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Abstract

We present a theoretical and experimental analysis of the dam break of a vis-
coplastic fluid in a horizontal channel. A shallow, slow fluid model based on the
Herschel-Bulkley constitutive law allows one to characterize the early and late stages
of the flow, the final state and the dependence on yield stress and nonlinear vis-
cosity. A particular diagnostic is advanced (time ratios based on the length of time
required for the fluid to slump certain distances from the broken dam) that may
assist an experimentalist to unravel those dependences. Experiments are conducted
with cornsyrup, and aqueous suspensions of xanthan gum, kaolin, carbopol, corn-
starch and apple puree. Cornsyrup xanthan gum and kaolin show fair quantitative
agreement with theory. Carbopol compares less favourably, due primarily to inertial
effects which are missing from the theory. The results for cornstarch confirm that
it is shear thickening, but its detailed rheology remains unknown (and unexplored).
Apple puree also appears to compare well with theory, although repeating the dam
break in a roughened channel leads to substantially different results, suggesting that
fluid separation can induce effective wall slip (a problem that also probably plagues
the Bostwick device). Finally, theory is compared with Bostwick tests with fruit
puree, with limited success.
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1 Introduction

The breaking of a dam to release a reservoir of viscous fluid in a channel
is a classical problem in shallow-water fluid mechanics owing to its mathe-
matical tractability and numerous applications in hydraulic engineering and
elsewhere. Although much less attention has been focused on the correspond-
ing non-Newtonian version, a number of industrial and geophysical problems
surround the slump of a viscoplastic fluid within a channel, including certain
emplacements of concrete and lava, and the flow of a muddy river.

In food science, the problem has actually been reformulated as a rheomet-
ric device, the so-called “Bostwick test”, which is widely used by government
agencies to define technically common terms such as ketchup (see, for exam-
ple, Perona [17] and the references therein). Here, one releases the fluid in a
specially manufactured channel (the “Bostwick consistometer”) and one then
measures the distance the fluid has slumped after a certain time interval, usu-
ally 30 seconds; this gives the “Bostwick consistency”, B30 (tomato puree, for
example, can only be considered as a “ketchup” provided that it has a B30

measurement of 14cm or less, at 20◦C, according to the U. S. Food and Drug
Administration). Unfortunately, as it is based on a single measurement, it is
impossible to unravel detailed information about the fluid rheology from this
measurement. In particular, one cannot distinguish a fluid yield stress from
the effects of a rate-dependent viscosity. Moreover, little theoretical analysis
has been presented to compare with experiments in this or related devices.
The purpose of the present article is to venture some way in this particular
direction.

More specifically, we combine a theoretical exploration of dam breaks of vis-
coplastic fluid in a channel with some simple experiments using prototypical
viscoplastic materials, and with actual Bostwick tests. The theory is based
on a shallow, slow approximation to the governing equations (e.g. [2,3,13])
which offers a compact description to explore the slump of a viscoplastic fluid
described by the Herschel-Bulkley constitutive law. In the shallow, slow ap-
proximation, the fluid flow is controlled by the vertical shear stress and the
side walls of the channel play no role; thus, the dam break becomes equivalent
to the release of a two-dimensional sheet of fluid.

The experiments are designed to compare more closely with the theory than
the Bostwick test: the channel is relatively wide and the fluid relatively shallow
compared to the usual Bostwick set-up, bringing the configuration closer to the
conditions required by the theoretical formulation. At the end of the day, we
have some success in connecting theory with this experiment, although there
are some significant discrepancies associated with inertia, side-wall drag and
wall slip on the channel’s floor. The Bostwick tests themselves are described
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more fully by Perona [17], the focus being on the slumps of various kinds of
fruit purees and comparisons with a dimensional analysis of the problem. Here
we attempt a more detailed comparison with theory.

2 Mathematical formulation

Consider the slow flow over a horizontal surface of a planar sheet of incom-
pressible, non-Newtonian fluid with a rheology given by the Herschel-Bulkley
constitutive law. We orientate a (x, z)−coordinate system with z pointing up
and the lower surface occupying the z = 0 plane; (u, w) denote the compo-
nents of the fluid velocity field. The fluid density is ρ, and g is the gravitational
acceleration.

When the fluid layer is relatively shallow, the stresses are dominated by the
vertical shear stress, τxz, and the deformation rates by uz ≡ ∂u/∂z, in which
case, the Herschel-Bulkley law reduces to

τxz = η(uz)uz + τy sgn(uz), if |τxz| ≥ τy, (1)

and uz = 0 if |τxz| < τy, where τy is the yield stress, η(uz) = K|uz|n−1 is the
nonlinear viscosity, K the consistency and n a power-law index that gauges
the degree of shear thinning or thickening. If, moreover, the flow is sufficiently
slow to neglect inertia, then the full governing equations of the fluid can be
reduced to a single evolution equation for the fluid depth, h(x, t):

ht =
(

ρg

K

)
1

n ∂

∂x

[

n|hx|1/n−1Y 1+1/n

(n + 1)(2n + 1)
[(1 + 2n)h − nY ]hx

]

, (2)

where

Y = h − τy

ρg|hx|
(3)

is somewhat like a yield surface 1 , and the subscripts on h denote partial
derivatives (e.g. [2,5,13]).

1 Below z = Y (x, t), the fluid is fully yielded and shears, whereas for z > Y (x, t),
the fluid is nearly unyielded and stresses lie close to the yield stress. Because the
fluid above z = Y is not truly rigid, this region is a “pseudo-plug” and z = Y is not
a real yield surface, but a “fake” one [2].

3



We solve (2) subject to no-flux conditions at x = 0 (the back wall), h → 0
at the fluid front, and with an initial condition in the form of a step (i.e. a
dam-break problem) with depth H and length L:

h =











H, 0 ≤ x ≤ L

0, x > L.
(4)

It is important to appreciate the implications of the thin-layer scaling that
leads to (2): all extensional stress and horizontal shear stresses are neglected
in arriving at this result. Consequently, the model breaks down when the fluid
layer becomes too steep, or when there is significant horizontal shear. Dam
breaks with large yield stress create the setting for steep slumps, whereas hor-
izontal shear necessarily plays a role close to the sides of the channel to ensure
that a no-slip boundary condition is maintained. Because the additional re-
sistance stemming from the sidewalls is ignored, the thin-layer model predicts
that the fluid remains planar in the dam break (given that it is initially so),
even had the theory been cast in fully three-dimensional form [2,3].

