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We consider double-diffusive convection between two parallel plates and compute
bounds on the flux of the unstably stratified species using the background method.
The bound on the heat flux for Rayleigh–Bénard convection also serves as a bound
on the double-diffusive problem (with the thermal Rayleigh number equal to that
of the unstably stratified component). In order to incorporate a dependence of the
bound on the stably stratified component, an additional constraint must be included,
like that used by Joseph (Stability of Fluid Motion, 1976, Springer) to improve the
energy stability analysis of this system. Our bound extends Joseph’s result beyond his
energy stability boundary. At large Rayleigh number, the bound is found to behave
like R

1/2
T for fixed ratio RS/RT , where RT and RS are the Rayleigh numbers of the

unstably and stably stratified components, respectively.

1. Introduction
Mathematical models describing physical flows often have multiple possible solu-

tions that prove difficult to find due to the complex nature of the basic equations.
Worse still, such flows are often turbulent, which precludes computing some of the
physically relevant solutions owing to the inability to resolve the finest scales. In
this situation, it is helpful to search for other, more indirect approaches to the
problem that may assist in understanding crucial characteristics of the flow. One such
approach is upper bound theory, wherein one avoids the search for actual solutions,
but places bounds on some of their average properties. Malkus (1954) was the first to
propose this kind of idea in the context of thermal convection (the Rayleigh–Bénard
problem), and Howard (1963) subsequently set the theory on a firm mathematical
basis and devised techniques to calculate the bound. Whilst the governing partial
differential equations (PDEs) themselves are abandoned, the method retains two
integrals relations, or ‘power integrals’, derived from them, which is the crux of how
the approach is far simpler than direct computations.

Making use of clever inequalities, Howard deduced rigorous but rough bounds on
the heat flux that scaled like R

1/2
T , where RT is the Rayleigh number. Howard also

computed bounds using test functions with a single horizontal wavenumber, which
leads to the alternative scaling, R

3/8
T , for large RT . The single-wavenumber bound is

only valid if other functions do not lead to a higher value of the heat flux, which
Busse (1969) later showed to be the case at sufficiently high Rayleigh number. He also
generalized Howard’s approach using an elaborate procedure to account for more than
one wavenumber, and recovered the R

1/2
T scaling in the infinite Rayleigh number limit.
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Howard’s method centres on a decomposition of all the physical fields into
horizontal averages and fluctuations about them. In an alternative approach, the
Constantin–Doering–Hopf (CDH) background method (Doering & Constantin 1996),
the variables are also decomposed, but this time exploiting arbitrary ‘background’
fields. Integral identities similar to the ones used in Howard’s method are constructed,
and the choice for the background is dictated by constraints similar to those obtained
in energy stability theory (see Joseph 1976). Work by Nicodemus, Grossmann &
Holthaus (1997) and Kerswell (1998) has proved that, although the Howard–Busse
and the CDH methods appear different, they are complementary or optimal duals of
each other, and ultimately lead to the same result.

In this article, we use the background method to place bounds on double-diffusive
convection (i.e. convection resulting from the dependence of buoyancy on two
properties that diffuse at different rates). Such systems are often termed thermohaline,
referring to their most common occurrence in oceans and other large water bodies,
with salt and heat playing the roles of the two components. Interesting dynamics
ensues when the two components affect the density stratification in opposite senses,
and convection may occur even when the total density gradient is gravitationally stable
(Veronis 1965; Baines & Gill 1969). For example, near the polar ice caps, melting
of ice releases fresh but cold water near the surface, a situation prone to oscillatory
double-diffusive (ODD) convection (Jacobs et al. 1981; Neal, Neshira & Denner
1969). ODD convection is also thought to occur in meddies (vortices of warm, salty
water commonly observed in the East Atlantic emanating from the Mediterranean,
Ruddick (1992)). In an astrophysical context, ODD convection is believed to operate
in the interiors of older stars where the two components are entropy and the elements
produced by thermonuclear reactions (Spiegel 1969); mixing by ODD convection may
replenish the reactive core of the star with fresh fuel and thus affect its evolution.

The opposite case, in which salt stratification is destabilizing but heat is stabilizing,
is susceptible to the formation of salt fingers. Stern (1969) proposed that enhanced
fluxes resulting from these fingers are instrumental in forming the staircase-like
salinity profiles observed in laboratory experiments and the open ocean. The articles by
Merryfield (2000) and Schmitt (1994) provide recent reviews on this subject. Analogues
of salt fingers have also been suggested to arise in some astrophysical situations,
where the role of salt is played by locally overabundant heavier elements such as
helium (Ulrich 1972; Vauclair 2004). In all these applications quantifying the degree
of mixing generated by thermohaline processes is paramount, which highlights the
importance of characterizing the flux laws in double-diffusive convection, especially
in the turbulent regime. Whilst the desired characterization of the flux laws remains
elusive to analysis, at least at present, we follow Malkus’s vision and calculate an
upper bound on the flux of the unstably stratified species.

