations where
H → 0 (cf. Pétrélis et al. 2006, who actually use a source density γ (Z), which also
shows singular features where H ′(X) → 0; both of these singularities do not appear
to be detrimental to the numerical scheme).
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(a, b) The real and imaginary parts of the source density scaled by the topography (the
inviscid results, with α = 0, are also included as dotted lines for comparison). A snapshot of
φx , which is proportional to the buoyancy perturbation, is shown in (c).

A supercritical solution is presented in figure 4 and corresponds to the mapping
example of figure 1. Sharp beams from points on the topography with critical slope
now dominate the solution; without dissipation, the buoyancy field is formally singular
along these beams (cf. Pétrélis et al. 2006; Balmforth & Peacock 2009). The source
density also displays irregular sharp variations, which are smoothed by dissipation
and which are partly connected to the reflections of the critical rays (but which also
appear to be a by-product of the numerical scheme, see Pétrélis et al. 2006). Note that
although the critical paths of the rays that dominate the wave field can be constructed
geometrically, an appreciation of the full form of the wave field demands the Green
function solution (in other words, the geometry of the characteristics alone does not
sculpt the wave field).

Finally, figure 5 shows an example in which a pair of internal tide attractors exists
between the double ridges, corresponding to the closed orbits shown in figure 2 (one
created by clockwise travelling rays and the other by anticlockwise rays). The source
density becomes dominated by peaks at the positions where the attractor reflects
off the topography and the wave field is strongly focused on this geometrical object.
There are no corresponding inviscid results presented for the source density in figure 5,
because, as we show below, the Green function technique does not provide a reliable
solution when there is an attractor.

5.2. Conversion rates

Having determined the source density, we use the integral M = T/πB2 for evaluating
the conversion rate and the Fourier sums L/πB2 and R/πB2 for the left–right
fluxes. Figure 6(a) shows inviscid (α =0) conversion rates above the double bumps
for A= 1.6π and varying B (we vary the bump heights by changing B rather than
their widths, by varying A, as the former leads to a simpler bifurcation sequence
for the wave attractors). The conversion rate increases modestly with topographic
amplitude for B < 1.135, with a sharper increase occurring when the topography
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source density scaled by the topography. A snapshot of φx , which is proportional to the
buoyancy perturbation, is shown in (c). The vertical dashed lines indicate the points with
critical slope.

first becomes supercritical. More dramatic variations arise over the range π/2[1 +
cos(π2/A)] < B < 1.176, which is shaded in the figure, over which a pair of attractors
appears between the ridges (as illustrated in figures 2 and 5). For B > 1.176, the
attractor disappears, leaving a conversion rate that initially declines, but finally
oscillates due to a sequence of constructive and destructive interferences in the
scattered wave field (cf. Balmforth & Peacock 2009). Except over the shaded range
featuring the attractor, the conversion rate is relatively insensitive to the level of
truncation, K = P , indicating that the solutions have largely converged with that
level. In contrast, when the attractor appears, the numerical solutions display little
sign of convergence as the truncation level is increased, offering numerical evidence
that the Green function technique does not provide an inviscid solution (in line with
the notion that energy constantly piles up towards the attractor, rendering the spatial
structure of the time-periodic state more irregular).

Figures 6(b) and 6(c) show analogous results for our two models of dissipation.
Even within the range of the attractor, the numerical solutions now converge with
the truncation level (K = P ), indicating that dissipation counterbalances the energy
pile-up on the attractor and regularizes the inviscid solution. Moreover, we observe a
reliably substantial enhancement in the conversion rate (by an order of magnitude)
at parameter settings close to where the attractor first appears.

The effect of varying the viscosity coefficient α for Rayleigh friction is illustrated in
figure 7. The sharpness and height of the peak in the conversion rate are influenced
by the level of dissipation, although the different data collapse onto a common curve
further from that peak. Overall, the computations suggest that if α is taken sufficiently
small, the conversion rate converges to a curve that is independent of the precise
value of the viscosity or, indeed its form, as illustrated by the results for standard
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viscosity which are also included in figure 7 (except perhaps near the left border of
the window containing the attractor, where that closed orbit appears in the saddle-
node bifurcation). Although the convergence to a drag-independent conversion rate
complements the asymptotic analysis by Ogilvie (2005), dissipation is essential to
provide the smooth solution for ϕ(X, Z) that furnishes those conversion rates. It is
also unclear whether the peak arising near the appearance of the attractor remains
finite as α → 0 and independent of the dissipation model.