2.1 Dimensionless formulation

By defining dimensionless variables as:

x = Lx̂, z = Hẑ, h = Hĥ, Y = HŶ , t =
L

H

(

KL

ρgH2

)
1

n

t̂, (5)

we rewrite the evolution equation in a standard form with only two param-
eters (n and a dimensionless yield stress parameter). On dropping the hat
decoration, the non-dimensional version of (2) becomes:

ht =
∂

∂x

[

n|hx|1/n−1Y 1+1/n

(n + 1)(2n + 1)
[(1 + 2n)h − nY ]hx

]

, Y = h − B

|hx|
, (6)

where B is a scaled yield stress or Bingham number,

B =
τyL

ρgH2
(7)

(given the choice of units for speed, this dimensionless group can be recog-
nized as the ratio of yield stress to viscous stress, the customary definition of
Bingham number), and the initial condition becomes h(x, 0) = 1 for 0 < x < 1
(and zero beyond).
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3 Theoretical slumps

3.1 Sample initial-value problems

We solve the evolution equation numerically using a finite-difference scheme
which is a variant of that described in the appendix of [4]; we add some brief
notes on the scheme in Appendix B. Before proceeding with further analysis,
we whet the reader’s appetite by first displaying some sample results. As could
probably be anticipated, the slumps fall into two classes: when the yield stress
is not so large, the fluid flows a relatively long distance and the whole mass
participates in the slump. Indeed, a Newtonian fluid spreads indefinitely unless
one includes the joint effects of surface tension and imperfect wetting of the
substrate (a formulation of the yield-stress problem that incorporates surface
tension is presented by [6]). On the other hand, when the yield stress is large
enough, it is capable of bringing the fluid to rest before the material at the rear
end of the channel has even slumped. Thus, “partial” slumps occur in which
an unyielded region adjacent to the back wall remains static throughout.

The two scenarios are illustrated in figure 1, which shows snapshots of the fluid
depth, h, and fake yield surface, Y , for two values of Bingham number (0.1
and 1), with n = 1. In both examples, the fluid slumps to a final stationary
profile for which Y → 0 and h → h∞(x), where

h∞(x) =
√

(3B)2/3 − 2Bx if B <
1

3
(8)

(i.e. a full slump), or

h∞(x) =











√

(6B + 1 − 6Bx)/3, 1 − (3B)−1 ≤ x ≤ 1 + (6B)−1

1, 0 < x < 1 − (3B)−1,
if B ≥ 1

3
(9)

(a partial slump). Note that this profile relies purely on the yield-stress part
of the constitutive law and is independent of n. Indeed, it is valid for any
rate-dependent viscosity.
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Fig. 1. Snapshots of depth, h(x, t), and fake yield surface, Y (x, t), for (a) B = 1
and (b) B = 0.1, with n = 1. In (a), the time instants are t = 0.1, 0.4, 0.9, 1.6, 2.5,
5, 10, 100, 260, 500 and 830. In (b), the times are t = 0.1, 0.4, 1.6, 3.6, 8, 60, 200 ,
420 and 720. The dashed lines show the initial step.

3.2 The viscous picture

When the yield stress is set to zero (B = 0), the evolution equation reduces
to

ht =
∂

∂x

[

n|hx|1/n−1h2+1/n

(2n + 1)
hx

]

, (10)

giving the thin-layer model for a power-law fluid. For n = 1, we recover a
well-known equation for Newtonian fluids [12]; the power-law problem was
considered previously by McKarthy and Seymour [16] and Debiane & Piau
[18].

There are two similarity solutions to equation (10) that characterize the short
and long-time behaviour of a typical slump. Both take the form,

h =
1

tα
f($), $ =

x − 1

tβ
. (11)
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The powers, α and β are fixed by the requirement that the similarity form
succeeds as a solution to the partial differential equation, which demands that
n = α(n+2)+β(n+1), and a global constraint such as conservation of mass,

M :=

∞
∫

0

h(x, t)dx → tβ−α

∞
∫

0

f($)d$. (12)

Thus, one expects that α = β for a constant volume release, which then gives
α = β = n/(2n + 3) (cf [12]). This is the long-time similarity solution, from
which we can further extract the explicit form,

h = t−n/(2n+3)
(

2n + 1

2n + 3

)

n

2+n

(

n + 2

n + 1

)

1

2+n

[

Υn+1 − (x − 1)n+1

tn(n+1)/(2n+3)

]
1

2+n

, (13)

where $ = Υ denotes the fluid edge,

Υ2n+3 =
(n + 1)n+3(2n + 3)n

(n + 2)(2n + 1)n

[

β
(

1

n + 1
,
n + 3

n + 2

)]

−n−2

, (14)

and β(r, s) denotes the beta-function. For example, if n = 1, Υ ≈ 1.1329,
giving, in real space, the edge, X ∼ 1 + 1.1329t1/5.

The short-time similarity solution arises from a different choice for α and β:
over early times, the fluid feels little effect from the backwall, and the initial
condition resembles an infinitely wide step. In this circumstance, one cannot
apply mass conservation to constrain α and β. However,

1 = [h(x, t)]x→−∞ = t−α[f($)]$→−∞ (15)

which demands that α = 0, and so β = n/(n + 1). One cannot find f($) in
closed form in this case. The solution decays like (1 − $/Υ)1/(n+2) near the
front edge. For n = 1, numerical results indicate that Υ ≈ 0.2845, and so the
advancing fluid edge is approximately given by X ∼ 1 + 0.2845t1/2, over early
times. At the back of the slump, we estimate that

f ∼ 1 − F, F$ ∼ [(n − 1)$2]n/(1−n), (16)

which implies an algebraically decaying “tail” for shear thickening fluid (n >
1), an exponential one for the Newtonian case (n = 1), and a finite back-
propagating edge for shear thinning fluid (n < 1). This behaviour explains
why the solution barely feels the backwall, and is reproduced in the numerical
computations.
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One should bear in mind that the short-time similarity solution may fail at
the very earliest times where inertia is important. If inertia dominates at such
times, one expects an initial linear-in-time scaling for the fluid edge, based on
the shallow-water speed scale,

√
gH [14].

3.3 Effects of yield stress and nonlinear viscosity

The introduction of yield stress disturbs the simple picture offered by the
viscous similarity solutions. All the slumps begin initially with a phase ad-
equately described by the viscous theory because surface slopes are so large
near the initial step. However, thereafter, the yield stress becomes increas-
ingly important and ultimately triggers a transition to a state dominated by
the yield stress in which the fluid converges to the final state, h = h∞(x).
Unfortunately, numerical computations of the initial-value problem are un-
able to say with certainty exactly how the fluid reaches its final state because
the computation is invariably controlled by the small numerical diffusion that
is implicit in the computational algorithm. Avoiding this would require an
implementation of an augmented Lagrangian scheme, or the like, which we
have not done here. Despite this, the numerical computations do suggest the
long-time dependence, (h − h∞, Y ) ∼ t−1, as the slump converges to its final
state. This finding can be backed up with a perturbation analysis with gives
a clear indication of how the slump eventually comes to rest (see Matson &
Hogg [15] and the summarizing details in appendix A).