For double diffusion, this bounding exercise has two key novelties compared to
the Rayleigh–Bénard problem. First, at the onset of convection, double-diffusive
systems show a richer array of dynamics than purely thermal systems. In Rayleigh–
Bénard convection, when the system first becomes convectively unstable, a branch
of steady convection solutions bifurcates supercritically from the motionless state;
that is, there is a smooth onset to steady overturning. This simple scenario does not
carry over to the double-diffusive case: as one raises RT to drive the system into
convection, the linear instability can take the form of either steady overturning or
oscillatory convection. Furthermore, the steady bifurcation can become subcritical,
which implies the existence of multiple finite-amplitude solutions at lower Rayleigh
number that must, in turn, appear in saddle-node bifurcations at yet lower RT .
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The existence of multiple solutions demands that the conductive state be subject
to finite-amplitude instability, even if it is linearly stable. All such dynamics must
become embedded in the upper bound, which may even jump discontinuously at the
saddle-node bifurcations. This raises the interesting question of whether the upper
bound theory can be used to detect and characterize finite-amplitude instability and
saddle-node bifurcations.

Second, the bounding exercise also has some interesting mathematical twists. We
first show that the upper bound obtained on the flux of the unstably stratified com-
ponent in the absence of the other component also serves as a bound in the presence
of that stabilizing field. In fact, this is the result that appears when we extend the
background method in a straightforward way to doubly-diffusive convection. Whilst
this result is heuristically expected, since the stratification of the stable component
can only diminish the flux, it fails to provide a dependence on both components.
In previous attempts, Lindberg (1971) and Straus (1973) used variants of the single-
wavenumber approach to bound the ODD and salt-fingering cases, respectively. In
order to obtain a non-trivial dependence of the bound on the salt flux, Lindberg
maximized the heat and salt fluxes simultaneously. Not only is there no reason to
expect a single wavenumber, there is also no justification for assuming the fluxes
to be maximal simultaneously. The procedure yielded bounds that scaled like R

3/8
T ,

where RT now denotes the Rayleigh number of the unstably stratified component.
Straus exploited the large difference between the diffusivities of heat and salt to solve
the heat equation asymptotically, thereby building the full effects of the stabilizing
component into the bounding formulation automatically. But like Lindberg’s, Straus’s
bound also scales with the 3/8 power of RT , and again reflects the inadequacy of
a single wavenumber. In the current work, we identify one more integral constraint
on double-diffusive convection, which Joseph (1976) has shown to be crucial in
energy stability analysis. By augmenting the upper bound analysis with this integral
constraint, and avoiding the use of a single wavenumber, we capture the effect of
both components and construct a true bound. A similar analysis was also presented
by Stern (1982).

2. Mathematical formulation
As is traditionally done, we model our system by the Boussinesq equations:

ut+ u · ∇u = −∇p

ρ
+ g(αT T − αSS) ẑ+ ν∇2u, (2.1)

Tt+ u · ∇T = κT ∇2T , (2.2)

St+ u · ∇S = κS∇2S, (2.3)

∇ · u = 0, (2.4)

where u(x, t) is an incompressible velocity field, and T and S represent two scalar
components that affect the density of the fluid. We only deal with the situation in
which the two components affect the density stratification in opposite senses; without
loss of generality, we set T to be unstably stratified and S to be stably stratified. If
the diffusivity of T (κT ) is larger than that of S (κS) the system is susceptible to ODD
convection. In the opposite case, the system is susceptible to ‘T -fingers’ (because in
this case T is playing the role of salt). The other physical parameters are the
acceleration due to gravity (g), coefficients of expansion due to variations in S (αS)
and T (αT ), and the kinematic viscosity (ν).
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We prescribe the values of S and T at the two boundaries, z = 0 and z = H :

T (z = H ) = Ttop, T (z = 0) = Ttop+ �T, (2.5)

S(z = H ) = Stop, S(z = 0) = Stop+ �S. (2.6)

For the velocity field, we either use the no-slip condition,

u = 0, (2.7)

or stress-free conditions,

w = 0, uz = vz = 0. (2.8)

Both these cases are considered when calculating the bound. However, the linear
stability and some nonlinear solutions that we present are computed using the stress-
free conditions, mostly for computational convenience.

We place the equations in dimensionless form by rescaling,

u → κT

H
u, T − Ttop → �T T, S − Stop → �S S, x → H x,

t → H 2

κT

t, p − ρg(αT Ttop − αSStop)z → ρκ2
T

H 2
p.

⎫⎪⎬
⎪⎭ (2.9)

This gives rise to four dimensionless numbers,

RT =
gαT �T H 3

νκT

, RS =
gαS�SH 3

νκS

, Pr =
ν

κT

, β =
κS

κT

, (2.10)

and the governing equations become

1

Pr
(ut+ u · ∇u + ∇p) = (RT T − βRSS) ẑ + ∇2u, (2.11)

Tt + u · ∇T = ∇2T , (2.12)

St + u · ∇S = β∇2S, (2.13)

∇ · u = 0. (2.14)

The accompanying boundary conditions are

T (z = 1) = S(z = 1) = 0,

T (z = 0) = S(z = 0) = 1,

}
(2.15)

plus (2.7) or (2.8) on z = 0 and z = 1 and periodicity in x and y.