Finally, figure 8 shows a comparison between M and the scaled outgoing flux
(R + L)/πB2. In contrast to the total conversion rate, the outgoing flux is a much
smoother function of B , and although it is comparable to M(A, B) away from the
window in which the attractor exists, there is a significant difference over that window,
reflecting the dissipation on the attractor. Thus, we conclude that the appearance of
the attractor coincides with a significant increase in energy conversion, with most
of the energy focused onto that geometrical structure, as one might expect on
qualitative grounds from solutions as those shown in figure 5. Although we have
no quantitative explanation for the enhanced conversion, its origin may lie in the
constructive interference of the wave patterns focussed onto the attractors, much like
that found for tidal conversion from periodic arrays of supercritical ridges (Nycander
2006; Balmforth & Peacock 2009).
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6. Experimental results
To test our theoretical prediction for internal tide attractors in double-ridge systems,

we conducted a laboratory experiment using the apparatus described by Echeverri
et al. (2009). In brief, an internal tide was generated in a rectangular tank filled
with salt-stratified water by oscillating an obstacle immersed at the top of the tank
back and forth at a prescribed (but adjustable) frequency. Instead of the double-
cosine ridge, the obstacle was machine cut (to within 1 mm) into the shape of an
asymmetrical pair of Gaussian ridges,

h(x) = h1 exp(−(x + x0)
2/2σ 2) + h2 exp(−(x − x0)

2/2σ 2), (6.1)

with positions ±x0 = 0.151 m, heights h1 = 0.113 m and h2 = 0.225 m and characteristic
widths σ =0.026 m. The fluid depth was h0 = 0.296 ± 0.002 m, the background
stratification gave N = 1.01 ± 0.01 rad s−1 and the kinematic viscosity was ν = 1.07 ×
10−6 m2 s−1. The oscillation amplitude was ramped up to a maximum value of 0.5 mm
over several tidal periods and then left to run for sufficient time that a periodic state
was achieved. PIV was used to visualize the wave field.

We select the profile (6.1), rather than our original double cosine in (3.1), because
it permits one to tune the degree of asymmetry so that a single attractor is
predicted to exist between the ridges (unlike symmetrical ridges which spawn pairs
of attractors). The wave patterns are thereby expected to be simplified and more
straightforward to visualize and compare with theory. The double-cosine ridge could
also be desymmetrized in order to keep a similar algebraic form for the profile, but
we have no reason to believe that the results would be different.

Figure 9 displays an attractor, together with the corresponding checkerboard map,
for the experimental configuration. Also shown is a bifurcation diagram tracing the
surface reflection points of closed orbits as the ray angle, θ , is varied. Near θ =47.306◦,
two pairs of closed orbits appear in a saddle-node bifurcation, corresponding to fixed
points in the checkerboard map. As θ is then lowered, one fixed point of each pair
collides with a discontinuity in the 1D map and disappears (at θ ≈ 47.13◦), leaving
just two closed orbits. These comprise an attractor with a left-going surface reflection
(and an anticlockwise ray path), as illustrated in figure 9(a), and an unstable orbit
with a right-going surface reflection (and a clockwise ray path).

In figure 10, we present experimental results for three forcing frequencies
corresponding to propagation angles of θ = 29.4◦, 47.1◦ and 54.9◦ (to within an error
of ±0.2◦). The results are snapshots of the magnitude of the vertical velocity in the
three experiments, together with theoretical predictions using the viscous perturbation
theory of § 4.3. In all the cases, there is qualitative agreement between theory and
experiment. Notably, for θ = 47.1◦ (figures 10b and 10e), where theory predicts the
existence of an internal tide attractor, there is a dramatic increase in the strength
of the internal tide between the ridges, with vertical velocities more than 15 times
stronger than the forcing motion. The intensity of the structure between the ridges
swamps all other features in the wave field, and near the ridge peaks the internal-wave
activity was sufficiently strong that we were unable to record reliable PIV data.