We characterize the transition to the yield-stress dominated state in further
detail by tracing the fluid edge, x = X(t), and maximum depth, h(0, t). Sample
results are shown in figure 2 for n = 1. We estimate the “slump time” by
determining when the fluid edge reaches a fixed, small fraction of its final
value, X∞ = 1 + (6B)−1 for B > 1/3 or X∞ = (9/8B)1/3 for B < 1/3. For
example, if X(Tstop) = 1 + 0.99(X∞ − 1), then t = Tstop measures the time
taken for the runout, X−1, to reach 99 percent of its final value. This quantity
is plotted against B in the first panel of figure 3.

The data in figure 3 suggests that the stopping time roughly follows two
different power laws depending on whether the entire fluid layer participated
in the slump or not. For partial slumps, the data closely suggests a scaling
Tstop ∼ B−2. The complete slumps, on the other hand plausibly converge to
the alternative scaling, Tstop ∼ B−5/3, as B becomes very small. These scalings
can be rationalized as follows (cf. Lyman, Kerr & Griffiths [14]): Yield stresses
become important through Y when B ∼ −hhx. If we use the viscous similarity
solutions to evaluate hhx, then we arrive at the scalings B ∼ t1/2 for the early
time similarity solution, and B ∼ t3/5 for the later-time one. In other words,
the stopping-time scaling reflects when one expects yield stresses to break the
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Fig. 2. Evolution of (a) the fluid edge, X − 1, and (b) maximum depth, h(0, t),
for slumps with B = 0, 0.01, 0.1, 1 and 10. The horizontal dashed lines show the
expected final values, and the stars the values for t = Tstop, a convenient marker
for when the slump has largely stopped (given by X(t) = 1 + 0.99(X∞ − 1)). The
circles and dots show the short and long-time similarity solutions for viscous fluid.

similarity solution. A more quantitative prediction for the stopping time can
be extracted by considering in detail the convergence to the final state via

Matson & Hogg’s [15] perturbation theory. A summary of the relevant results
of this analysis are presented in Appendix A, and the theoretical predictions
are included in figure 3.

The second panel of figure 3 presents data more in line with usual practice
with the Bostwick rheometer: the progression of the slump after a fixed time
interval is monitored. Normally, this measurement is performed in real time,
rather than with the dimensionless time of the computations. But if we adopt
the same philosophy, then we may monitor the slump length after a given
(dimensionless) time interval to arrive at an alternative characterization of
the slump. Slump lengths after time intervals of 10, 20, 100 and 1000 units,
are shown in the second panel as a function of B. Should the slump have
converged to its final state during the set time interval, then the slump length
is simply given by its final value (X∞(B) = 1+(6B)−1 or (9/8B)1/3, depending
on whether B exceeds 1/3 or not, respectively). These curves are also included
in the figure. As B decreases, the slump length switches from its static value
towards the Newtonian one (indicated by the horizontal dashed lines in the
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Fig. 3. Data from computations of a suite of initial-value problems showing (a)
“stopping time”, Tstop, and (b) runout length, X(t) − 1, over fixed time intervals,
against Bingham number B, for n = 1. For (a), the lines show the dependences
expected from the perturbation theory outlined in Appendix A. In (b), if the slump
has converged largely to its final state over the fixed time interval, then the runout
approximately measures the final value, which is (6B)−1 or (9/8B)1/3−1 depending
on whether B > 1/3 or B < 1/3, respectively. These curves are shown by the solid
lines (the dotted lines show the continuations of each curve outside the range of
validity). The horizontal lines indicate the Newtonian runout lengths.

figure).

All preceding results refer to the Bingham case, n = 1. When we allow also
for shear thinning or thickening, there can be a significant influence on the
progression of the dam break. In particular, the dramatic increase of the vis-
cosity as a shear-thinning (n < 1) fluid brakes to rest significantly prolongs
the duration of the slump. Conversely, when n > 1 and the fluid shear thick-
ens, the relatively slow viscosity in the approach to the final state promotes
the importance of the yield stress and halts the slump at earlier times. Both
trends are illustrated by the solutions presented in figure 4.

3.4 Back to real space

Given the data of figure 3, we may restore dimensions to find the real-space
run-out distance given a particular (dimensional) time interval. In principle,
one could then try to use this information to extract details of the viscosity
and yield stress given actual measurements. Clearly, because one is attempting
to deduce multiple parameter values from a single measurement, this extrac-
tion must be problematic. Nevertheless, when the run-out is close to its final
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Fig. 4. Run-out distances from the gate, X(t) − 1, against time for three values of
n (as indicated), with (a) B = 0 and (b) B = 1. In (a), the similarity scalings are
also indicated.

dimensional value, x∞, then we may read off the value of B, and hence τy,
from x∞/L = X∞ = 1 + (6B)−1 if X∞ < 3/2, or (9/8B)1/3 if X∞ > 3/2. The
precise time interval over which the experiment is conducted is then irrelevant,
provided it is sufficiently long that the slump has reached its final state.

If the slump has not converged to the final state, then the procedure is in-
herently ambiguous as can be seen from figure 4: This picture is presented
in dimensionless time, but restoring the dimensions merely scales the axes. It
would be straightforward to scale the curves for different n with different val-
ues of the consistency, K, so that they all crossed at a particular dimensional
distance and time (indeed, even in dimensionless variables, the curves already
cross close to a single point). Thus, it would be impossible to tell apart shear
thinning or thickening fluids, even if they had the same yield stress (as in the
figure).

This raises the question of whether multiple measurements can be used to
extract more information than just the yield stress. From a theoretical per-
spective, the simplest route to such a protocol is to measure the progression of
the front, recording the time taken to pass various stations downstream of the
gate. In dimensionless variables, the time taken to cross a station a distance,
S, from the gate is given by T (S; B). Restoring the dimensions, we have a real
time,

t(s) =
L

H

(

KL

ρgH2

)
1

n

T (sL; n, B),

denoting the real-space distance travelled as s = S/L. Given two such mea-
surements at stations of distances, sj and sk, from the gate, we may record
the time ratio,

t(sj)

t(sk)
=

T (sjL; n, B)

T (skL; n, B)
,

which removes the consistency K from the problem, leaving one with the need
to determine only n and B.
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tial-value problems with varying B and n. Each curve is a different n (as labelled);
the points along each curve indicate the B−values of 0.2, 0.15, 0.1, 0.05, 0.01, 10−3

and 0. The dashed line shows results for power-law fluid (B = 0), and the dotted
line indicates the results expected if there was a simple algebraic dependence,
t ∼ xm, for varying m.