3. Energy stability
We start with the criteria for nonlinear stability of the purely conductive state of this

system. A very brief account of this analysis was given by Joseph (1976). We elaborate
and build upon Joseph’s results here in order to offer a more complete discussion
and extract some important physical results; in doing so, we also emphasize the key
connection with the bounding theory to follow.

3.1. Mathematical details

Consider u = 0 + u(x, t), T = T0 + θ(x, t), S = S0 + σ (x, t), and p = P0 + Π , where
T0 = S0 = 1 − z and P0 =Pr(RT − βRS)(z − z2/2) characterize the purely conductive
solution of (2.11)–(2.14), and u, θ , σ and Π are arbitrary perturbations. The
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perturbations satisfy

1

Pr
(ut + u · ∇u + ∇Π) = (RT θ − βRSσ ) ẑ + ∇2u, (3.1)

θt + u · ∇θ − w = ∇2θ, (3.2)

σt + u · ∇σ − w = β∇2σ, (3.3)

∇ · u = 0. (3.4)

The kinetic energy equation is constructed by taking the dot product of the momentum
equation (3.1) with u and integrating over the domain,

1

2Pr
〈|u|2〉t = −〈|∇u|2〉 + RT 〈θw〉 − βRS〈σw〉, (3.5)

where

〈· · ·〉 ≡ 1

4LxLy

∫ Ly

−Ly

∫ Lx

−Lx

∫ 1

0

· · · dz dx dy,

2Lx and 2Ly are the periodicities in x and y, respectively, and |∇u|2 = ∇u: ∇uT .
Similarly, by multiplying (3.2) and (3.3) by θ and σ , respectively, and integrating, we
arrive at the following power integrals:

1
2
〈θ2〉t = −〈|∇θ |2〉+ 〈θw〉, (3.6)

1
2
〈σ 2〉t = −β〈|∇σ |2〉+ 〈σw〉. (3.7)

While these integral equations are the obvious generalization of those used for the
energy stability for thermal convection, there is a less obvious integral which is also
crucial. It is constructed by multiplying (3.2) by σ and adding it to the product of
(3.3) and θ and integrating:

〈θσ 〉t = 〈(θ + σ )w〉 − (1 + β)〈∇θ · ∇σ 〉. (3.8)

The optimal way in which to combine these integral equations so as to yield the best
stability criterion is the essence of the analysis. Since we do not know the optimal
combination a priori, we start with an arbitrary linear combination of (3.5)–(3.8) and
arrive at the generalized energy equation:

Et = −〈|∇u|2〉 − λ2
T RT 〈|∇θ |2〉 − βλ2

SRS〈|∇σ |2〉 + λT RT bT 〈θw〉

+

√
βλSRSbS

α
〈σw〉 − (1 + β)cλT λS

√
RT RS〈∇θ · ∇σ 〉, (3.9)

where

α2 = RS/RT , (3.10)

E ≡ 1

2Pr
〈|u|2〉 +

λ2
T RT

2
〈θ2〉 +

λ2
SRS

2
〈σ 2〉 + cλT λS

√
RT RS〈θσ 〉, (3.11)

bT ≡ 1

λT

+ λT + cαλS, (3.12)

bS ≡ −
√

βα

λS

+
α√
β
λS+

c√
β
λT , (3.13)

and λT , λS and c are the constants used to form the combination. When RS = 0 the
effect of S disappears and we recover the result for thermal convection. The basic
state is said to be ‘energy stable’ when the energy-norm, E, of the perturbations is
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positive definite and decays monotonically (the right-hand side of (3.9) is negative
definite) for all possible perturbations. It is straightforward to show that E in (3.11)
is positive definite when |c| < 1.

First, we demonstrate the inability of (3.5)–(3.7) to capture the stabilizing effect of
RS when c =0. In this case, the energy equation takes the form,

Et = RT

(
1 + λ2

T

)
〈θw〉 + α2RT

(
−β + λ2

S

)
〈σw〉

− RT

(
λ2

T 〈|∇θ |2〉 +α2βλ2
S〈|∇σ |2〉

)
− 〈|∇u|2〉 (3.14)

and we refer to E as the ‘regular’ energy. The optimization problem of finding the
critical RT leads to the criterion for stability,

RT < RT c =
4Rc

F (λT , λS)
, (3.15)

where Rc is the critical Rayleigh number for the onset of thermal convection and

F (λT , λS) =

(
1

λT

+ λT

)2

+

(
− β

λS

+ λS

)2

. (3.16)

The choice of boundary conditions on the velocity enters the consideration through
the value of Rc. For no slip, Rc ≈ 1707, whereas for the stress-free condition Rc ≈ 657.
We now choose λT and λS to maximize the range of RT for which perturbations decay.
That is, we look for the minimum value of the function F (λT , λS), which occurs for
λ2

S =β and λT = 1, giving RT c = Rc, as stated earlier. To improve this stability condition
we must take c 	= 0, thereby including (3.8).

Going back to (3.9), the terms involving ∇θ and ∇σ are negative semi-definite only
if c � 2

√
β/(1 + β). We choose c =2

√
β/(1 + β) and then combine all three terms

into 〈|∇f |2〉, where

f ≡ λT

√
RT θ + λS

√
βRSσ.