A more quantitative comparison of experimental and theoretical results is presented
in figure 11, which presents the envelope of the amplitude of the vertical velocity
during the tidal cycle for vertical cross-sections at x = 0.05 m. Theory compares
tolerably well with the experiments for θ =29.4◦ and 54.9◦, the comparison being
improved when the propagation angle used in the theory is adjusted (within the
experimental uncertainty) to achieve the best fit with the experiments. For θ = 47.1◦,
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Figure 9. Attractors for the experimental configuration (6.1). (a) A stable closed orbit and
(c) the corresponding checkerboard map, for an oscillation frequency adjusted so that internal
waves propagate at an angle of θ = 47.1◦. The checkerboard map is constructed using
L = 1.024 m, and the insets display details in the vicinity of the fixed points. (b) A bifurcation
diagram for the closed orbits with left-going surface reflection points for varying ray angle θ
(corresponding to fixed points in the lower left part of the map in (c)). The two closed orbits
appear in a saddle-node bifurcation at θ ≈ 47.306◦; the solid line shows the attractor, for which
rays propagate anticlockwise around the orbit; the dashed lines show the companion unstable
orbit. There is a corresponding pair of closed orbits with right-going surface reflections (located
in the upper right part of the checkerboard map), for which the sense of stability is switched.
At θ ≈ 47.13◦, one orbit of each pair disappears (the stable orbit with a right-going surface
reflection and the unstable orbit with the left-going surface reflection); the other two orbits
disappear at θ ≈ 46.69◦.

when the attractor is present, the theory overpredicts the strength of the wave field by
about a factor of two to three. Once again, however, there is a significant improvement
when the propagation angle is adjusted. Indeed, we find that in the presence of an
attractor, the wave field is highly sensitive to small variations in the system parameters.

Overall, the level of agreement between experiment and theory for the amplitude
of the wave field in the presence of an attractor is remarkable given the perturbative
fashion in which we have included viscosity, and that the wave field is assumed
to be linear. There is, however, one notable discrepancy between theory and
experiment. In the theory, there is a well-defined phase propagation corresponding
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Figure 11. Comparisons of experimental (thick dashed lines) and theoretical vertical velocity
profile envelopes (solid lines) at x = 0.05 m for (a) θ = 29.4◦, (b) 47.1◦ and (c) 54.9◦. The thin
dashed lines show theoretical results when the propagation angle is adjusted to achieve the
best fit with the experiments.

to the anticlockwise energy flux for the attractor; for example, over the region in
the lower right of figure 10(e) where signals are strong, the phase propagation
is systematically downwards. On the other hand, the experimental signals display
both upward and downward phase propagation over the same region. Similar
discrepancies were reported by Lam & Maas (2008) for a parametrically forced
attractor (Maas et al. 1997), and attributed to transient effects, with the theoretically
expected phase propagation arising only over very long time scales in the experiments.
Our experiments were run for similar durations of time, but we found no evidence
for gradual adjustments in the phase propagation. Instead, the disagreement between
theory and experiment may arise because the wave beams generated at the critical
slopes of the topography lie very close to the relatively strong attractor, setting the
stage for pronounced nonlinear wave interactions.
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7. Conclusions
Through a combination of theory and experiment, we have demonstrated the

existence of internal tide attractors in double-ridge systems. The attractor arises
because of geometric focusing and trapping of the internal-wave rays by the
topography. In order to predict the occurrence of attractors, it proved useful to
develop a one-dimensional checkerboard map to identify closed ray paths and
their stability as a function of the governing system parameters. In the presence
of an attractor, the Green function technique for steady state, inviscid, internal tide
generation apparently fails due to continual focussing of energy towards the attractor.
We found that incorporating dissipation into the method regularizes the solutions
in a manner that is independent of the magnitude and form of the damping, in
agreement with a previous study (Ogilvie 2005). Furthermore, the weakly viscous
solutions compare well with laboratory experiments.

This study differs from previous studies of internal-wave attractors (e.g. Maas
et al. 1997) because the domain is open on both sides, allowing internal-wave rays
to escape, and because the source of internal-wave energy comes from localized
generation at sharp topographic features rather than from parametric forcing. In
consequence, our results bear on the issue of whether internal-wave attractors are
robust enough to exist in geophysical systems, where they are compromised by
competing physical processes. A previous field study of the Mozambique Channel,
for example, found no evidence of wave attractors (Manders, Maas & Gerkema
2004). While the chances for finding a geophysical attractor are potentially slim, the
double-ridge configuration offers a promising scenario. An example is the Luzon
Ridge, where studies using field data suggest the existence of attracting closed ray
paths along a substantial northern portion of the ridge (Tang & Peacock 2010).

We acknowledge helpful discussions with Wenbo Tang and financial support
through ONR grant N00014-09-0282. This work was partly conducted at the
Geophysical Fluid Dynamics Summer Study Program at Woods Hole Oceanographic
Institution.
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