It turns out that an interesting diagnostic plot for those parameters is afforded
by choosing three stations, distances sj = jL/4 from the gate, j = 1, 2 and
3, and measuring the two ratios, t1/t2 ≡ t(s1)/t(s2) ≡ T (0.25)/T (0.5) and
t1/t3 ≡ t(s1)/t(s3) ≡ T (0.25)/T (0.75). These time ratios can then be plotted
against one another; a plot of this kind is shown in figure 5. The data all
fall into a curved wedge on the [t(s1)/t(s2), t(s1)/t(s3)] plane, with yield stress
monotonically decreasing both ratios. The more shear thinning cases lie nearer
the apex at the origin, and the slumps of the thickening fluids give the larger
ratios. In principle, the organization of this plot could be used to identify n
and B. Given those, the actual recorded times imply K. Thus, one can use
the plot to diagnose the parameters of a Herschel-Bulkley fit to experimental
data. Below, we give a brief evaluation of whether this is feasible.

4 Experiments

To complement the theory, we conducted some exploratory experiments in
which we released a reservoir of fluid in a horizontal channel (see figure 6). We
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used five fluids: cornsyrup and aqueous suspensions of xanthan gum, kaolin, 2

carbopol, and cornstarch. The channel was 10 cm wide and 6 cm deep (al-
though we also performed a limited number of dam breaks in a channel with
half the width to judge the effect of side-wall resistance, as reported below).
Cornsyrup is a Newtonian control fluid, xanthan gum is a standard shear-
thinning material, and kaolin and carbopol are proto-typical yield-stress flu-
ids. We also used cornstarch as an example of a fluid that appears to be shear
thickening (although its rheology and flow behaviour are actually rather more
complex [1]). In addition to these standard fluids, we also used a fruit puree
(slightly diluted apple sauce), primarily to establish a firmer connection with
Perona’s Bostwick tests [17]; we delay discussion of these results until the next
section.

For each experiment, the dam was created by holding an obstruction (made of
cardboard and waterproofed by covering it with plastic tape) in the channel
and then removing it vertically as quickly as possible at time “t = 0”. We
repeated each experiment a number of times to check that variations in the
way that the dam was withdrawn did not appreciably affect the behaviour.
Based on the results, we are confident that the details of the dam release are
not significant, especially compared to uncertainties in the detailed rheology
of the materials used. Admittedly, our protocol is on the crude side, involving
little more than tape, cardboard, the channel and a video camera. However,
our purpose was in part to judge how far one could proceed with such a
rudimenary experimental setup, in the interest of assessing its robustness.

4.1 Cornsyrup

We used two varieties of cornsyrup with quite different viscosities (of order 1 Pa
sec and 100 Pa secs at room temperature). This material slumps slowly down
the channel when released, and the progression of its front is well fit by the
short-time similarity solution, x ∼ t1/2 (see figure 7). The time ratios, t1/t2 ≡
t(s1)/t(s2) and t1/t3 ≡ t(s1)/t(s3), are displayed in figure 8 and are close to
1/4 and 1/9, the values expected from the short-time similarity solution and
as predicted by the initial-value computations. The more viscous cornsyrup,
which has lower values for the time ratios than the thinner fluid, showed
pronounced wrinkling of its surface as the slump went on. We attributed this
to the development of a more viscous surface layer as water evaporated, and its
subsequent buckling under lateral compressive stresses. The feature suggests
that over longer times, the flow experiences additional resistance, which lowers

2 The actual material used was not pure kaolin, but diluted joint compound – a
commercially available kaolin-based building material. The joint compound has the
advantage of separating slowly, but the disadvantage of containing other chemicals
that initiate changes in its properties over longer timescales.
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Fig. 6. Photograph of (a) dyed
carbopol and (b) apple sauce
slumping down the channel. The
flow front is relatively flat, sug-
gesting that the slump is largely
two-dimensional and the side
walls do not have much effect.
The channel is 10 cm wide and
6cm deep (well over 1 m long),
and the initial reservoir was 40
cm long. The lines drawn across
the channel in (a) indicate the
original position of the dam and
the three stations downstream of
it where recordings of the pass-
ing fluid front were made. In (b),
note the fluid at the flow front
that has separated from the sus-
pension, and the uneven surface
of the deposit.

the time ratios, as observed. Nevertheless, it seems feasible to use the time
ratios as diagnostics for cornsyrup.

A more detailed comparison of the experiment with numerical solutions of the
(Newtonian) thin-layer model is shown in figure 9. To reconstruct dimensional
time, the theory requires a value for the viscosity; a good fit to the data is
achieved by taking η = 4 Pa secs, which is consistent with (though slightly
lower than) measurements in a cone-and-plate rheometer. (We made no at-
tempt to match perfectly the temperature of the material in the rheometer
and in the channel, which is a significant source of error for corn syrup ow-
ing to the strong temperature dependence of its viscosity). The comparison
illustrates fairly quantitative agreement, hence we conclude that the thin-layer
model provides an accurate description of this experiment.

The success of reproducing the flow behaviour in the 10cm-wide channel,
prompted us to proceed a little further and compare the theory with slumps
in a channel with half that width. Figure 7(a) also includes the observed front
positions from two such dam breaks, and measurements of the intervals, tj, are
tabulated in table (i). A striking feature of these results is that the time ratios
from the narrow channel closely match those from the wide channel (see the
table, and also figure 8, in which the data is included). This is not because the
side walls are having no effect, as can be seen by comparing the tj-intervals
themselves, or the evolution in figure 7(a). In fact, the slump in the narrower
channel is significantly braked by the sidewalls and proceeds about 40 per-
cent slower (as also shown by table (i), the same trend holds for apple puree).
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Fig. 7. Front position (measured in cm from the gate) against time (in seconds) for
(a) cornsyrup (ρ ≈ 1.4 g/cm3), (b) cornstarch (ρ ≈ 1.25 g/cm3), and (c) carbopol
(with a density just over 1 g/cm3). The lines show the expected similarity solutions
for fluid without yield stress (short-time, x ∼ tn/(n+1); long-time, x ∼ tn/(2n+3);
inviscid, x ∼ t). The arrows indicate when the fluid passes the stations at x = 50,
60 and 70 cm. For the cornsyrup in panel (a), results from two channels of different
width are shown (the standard one with a width of 10 cm, and a second with half
that width). In panel (c), the inviscid similarity scaling, x ∼ t

√
gH is also shown

by the dotted line.