This leaves us with just two sign-indefinite terms, 〈θw〉 and 〈σw〉. This pair can
only be bounded if they can again be grouped together in the combination f , which
prompts the constraint

bT = bS. (3.17)

The energy equation now takes the form

Et = R
1/2
T bT 〈f w〉 − 〈|∇f |2〉 − 〈|∇u|2〉, (3.18)

which is very similar to the one obtained for thermal convection, but with a modified
thermal Rayleigh number and the field f playing the role of temperature. Again
finding the optimal perturbation, we conclude that the condition for energy stability
is

RT < RT c =
4Rc

b2
T

. (3.19)

We still have the freedom to choose one of either λT or λS so as to obtain the best
possible stability criterion. This leads to the following minimization problem for the
critical thermal Rayleigh number (RT c):

RT c = 4Rc

(
min
bT =bS

bT (λT , λS)
2

)−1

. (3.20)
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The details of the minimization are given in the Appendix. The resulting stability
condition can be encapsulated in the formulae

RT c =

⎧⎨
⎩

Rc + RS if α � β < 1 or β � 1 > α

(
√

Rc(1 − β2) + β
√

RS)
2 if β <α < β−1

∞ if α � β−1 > 1 or α � 1 and β � 1,

(3.21)

which were derived previously by Joseph.

3.2. Interpretation for stress-free plates

Now we draw some conclusions from Joseph’s result and compare with linear stability
theory, specifically for the case of stress-free plates. The linear stability theory is
described by Veronis (1965) and can be summarized as follows: linear instability can
appear as either steady or oscillatory convection, the corresponding critical Rayleigh
numbers being given by

steady: RT = RS + Rc, if α2 β +Pr

1 + Pr
< β < 1 or β > 1, (3.22)

oscillatory: RT = (Pr + β)

(
βRS

1 + Pr
+

Rc(1 + β)

Pr

)
if α2 β + Pr

1 + Pr
> β and β < 1.

(3.23)

In figure 1, the energy stability condition (3.21) is compared with the conditions for
the onset of linear and nonlinear instability. First consider the fingering case (β > 1),
represented in figure 1(a), which is the same for all values of β and Pr. In this case,
the conductive state becomes linearly unstable to steady convection on the line (3.22),
and is never unstable to oscillatory convection. The energy stability threshold agrees
with linear onset everywhere, proving that all perturbations, irrespective of their size,
should decay below that line.

The ODD case (β < 1) is rather more complicated, and the dynamics of the system
depends on the detailed parameter settings. Figures 1(b) and 1(c) show a repre-
sentative case with β = 0.5 and Pr= 2; once we fix those parameters, the behaviour
of the system is determined by where it falls on the (RS/Rc, RT /Rc)-plane, and
the range of possibilities is delimited by the four curves shown in the figure. For
α <

√
β(1 + Pr)/(β + Pr) (left of point B), steady convection appears on the line

(3.22) and is the only linear instability. For α <β , or to the left of point A, the energy
stability condition in (3.21) also agrees with steady onset. However, to the right of that
point, the two conditions diverge from one another, indicating that energy stability
is lost before the motionless state becomes linearly unstable to steady convection.
The steady instability is further superceded by the onset of oscillatory convection for
α >

√
β(1 + Pr)/(β + Pr), or to the right of point B in figure 1(c). Moreover, except

at one special point (labelled D) where the two curves are tangential, energy stability
never agrees with linear oscillatory instability. In other words, only over a limited
parameter range does the loss of energy stability correspond to the onset of linear
instability, in contrast to thermal convection and the fingering case, where they always
agree.

Part of the reason for the disagreement between the energy stability condition
and linear onset arises because the steady bifurcation becomes subcritical at point
A. To the right of this point, the subcritical instability leads to steady convection
solutions even in the linearly stable regime. These steady convection solutions do not
persist very far below the steady linear stability line because they turn around at a
saddle-node bifurcation (Veronis 1965). The saddle node in the past has been located
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Figure 1. Stability boundaries on the (RS/Rc-RT /Rc)-plane. (a) The fingering case (β > 1),
where the only linear instability is that of steady convection and the generalized energy
stability condition agrees with it (topmost curve). The curve below it shows the regular energy
stability criterion. These curves do not depend on the precise values of β and Pr. (b) The
ODD case (β = 0.5 and Pr = 2) and to clarify the details a magnified view is plotted in (c).
The topmost solid line corresponds to the onset of steady convection which is supercritical
to the left of point A and subcritical to its right. The unstable branch bifurcating from the
subcritical bifurcation turns around at a saddle–node bifurcation whose location is shown by
the dashed-dotted line. The nonlinear solutions at the saddle-node are calculated by expanding
the variables in a truncated Fourier series in x and a sine series in z. The dashed line shows
the linear stability criterion for onset of oscillatory convection. The solid lines again show the
generalized and regular energy stability conditions, respectively.

using a crude Galerkin truncation of the governing equations. To improve upon this,
we have accurately computed the locus of that bifurcation numerically via Fourier
expansion and a continuation algorithm. The locus is plotted in figure 1. In the region
between this locus and the onset of steady convection, multiple steady solutions are
guaranteed.

When multiple solutions exist, certain finite-amplitude perturbations and the energy
associated with them will not decay to zero but saturate to a finite value, reflecting
a transition to one of the other solutions. As a result, the energy stability condition
cannot agree with the onset of linear instability whenever there are multiple solutions.
Indeed, we find that the energy stability condition is tangential to the saddle-node
line at point A, suggesting that the saddle-node is the cause of the loss of energy
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stability there. However, as RS increases, the saddle-node line and energy stability
condition diverge, indicating some other reason for the loss of energy stability. The
saddle-node line also crosses the threshold for the onset of oscillatory convection
(point C in figure 1), whereupon oscillatory nonlinear solutions come into existence
before the saddle-node. Unlike steady convection, the onset of oscillatory convection
is always supercritical (Veronis 1965). Nevertheless, the energy stability condition
disagrees with oscillatory onset except at one point. This leaves us with a significant
discrepancy between the energy stability condition and either the saddle-node line or
the oscillatory onset.

The discrepancy could arise from three possible sources, amongst which we are
currently unable to distinguish. First, there could be other unidentified nonlinear
solutions lying below the computed saddle-node line. The detection of such additional
multiple equilibria would require an intensive search of the solution space of the
governing equations at each point on the parameter plane. However, our original
purpose was to avoid such a time-consuming open-ended exercise, and hence we will
not pursue this.

The second possibility is that the power integrals included in the energy stability
formulation allow a wider class of trial functions than are solutions to the governing
equations. Above the energy stability condition, the energy method indicates that
there are trial functions for which the generalized energy grows in time, yet these
may not be real solutions. The cure is to better constraint the function space by, for
example, adding more power integrals. A curious observation arises on exploring in
more detail the point of intersection of the energy stability condition and the linear
oscillatory onset. The former is independent of Prandtl number, but the latter is not.
Yet, when one constructs the envelope of the oscillatory onset line for all possible
Prandtl numbers, the energy stability condition is recovered exactly. This suspicious
coincidence leaves one wondering whether the main problem is the lack of Prandtl-
number dependence in the energy stability condition, which could be alleviated by
building in extra constraints.

The final possibility is transient amplification. This is a purely linear mechanism
wherein the energy norm chosen to determine stability grows initially for certain
initial conditions. The growth can be attributed to the presence of non-orthogonal
linear modes, even when each of these modes decays exponentially (Baggett, Driscoll
& Trefethen 1993; Waleffe 1995). In the thermohaline context, transient amplification
has been invoked in studies of ocean circulation (Tziperman & Ioannou 2002;
Dijkstra, Te Raa & Weijer 2004), and with regard to possible transitions in the
paleoclimate (Bryan 1986; Stocker 1999). As far as energy stability is concerned, a
sub-optimal choice of the energy norm may lead to transient growth even in situations
for which there is no finite-amplitude instability. Indeed, this is exactly what happens
with the regular energy norm for RT c > RT > Rc. The remedy is to generalize the
energy norm and curb transient amplification, leading to the improved energy stability
condition. But even this generalized energy stability condition may not correspond to
a finite-amplitude instability as all perturbations may still eventually decay beyond
this condition. Whether a true finite-amplitude instability criterion can be derived
from power-integral considerations remains an open question.

4. The background method
Energy stability rigorously predicts there to be no convective motion when RT <RT c,

but the analysis provides no predictions for larger RT . More information can be gained
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by employing the background method to find a bound on a flow property like the
average species transport over long times. We undertake this calculation in this section.

4.1. The general formulation

The average transport of T is quantified by the Nusselt number (Nu), defined as

Nu = lim
t→∞

1

4LxLyt

∫ t

0

∫ Ly

−Ly

∫ Lx

−Lx

Tz(z = 1) dy dx dt. (4.1)

A volume integration of (2.12) multiplied by T puts the Nusselt number in a more
usable form:

Nu = 〈|∇T |2〉, (4.2)

where we now redefine 〈· · ·〉 to include a long time average:

〈· · ·〉 ≡ lim
t→∞

1

4LxLyt

∫ t

0

∫ Ly

−Ly

∫ Lx

−Lx

∫ 1

0

· · · dz dx dy dt. (4.3)

The T and S fields are decomposed into backgrounds and fluctuations as

T (x, t) = 1 − z + φ(z) + θ(x, t), S(x, t) = 1 − z + ψ(z) + σ (x, t), (4.4)

where we denote the backgrounds by φ and ψ and the fluctuations by θ and σ . With
this selection, φ(z), θ(x, t), ψ(z) and σ (x, t) satisfy homogeneous boundary conditions.
The decomposition is arbitrary at the moment but will be made unique as the analysis
proceeds. With the decomposition, we construct the power integrals:

RT 〈θw〉 − βRS〈σw〉 − 〈|∇u|2〉 = 0, (4.5)

〈(1 − φ′)θw〉 − 〈φ′θz〉 − 〈|∇θ |2〉 = 0, (4.6)

〈(1 − ψ ′)σw〉 − β 〈ψ ′σz〉 − β〈|∇σ |2〉 = 0, (4.7)

〈(1 − φ′)σw + (1 − ψ ′)θw〉 − 〈φ′σz〉 − β〈ψ ′θz〉 − (1 + β)〈∇σ · ∇θ〉 = 0, (4.8)

where primes denote differentiation with respect to z. To find a bound, we relax the
condition that u, θ and σ solve the governing PDEs, but require them to satisfy the
above integral relations. As will be shown later, the inclusion of the equation (4.8)
is crucial in obtaining the dependence of the bound on RS in the same way it was
needed for energy stability.