Despite this, the front position still progresses according to the similarity so-
lution, which is why the time ratios come out as before. The retardation of
the dam break by the side walls therefore largely acts to increase the effective
viscosity, which is filtered out in taking the time ratios. We conclude that
side-wall friction likely has significant effect in the Bostwick consistometer,
which translates to an error in the inferred viscosity, but that the time-ratios
diagnostic for rheology may be relatively insensitive.

4.2 Xanthan gum

Xanthan gum solutions (about 1 percent by weight) also show fair agreement
with theory: The measured time ratios in figure 8 suggest that this material
is a shear-thinning, power-law fluid with an exponent, n, close to 1/4. Mea-
surements of viscosity in a cone-and-plate rheometer do indeed suggest that
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Fig. 8. Measured time ratios for corn syrup (H = 2 cm), xanthan gum (H = 2.2
to 2.5 cm), kaolin (H = 3.75 and 4.25 cm), carbopol (H = 6 cm) and cornstarch
(H = 2 cm). These are superposed on the curves of figure 5.

this material can be fitted with a constitutive law of this kind (with n ≈ 0.27
giving a slightly better fit).

Given the exponent n, we may further use the time measurements, tj, and
their dimensionless counterparts, Tj, to infer the consistency:

Kj ≡
H

L
ρg

(

Htj
LTj

)n

, (17)

for j = 1, 2 and 3. For a good fit, all three should equal each other and
any value measured in a rheometer. For the slump with initial depth 2.2 cm,
the observations predict (K1, K2, K3) = (5.73, 6.11, 5.98) m.k.s., which are
consistent with one another, but greater than a value determined in a cone-
and-plate rheometer (which was about 4 m.k.s.). This discrepancy could arise
from various sources of error in the dam break experiments (such as inertia, as
we outline presently). But it is also conceivable that the value from the cone-
and-plate rheometer fails to agree because of intrinsic problems with wall slip
(which such devices are prone to – see Barnes [7])

A full comparison of theory and experiment for the evolution of the front
position is shown in the second panel of figure 9. The main panel shows the
comparison adopting the inferred value of 6 m.k.s.; the inset shows the poorer
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(b) Xantham gum and power−law fluid fits (varying initial depth)
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←−−− Power−law fluid fits

Inviscid similarity scaling,  x ∼ t (gH)1/2

K=4 mks

Fig. 9. Front positions (measured from the back wall; dots and lines) against time for
(a) (lower viscosity) cornsyrup (H = 2 cm) and (b) xanthan gum (for four different
initial depths, H = 2.2, 2.5, 2.8 and 3.2cm). The curves show the theoretical results
expected based on the viscosity of the thinner cornsyrup and the xanthan gum
rheology inferred from the recorded times, t1, t2 and t3 (which give 4 Pa secs as the
viscosity of the cornsyrup and n ≈ 0.27 and K ≈ 6 m.k.s. units for the gum). In the
second panel, the inviscid similarity scaling is also displayed (with H = 2.2cm); the
inset shows the theoretical curves if K = 4 m.k.s. is used for the consistency, as was
measured in a cone-and-plate rheometer (and with the same power-law exponent).

comparison if the rheometric value is used instead. Although the comparison
is by and large fairly satisfactory, there is some significant disagreement at
early times. For this fluid, the dam breaks are relatively fast at the outset,
and it is likely that inertia plays a prominent role in the early stages of the
slump. Indeed, the front positions shown in figure 9 follow a path more like
that expected from inviscid similarity scaling. As one raises the initial depth,
inertial effects become yet more important, so much so that they significantly
increase the time ratios. Data showing the dependence of the time ratios on
H is displayed in figure 10. Thus, inertial effects limit the diagnostic potential
of these measurements.
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Fluid Width (cm) t1 (secs) t2 (secs) t3 (secs) t1/t2 t1/t3

Corn syrup 10 4.43 18.5 45.4 0.24 0.098

5 6.32 26.1 67.0 0.24 0.102

Apple sauce 10 0.48 13.3 90.2 0.036 0.0052

5 0.95 24.6 163.2 0.036 0.0055

Table 1
A comparison of times and time ratios for corn syrup and apple sauce (density of
about 1.4 and 1.04 g/cm3, respectively) in channels of 10cm and 5cm width. The
measurements quoted are averages over all the experimental runs undertaken. For
the apple sauce, the narrower slumps began with slightly higher initial depths than
in the wider channel (about 4cm, as compared to 3.6 cm) to avoid excessive fluid
separation.
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Fig. 10. Measured time ratios for xanthan gum for varying initial depth, H, ranging
from 2.2 cm upto 3.4cm.

4.3 Kaolin

The time ratios for kaolin (joint compound) suggest a shear thinning mate-
rial with an exponent, n ≈ 0.5. In addition, the data are now significantly
below the curve expected for power-law fluid, confirming the presence of a
yield stress. The experiments shown in figure 8 are performed with two initial
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heights, which translates to different values for B. One expects that the lower
initial reservoirs have larger Bingham numbers and therefore time ratios, a
trend that is roughly seen in the data. A comparison of the shallower data
with the theoretical time ratios suggest a rheological fit of B in the range 0.1–
0.15. Unfortunately, although we were able to confirm the detailed power-law
dependence of the viscosity in the cone-and-plate rheometer (which indicated
n ≈ 0.6), we were unable to measure a reliable yield stress, presumably due
to significant wall slip.

The kaolin slumps also eventually decelerate towards a yield-stress dominated
final state. We show evidence for this in figure 11, which displays the advance
of the fluid edge in the four experiments: Towards the end of the slumps, the
front position veers upwards to approach its final constant value. Because the
slump comes to rest relatively slowly (with expected dependence t−1), it is
difficult to observe the approach to the final state in detail (especially because
other factors come into play on long timescales, such as evaporation from the
surface layers and surface tension). The inset shows a measured final profile
for the shallower slump, together with a theoretical fit for B = 0.18 (which
suggests that the deeper slumps are characterized by B = 0.13). Adopting
n = 0.6, we compute corresponding numerical solutions, and with the observed
values of tj, we further estimate that K ≈ 30 ± 10 m.k.s. units, using (17).
The theoretical, dimensional results that then follow are also shown in the
main panel of figure 11. There is some disagreement in the initial stages of
the slump (again probably due to inertia), but the later stages compare fairly
well, if not fully satisfactorily (and the rheological fit has not been optimized).