The method proceeds by writing a variational problem in which we maximize the
Nusselt number subject to the integral constraints. Thus, we consider the Lagrangian,

L[u, θ, σ ] = 1 + 〈φ′2〉 + 2〈φ′θz〉 + 〈|∇θ |2〉 +
√

a〈Π(x)∇ · u〉
+ a[(RT 〈θw〉 − βRS〈σw〉 − 〈|∇u|2〉]
+ aλ2

T RT [〈(1 − φ′)θw〉 − 〈φ′θz〉 − 〈|∇θ |2〉]
+ aλ2

SRS[〈(1 − ψ ′)σw〉 − β〈ψ ′σz〉 − β〈|∇σ |2〉]
+ acλT λSαRT 〈(1 − φ′)σw + (1 − ψ ′)θw − φ′σz − βψ ′θz

− (1 + β)∇σ · ∇θ〉, (4.9)

where a, λT , λS and c are constant Lagrange multipliers, and Π is a spatially
dependent multiplier that enforces fluid incompressibility. One can verify that if c is
chosen to be zero, thus avoiding the constraint (4.8), the best value for λS turns out
to be

√
β and the problem reduces to that of thermal convection. That is, the effect

of RS disappears from the bound as in energy stability theory. We therefore retain
c, but resist making the same choice for c as in energy stability theory. Instead, we
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substitute c = 2q
√

β
√

1 − ε2/(1 + β), where q is a parameter (q = 1 corresponds to
the choice of energy stability theory). For algebraic convenience, we further rescale
the backgrounds and fluctuations as

u → 1√
a

u, θ → εθ, φ → εφ, σ → ησ, ψ → ηψ, (4.10)

where ε ≡ 1/(λT

√
aRT ) and η ≡ 1/(λS

√
aβRS). Then L[u, θ, σ ] can be written as

L[u, Θ] = 1 + ε2〈φ′2〉 − 〈|∇u|2〉 −
〈

∂ΘT

∂z
PΨ ′

〉

+ R
1/2
T 〈(BT θ + BSσ )w〉 −

〈
∂ΘT

∂xi

R
∂Θ

∂xi

〉
+ 〈Π∇ · u〉 , (4.11)

where

Θ ≡
(

θ

σ

)
, Ψ ≡

(
φ

ψ

)
, (4.12)

BT ≡ bT −
(

φ′ +
2q

√
1 − ε2

1 + β
ψ ′

)
ελT , BS ≡ bS −

(
ψ ′

β
+

2q
√

1 − ε2

1 + β
φ′

)
ελT , (4.13)

bT ≡ 1

λT

+ λT +
2
√

βαq
√

1 − ε2λS

1 + β
, bS ≡ −

√
βα

λS

+
αλS√

β
+

2q
√

1 − ε2λT

1 + β
, (4.14)

P ≡

⎛
⎜⎜⎜⎝

1 − 2ε2 2βq
√

1 − ε2

1 + β

2q
√

1 − ε2

1 + β
1

⎞
⎟⎟⎟⎠ , R ≡

(
1 − ε2 q

√
1 − ε2

q
√

1 − ε2 1

)
(4.15)

and a summation is implied on the repeated index i =1, 2, 3.
The first variation of L[u, Θ] demands that the optimal fields, denoted by the

subscript asterisk, satisfy the Euler–Lagrange equations,

∇ · u∗ = 0, 2∇2u∗ + R
1/2
T (BT θ∗ + BSσ∗) ẑ − ∇Π = 0, (4.16)

PΨ ′′ + R
1/2
T w∗

(
BT

BS

)
+ 2R∇2Θ∗ = 0. (4.17)

For the stationary fields to be maximizers, the second variation of L[u, Θ] requires

〈|∇û|2〉 +

〈
∂Θ̂

T

∂xi

R
∂Θ̂

∂xi

〉
− R

1/2
T 〈(BT θ̂ + BSσ̂ )ŵ〉 � 0, (4.18)

where the hat denotes deviations from the stationary fields. If we now set

f ≡ θ̂
√

1 − ε2 + qσ̂ ,

then (4.18) can be expanded into

〈|∇û|2〉 + 〈|∇f |2〉 + (1 − q2)〈|∇σ̂ |2〉 − R
1/2
T

〈
BT√
1 − ε2

f ŵ +

(
BS − qBT√

1 − ε2

)
σ̂ ŵ

〉
� 0.