4.4 Carbopol

Turning next to carbopol (0.1% carbopol 940 in water, neutralised with Sodium
Hydroxide), we see that the time ratios (figure 8) are close to what might
expected for a shear-thinning fluid with a low yield stress. A closer examina-
tion, however, uncovers some significant discrepancies: First, cone-and-plate
rheometry suggests a yield stress of order a few Pa and a viscosity exponent
of around 0.4 − 0.5 for the fluid used. For the initial fluid depth and length
(about 6 cm and 40 cm, respectively), we then estimate Bingham numbers
of order 0.05. But given those estimates of n and B, we observe from figure
8 that the measured ratios are actually quite different from those expected
theoretically; the carbopol data ought to be closer to that for kaolin.

Second, the advance of front shown in the final panel of figure 7 also disagrees
with theoretical predictions. In particular, at early times the flow is closer to
the inviscid similarity solution, indicating that inertia plays a major role in
the initial phases of the slump. On the other hand, the later times do seem to
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Fig. 11. Evolution of the fluid edge (dots and lines), as measured from the gate, for
kaolin suspensions (density 1.5 g/cm3). The curves show theoretical solutions given
the Herschel-Bulkley fit indicated. The inset compares the final profile of one of the
shallower slumps (dots) with the expected equilibrium state (curve).

be fit quite well by the viscous similarity solution if the power-law exponent,
n, is about 1/2. The trouble is brought out clearly by figure 7(c): the first
time interval, t1, lies in the inertial regime, and the second, t2, lies close to a
transitional phase; only the third time instant lies in the power-law regime.
Thus, the time ratios partly reflect inertial effects.

Part of the reason why inertia was relatively strong for the carbopol dam
breaks was that the initial depth was fairly large (6cm). To try to reduce
inertial effects, we repeated some of the dam breaks with a shallower initial
fluid layer (H in the range 3.2 to 3.8cm). These flows had ratios that were
indeed closer to those expected, based on the estimated values of n and B.
However, they were also well above the power-law curve in figure 8 (lying close
to (0.05, 0.015) for H = 3.8cm, and (0.08, 0.023) for H = 3.2cm), indicating
that problems still remained (possibly wall slip).

Overall, then, the time ratios appears less informative about the carbopol rhe-
ology than they are for cornsyrup and xanthan gum. On the other hand, from
a qualitative perspective, the ratios do successfully distinguish the fluid from
a Newtonian one and suggest that carbopol is shear thinning. Significantly,
tracing the front position appears useful in pinpointing when inertia is overly
important.
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4.5 Cornstarch

Time ratios for cornstarch (with concentration 52 percent by weight, and den-
sity of about 1.25 g/cm3) lie to the right of and above the viscous time ratios in
figure 8, as expected for a shear thickening material. Indeed, the ratios suggest
that this material is a power-law fluid with an exponent of n = 3 or 4. There is
slender evidence from cone-and-plate rheometry (performed by S. Mandre &
A. C. Rust, personal communication) that this material’s steady state shear
rheology can be fit by such a model, and is certainly shear thickening. Tracking
the front position (figure 7(b)), on the other hand, indicates that the evolution
is not well fit by a power law. In fact, some flows of higher concentration look
to stop after travelling about a metre whilst remaining about 1 cm deep at the
back of the channel. This suggests the presence of a small yield stress of half
a Pa or so. The material also clearly fractures and bends like a solid when the
gate is raised, and the initial dam break does not look at all like those of the
other fluids used. Suffice to say that this is a curious material that warrants
further study.

5 Purees and Bostwick tests

5.1 Apple sauce

We close our experimental exploration by mentioning some dam breaks per-
formed with apple sauce as an example of a real fruit puree. The fibrous,
coarse structure of this material and its tendency to separate (i.e. watery
fluid to collect at the fluid edges; see figure 6(b)) precludes a serious investi-
gation in standard rheometers. The latter also prevents us undertaking overly
long dam breaks.

Sample experiments are shown in figure 12. The time ratios observed suggest a
power-law fluid with exponent close to n = 1/4. A more detailed fit of the front
evolution shows fair agreement, except for an inertial initial transient. These
stages of the slump show little sign of a yield stress in the puree. However,
over a longer period, the fluid appears to break towards a halt; a “final profile”
is displayed in the figure and suggests a yield stress of around 3 Pa. This
translates to a Bingham number of around B = 0.09, which is larger than
expected based on the time ratios, but not completely inconsistent with them.
Furthermore, experiments with more concentrated apple puree showed smaller
values for the time ratio, t1/t3, as expected if the yield stress were larger.

As for cornsyrup, when we break the dam in a narrower channel, even though
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Fig. 12. Dam breaks with apple sauce (“Sun-Rype” brand, with about 25 percent
extra water; H = 3.6 cm, ρ ≈ 1.04g/cm3). The main panel displays the evolution of
the fluid edge (measured from the gate) for dam breaks in the usual (10 cm wide)
and narrow (5 cm wide) channels. For the narrower channel, the initial depth was
increased to 4cm to avoid excessive fluid separation at the nose of the slump over
the duration of the experiment. The insets show the time ratios and the profile of
a final shape (together with a theoretical fit using B = 0.093). The time ratios for
the wider channel are shown by the darker (blue) points; the lighter (red) points
indicate the ratios for the narrower channel.

the observed time ratios do not change very much, the overall progression of
the slump is significantly slowed (see also the values included in table (i)). If
one were to measure the distance travelled after a given time period (as in the
B30 measurement), one would therefore consistently overestimate the internal
strength of the material.

Some words of caution are in order here, though: as the fluid slumps down
the channel, separation clearly occurs at the fluid’s leading edge, making the
identification of this position ambiguous and the final deposit inhomogeneous.
Indeed, the surface of the deposit is relatively rough and shows evidence of
fairly regularly spaced, sharp steps that might be due to fracture or rupture
of the fibrous microstructure (see figure 6(b)).

Worse still, the flow of the apple sauce was substantially reduced when the
floor of the channel was roughened by covering it with coarse (50 grit, gar-
net) sandpaper. Roughening a smooth wall is a common trick in rheometry
to try to reduce effective wall slip. Most commonly, such slip arises because
of the development of a relatively dilute fluid layer adjacent to the wall that
lubricates the remainder of the material. When we tried this trick with the
channel, it became immediately clear that the flow was significantly affected
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Fig. 13. Experimental and theoretical front positions for fruit purees in the Bostwick
rheometer. Panel (a), shows experimental front positions after 30 seconds (stars),
together with the corresponding theoretical positions (circles) after an equivalent
time (and using the rheological data tabulated by Perona [17]). The curve shows
the expected final state. Panel (b) plots the experimental position against the the-
oretical one. Data after 5, 10, 30 and 60 seconds are included; the crosses indicate
“structured” purees, whilst the plusses denote “unstructured” ones.

by wall slip: a fluid layer that virtually came to rest on the sand paper af-
ter flowing only ten or so centimeters, could easily propagate on the smooth
channel much faster and over twice the distance. Given the large amount of
separation evident at the flow front, this pronounced effect of slip is perhaps
not so surprising. However, it does suggest that in devices like the Bostwick
rheometer there is likely significant wall slip as a result of separation, which
must cloud any rheological inference (see also the discussion in [17]).