(4.19)

In order to ensure that the third term is not negative, we must choose |q| � 1.
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The most general version of our variational problem is now to find the smallest
possible value of the extremal Nusselt number, L[u∗, Θ∗], subject to the Euler–
Lagrange equations (4.16)–(4.17) and condition (4.19). At our disposal in this
optimization are the various Lagrange multipliers and the choices of the background
fields. Plasting & Kerswell (2003) have used a general formulation of this kind in
bounding the thermal convection problem. Here, we proceed less ambitiously and
consider a less optimal, but certainly more straightforward version of the problem.

4.2. Reduction to a more familiar formulation

The general variational formulation can be reduced to a more familiar form if we
make two further assumptions. First, following Doering & Constantin (1996), we
simplify the solution of the Euler–Lagrange equations by taking u∗ = 0. Therefore,
Θ∗ = Θ∗(z), with

Θ ′
∗ = − 1

2
R−1PΨ ′. (4.20)

Second, by analogy with energy stability theory, we impose the constraints

qbT =
√

1 − ε2bS and qBT =
√

1 − ε2BS, (4.21)

which have the advantage of eliminating the final term in (4.19), leaving

〈|∇û|2〉 + 〈|∇f |2〉 +(1 − q2)〈|∇σ̂ |2〉 − BT

√
RT

1 − ε2
〈f ŵ〉 � 0. (4.22)

The second relation in (4.21) also connects the two background fields to one another:

ψ ′ =
(β + 2ε2 − 1)βqφ′

(β + 1 − 2q2β)
√

1 − ε2
. (4.23)

The extremal value of the heat flux, Nu∗, can now be written in the form

Nu∗ = L[0, Θ∗] = 1 + 〈Ψ ′T MΨ ′〉, (4.24)

where

M ≡
(

ε2 0
0 0

)
+

1

4
PT (R−1)T P, (4.25)

and the positive-definiteness of R−1 makes the bound, Nu∗, bigger than or equal to
unity. Note that (4.23) implies that 〈Ψ ′T MΨ ′〉 can be written formally in terms of a

parameter-dependent coefficient times 〈φ′2〉.
At this stage, the variational problem amounts to locating the smallest value of

Nu∗ such that (4.22) holds. If we insist that |q| < 1, then we may simply omit the
term 〈|∇σ |2〉 leaving a formulation much like that explored for the Rayleigh–Bénard
problem (with, once again, f playing the role of temperature). The problem posed,
however, is more complicated because of the richer structure of the coefficients in
both the second-variation constraint (4.22) and the maximum Nusselt number (4.24).

Although any background field for which the second-variation condition is satisfied
will furnish a valid upper bound, some profiles may lead to a better bound than
others. Hence, it is desirable to find that background which not only satisfies the
second variation but also leads to the lowest bound. Such an exercise involves a
nonlinear functional optimization problem. In the next subsection, we reduce this
optimization problem to an algebraic one by using piecewise linear background
profiles. Before making this selection, however, we remark briefly on the choices
in (4.21). These selections have the advantage of reducing the general variational
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Figure 2. T and S background profiles.

formulation to something closer to the familiar Rayleigh–Bénard problem. Better
still, because they also coincide with the choices made in energy stability theory,
the bound is guaranteed to reduce to the energy stability condition when RT <RT c.
Moreover, one can show that these selections are, in fact, the best possible choices if
the background fields are piecewise linear, as in our main computations. Nevertheless,
for general backgrounds and above the energy stability threshold, we cannot judge the
optimality of the selection, which exposes a flaw in the current theory; one possible
consequence is mentioned later.

4.3. Piecewise linear background fields

We now reformulate the variational problem in purely algebraic terms by introducing
the piecewise linear background fields,

Ψ (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
(

1

2δ
− 1

)
Ψ ′

inz, 0 � z � δ

Ψ ′
in

(
z − 1

2

)
, δ � z � 1 − δ

−
(

1

2δ
− 1

)
Ψ ′

in(z − 1), 1 − δ � z � 1,

(4.26)

where δ (0 � δ � 1/2) is loosely referred to as the ‘boundary-layer thickness’, and
Ψ ′

in denotes the slopes of the two backgrounds in the interior region (δ < z < 1 − δ).
Because of (4.23), the components of the latter are not independent of one another.
The shapes of the brackground fields are illustrated in figure 2.

The next step is to make the sign-indefinite term in (4.22) as small as possible. We
achieve this by choosing Ψ ′

in so that BT = BS = 0 in the interior, which demands that

Ψ ′
in =

1

ελT

S−1

(
bT

bS

)
, (4.27)

where

S ≡

⎛
⎜⎜⎜⎝

1 2q

√
1 − ε2

1 + β

2q

√
1 − ε2

1 + β

1

β

⎞
⎟⎟⎟⎠ . (4.28)
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We are then left with only boundary layer contributions to the sign-indefinite term,

but these hopefully remain controlled and small because Θ̂ and û vanish on the
boundaries.