5.2 Comparison with the Bostwick tests

Figure 13 shows a compilation of data from the experiments reported by Per-
ona [17]. The first panel of this figure shows front positions after 30 seconds
against B, determined using Perona’s tabulated rheological measurements.
This data is compared with numerical solutions of the thin-layer model, with
the circles indicating the theoretical position after a dimensionless time equiv-
alent to the 30 seconds, and the curve showing the final, stationary position.
The difference between the circles and line offers an estimate of how much
the slump is still moving. Evidently, although some of the slumps are close
to their final state, others are not. This suggests that the B30 measurement
cannot be safely used to infer yield stress in all situations.

Figure 13(a) also clearly shows that the experimental front positions are sys-
tematically below their theoretical counterparts. The degree of discrepancy is
brought out further in the second panel of the figure, which plots theoreti-
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Fig. 14. Microscopic images of examples of “structured” and “unstructured” purees:
apple (panel (a)) and pear (panel (b)) purees show typical hair-like and irregular
solid fibres, respectively; lemon treacle (panel (c)) is much smoother in comparison.
Arrows indicate some trapped air bubbles (spherical dark spots). Whilst apple puree
could still show a marked coiled structure at high dilution rates, this effect was less
pronounced for pear.

cal against experimental front position, and includes positions measured at
times of 5, 10, 30 and 60 seconds. Part of the discrepancy could be due to
inertia limiting the initial accelerations, as for the xanthan gum experiments.
However, some of the slumps are not particularly shallow, and the Bostwick
consistometer is also relatively narrow (5 cm). Hence, sidewall resistance is
correspondingly more important, and our earlier comparison between chan-
nels of width 10 cm and 5 cm (figures 7 and 12; table (i)) indicates that this
could easily explain the observed errors. More curiously, the data also appear
to divide quite cleanly into “structured” and “unstructured” fluids. That is,
into measurements for purees that possess a very fibrous, entangled micro-
structure, and purees that do not (we illustrate the two types of purees in
figure 14). The data for structured purees compares least favourably with the
theory, suggesting that there could also be some systematic rheological bias in
the Bostwick tests (other possible errors in the rheological fits are described by
Perona [17]). Nevetheless, to explore the possibility in more detail, and give
a more complete comparison between theory and experiment, one requires
an extension of the thin-layer model that incorporates both inertia, side-wall
resistance and (perhaps most importantly) wall slip.

6 Discussion

In this article we have explored a shallow-fluid theory intended to model the
dambreak and slump of a viscoplastic fluid in a relatively wide channel. We
complemented the theory with an experimental study in which we released
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various fluids in a laboratory channel, including corn syrup and aqueous sus-
pensions of xanthan gum, kaolin, carbopol and cornstarch. The problem also
has some connection with the so-called “Bostwick consistometer”, used in food
science, and we have drawn some brief comparisons between the two. We have
explored in part whether a series of three measurements (the times taken for
the flow front to reach three fixed stations down the channel) can be used to
gain a more complete picture of the rheology than the usual Bostwick mea-
surement (the distance travelled over a fixed time period).

For the experimental arrangement that we used (a channel of 10cm width and
with fluid depths of between 2 and 6cm), the thin-layer theory appears to
model adequately the dam break of corn syrup and xanthan gum, aside from
an initial period of adjustment wherein inertial effects play a role. The diag-
nostic time ratios predict that these fluids are Newtonian and shear-thinning,
respectively, to a degree that compares well with measurements in a cone-and-
plate rheometer. Although there is some disagreement between the inferred
yield stress and that measured in the rheometer, the time-ratio diagnostics
for the kaolin suspensions also predict that this fluid is shear thinning and
possesses a yield stress. Unfortunately, the same cannot be said for carbopol,
which appears to be overly influenced by inertia and other effects; the time
ratios suggest only that this fluid is strongly shear thinning. Cornstarch sus-
pensions are predicted to be shear thickening, as expected, but little further
insight is given into this curious material.

The partial success of our time-ratio diagnostic suggests that the basic idea
may well be worth pursuing in the future. First, we have made no attempt to
optimize the choice of the stations at which the time intervals are measured. It
may prove worthwhile to consider other positions in order to try to “straighten
out” the wedge-shaped region of the time ratios so that it becomes more rect-
angular and easier to discriminate nonlinear viscous behaviour from the yield
stress. We have also performed a series of fairly crude experiments to compare
with theory. Better techniques for the release of the dam and the monitoring
of the advance of the front would certainly reduce the errors. We also made
only a cursory attempt to compare systematically the rheological inferences
with direct measurements from rheometers (partly because of wall-slip prob-
lems in our cone-and-plate device), and determine the influence of the channel
dimensions (varying the initial fluid depth and channel width a little, and the
reservoir length not at all). Lastly, as we have already mentioned there is scope
to improve the theory by adding inertia, side-wall friction and effective slip
over the channel floor. Turned around, perhaps one could use the dambreak
as an experimental device to understand and parameterize these effects (es-
pecially wall slip). However, it is also not clear that the Herschel-Bulkley fit
is adequate of itself; thixotropy, for example, is known to be important in the
slumps of some viscoplastic materials [10,11].
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A The stopping problem

The ultimate convergence to the final state can be analytically addressed with
perturbation theory [15]. We summarise the relevant results here and place
them into our current notation; we put n = 1 and describe only the Bingham
case. We first transform into a moving coordinate frame, (x, t) → (Ξ, t), deter-
mined by the instantaneous positions of the upstream and downstream flow
fronts, xu(t) and xd(t) ≡ X(t) respectively:

Ξ =
x − xu(t)

xd(t) − xu(t)
; (A.1)

thus, Ξ = 0 refers to the back edge and Ξ = 1 to the advancing front. The
upstream edge, x = xu(t), always lies inside the fluid layer for B > 1/3, but
if B < 1/3, there is an instant when it reaches the back wall and thereafter
remains there.

The transformation can be introduced into the governing equation, which, as
the solution converges towards the final state, simplifies to

ht −→ −1

2
B(Y 2)x, (A.2)

giving

ht −
ẋu + Ξ(ẋd − ẋu)

xd − xu

hΞ = − B(Y 2)Ξ

2(xd − xu)
, (A.3)

in the new coordinate system, where

Y −→ h +
B

hΞ

(xd − xu). (A.4)

Next, one adopts a separable solution of the form,

h(Ξ, t) = H(ξ) + η(Ξ)Λ(t), (A.5)
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where ξ is the infinite-time limit of the moving coordinate, Ξ. Taking |Ξ − ξ|
and |η| to be small, and exploiting separability, the governing equation reduces
to the two relations,

Λ̇ = −κB2Λ2 (A.6)

and

κ(η + δξHξ − XuHξ) =
∂ξ[(Hη)ξHξ + δH]2

2B[xd(∞) − xu(∞)]
, (A.7)

where

δ =
xd − xu

Λ[xd(∞) − xu(∞)]
− 1

Λ
, Xu =

xu(t) − xu(∞)

Λ[xd(∞) − xu(∞)]

and κ is the separation constant. The second equation is more transparently
written in terms of the variables,

τ =
√

1 − ξ ≡ H(ξ)

H(0)
and Q =

H

A

(

η +
1

2
δH

)

,

which give

k

2
(Q2

τ )τ = 1 − Q, (A.8)

where

A =
B

Λ
[xd(∞) − xd(t)] and κ =

A

k[H(0)]3
.

Equation (A.6) implies the relatively slow rate of convergence, t−1:

Λ =
1

Λ−1(0) + κB2t
. (A.9)

This rate can be seen immediately, if more qualitatively, from (A.3) because
the time derivative, ht, is quadratic in the perturbation amplitude (i.e. Y ).
The other relation (A.8) is solved subject to the boundary conditions that we
choose the regular solution, Q ∼ τ 3/2, at the singular points where Qτ = 0
(which coincide with τ = Q = 0 and τ = 1 = Q/2). This simultaneously
determines the separation constant, k = 3/4 × [β(2/3, 2/3)]−3 ≈ 0.0866 (with
β(r, s) denoting the Beta function).
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Fig. A.1. Convergence of the downstream front to its final position for (a) B = 1
and 10, and (b) B = 0.1 and 0.01. n = 1. In each case, the expected theoretical fit
is shown by the dotted curves.

We collect together the results for the two cases, B > 1/3 and B < 1/3
separately: For B > 1/3, the boundary conditions at ξ = 1 further imply that
xu(t) − xu(∞) ≡ xd(∞) − xd(t). Moreover, H(0) = 1. Consequently,

xd ∼ 1 +
1

6B
− 1

6B

(

1 +
B2t

6k

)

−1

, (A.10)

if we make the assumption that xd(0) = 1 (which is of course true, but a
little unrealistic in the perturbation theory). This prediction is compared with
numerical computations in figure A.1. Conversely, if B < 1/3, then xu = Xu =
0 and H(0) =

√
3B, giving

xd ∼
(

9

8B

)1/3

−
[

(

9

8B

)1/3

− 1

]{

1 +
B2t

3k

[

(

9

8B

)1/3

− 1

]}

−1

. (A.11)

Again, this is compared to numerics in figure A.1.

Lastly, we may compute the expected stopping times, Tstop, assuming that
this is adequately predicted by the long-time asymptotics: Taking xd = 1 +
0.99[xd(∞) − 1] implies that

Tstop ≈











51/B2, B > 1/3

(26/B2)/[(9/8B)1/3 − 1], B < 1/3
. (A.12)

These predictions compare very nicely with the data obtained numerically, as
shown in figure 3. A glance at the evolution sequences in figure A.1 indicates
why this should be so: by the time the front has moved to within 1 percent of
its final value, the solution is well into the asymptotic regime.
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B Numerical details

To cope with the discontinuities at xd(t) and xu(t), it is convenient to change
coordinates, (x, t) → (Ξ, t), as defined by equation (A.1). (The failure to deal
with the discontinuities leads to small numerical oscillations near those points
which gradually poison the numerics.) The governing equation is then

ht =
1

(xd − xu)1+1/n

∂

∂Ξ

[

n|hΞ|1/n−1Y 1+1/n

(n + 1)(2n + 1)
[(1 + 2n)h − nY ]hΞ

]

+
ẋdΞhΞ

(xd − xu)
+

ẋu(1 − Ξ)hΞ

(xd − xu)
(B.1)

where Y = h − [B(xd − xu)]/|hΞ| and 0 ≤ Ξ ≤ 1. Spatial discretization is
performed using a simple piecewise nonlinear Galerkin method, along the lines
suggested by Skeel & Berzins [19]: We construct a grid indexed by 1 ≤ i ≤ N ,
where N the total number of gridpoints. Let

Ξ̂i+ 1

2

=
Ξi+1 + Ξi

2
, h(Ξ̂i+ 1

2

) =
hi+1 + hi

2
, hΞ(Ξ̂i+ 1

2

) =
hi+1 − hi

Ξi+1 − Ξi
. (B.2)

Then,

ht(i) = 2
gi+ 1

2

− gi− 1

2

Ξi+1 − Ξi−1
+

Ξi+1 − Ξi

Ξi+1 − Ξi−1
ri+ 1

2

+
Ξi − Ξi−1

Ξi+1 − Ξi−1
ri− 1

2

. (B.3)

where g(i+ 1
2
) and r(i+ 1

2
) are the flux and rescaling terms in (B.1) computed

at Ξ̂i+ 1

2

. At the left boundary we impose the no-flux condition,

ht(i = 1) =
g 3

2

Ξ̂ 3

2

+ r 3

2

. (B.4)

Provided xu > 0, ordinary differential equations for the front positions are
obtained by setting ht(i = 1) = 0 in (B.4) and ht(i = N) = 0 in (B.3). Those
equations are then coupled to the discretized h-equation and the whole system
is evolved in time using a fifth-order backward differentiation formula (Gear’s
method). When B < 1/3, the slumping material reaches the back wall at a
certain time which is precisely located and the integration stopped. It is then
resumed, but with xu fixed at zero; we still set ht(i = N) = 0 in (B.3) to obtain
an evolution equation for ẋd, but equation (B.4) now provides an equation for
ht(i = 1).
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To account carefully for the steep front at xd, the points along the Ξ-axis
are non-uniformly spaced and are collocated in [0, 1] according to the relation
dΞi/di = ς(i−1)N0(i−N)N1 where ς is set so that ΞN = 1. The parameters N0

and N1 increase the densities of points at the extremes. We typically employed
N0 = 0, N1 = 2 and N = 400. Finally, volume conservation is not explicitly
enforced as part of the computational scheme; numerical checks upon the
solutions show that it is conserved.
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