The inequality in (4.22) can now be written as

〈|∇û|2〉 + 〈|∇f |2〉 + (1 − q2)〈|∇σ̂ |2〉 − bT

2δ

√
RT

1 − ε2
〈f ŵ〉bl � 0, (4.29)

where

〈· · ·〉bl ≡ lim
t→∞

1

4LxLyt

∫ t

0

∫ Ly

−Ly

∫ Lx

−Lx

(∫ δ

0

· · · dz +

∫ 1

1−δ

· · · dz

)
dx dy dt. (4.30)

For convenience, we replace (4.29) by the constraint

〈|∇û|2〉bl + 〈|∇f |2〉bl − bT

2δ

√
RT

1 − ε2
〈f ŵ〉bl � 0. (4.31)

which is sufficient for (4.29) to be satisfied, and depends on the integrals of û and f

only over the boundary layers. Hence the interior region can be omitted completely
from the analysis, noting only that û and f should be smooth there. The inequality
can be cast as the variational problem

2δ

|bT |

√
1 − ε2

RT

� max
f,û

〈f ŵ〉bl for 〈|∇û|2〉bl + 〈|∇f |2〉bl = 1, ∇ · û = 0, (4.32)

with f and û vanishing at z = 0 and z = 1 and free at z = δ and z = 1 − δ. The Euler–
Lagrange equations corresponding to this maximization are identical to the linear
stability equations obtained for thermal convection with a layer of height 2δ and an
equilibrium temperature gradient of unity. Thus, the results from thermal convection
can be adapted using a suitable rescaling of the variables. Doing that, we obtain the
following constraint on δ:

δ < δmax =

√
1 − ε2

|bT |

√
Rc

RT

. (4.33)

Finally, we simplify the bound on the Nusselt number:

Nu∗ = 1 +

(
1

2δ
− 1

)
Ψ

′T
in MΨ ′

in. (4.34)

Since we would like to obtain the smallest Nu∗, we choose the biggest δ allowed by
(4.33), and arrive at

Nu∗ = 1 +
b2

T [1 − βq2(2 − β)]

4ε2λ2
T (1 − ε2)(1 − q2)

(
1

2δ
− 1

)
, (4.35)

where

δ =

{
δmax, δmax < 1

2

1
2
, δmax � 1

2
.

(4.36)

This leaves us with a choice of the constants λT , λS , ε and q , which are constrained
by (4.21) and must be selected to minimize Nu∗:

Numax = 1 + min
λT ,λS ,ε,q

b2
T [1 − βq2(2 − β)]

4ε2λ2
T (1 − ε2)(1 − q2)

(
1

2δ
− 1

)
, (4.37)
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Figure 3. (a) The bound on Nusselt number for ODD convection, shown as a density on the
(α,RT /Rc)-plane for β = 0.1. The solid lines are contours of constant Numax for values of 70
(topmost), 60, 50, 40, 30, 20, 10 and 5 (last but one), and the lowermost solid line corresponds
to the energy stability threshold RT =RT c . (b) The bound for α = 0 (topmost solid), 1, 4, 7
(lowermost) as a function of RT /Rc . The dotted line shows a R

1/2
T scaling for comparison. In

(c) the effect of α is shown for RT /Rc = 5 (lowermost), 10, 50 and 100 (uppermost).

subject to qbT = bS

√
1 − ε2, −1 <q < 1 and 0 <ε < 1. If δmax � 1/2 for a suitable

choice of the parameters, we set δ = 1/2 and, consequently, Numax = 1. The condition
for that to happen coincides with energy stability.

5. Results
The optimization in (4.37) to find the lowest upper bound on the Nusselt number

is performed numerically. We made extensive use of the Matlab function fminsearch
for this purpose. The results for the ODD convection and the fingering case are
presented separately.

5.1. ODD convection

Figure 3 shows the typical behaviour of the bound for ODD convection using β =0.1.
Figure 3(b) demonstrates that the scaling of the bound is R

1/2
T for fixed α, as RT

becomes large, which can be extracted from (4.37) simply by observing the limiting
dependence, δ ∼ R

−1/2
T , in the constraint (4.33). The 1/2 scaling mirrors the equivalent

result in the Rayleigh–Bénard problem, and one might at first sight guess that little has
been gained. In fact, much more information is included in the α-dependent prefactor
to the scaling, which does not yield to asymptotic analysis and must be computed
numerically. For example, an increase of α (RS) at fixed RT lowers the bound, as can
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Figure 4. The coefficient of (RT /Rc)
1/2 in the bound for β � 1. The solid curve is the result

of the analysis given in the text. The circles correspond to the data shown in figure 3 for
RT = 1000Rc . The dashed line shows the asymptotic result for αβ ∼ 1, C(αβ) ∼ 27(1 − αβ)/4.

be seen in figure 3(c). The bound continues to decrease smoothly as α is increased,
until this parameter reaches the threshold for energy stability, whereupon the bound
discontinuously jumps to unity. Thus, the α-dependence of the bound encapsulates
the ability of the stabilizing component to turn off convection completely.

Although the optimization must in general be performed numerically, there is one
particular limit in which we can make further progress: β � 1 (which is relevant to
the oceanic application, where β ≈ 10−2). We begin by writing the bound as

Nu∗ − 1 =
b2

T [1 − βq2(2 − β)]

4ε2λ2
T (1 − ε2)(1 − q2)

(
1

2δ
− 1

)

�
b2

T [1 − βq2(2 − β)]

4ε2λ2
T (1 − ε2)(1 − q2)

1

2δ
=

b3
T [1 − βq2(2 − β)]

8ε2λ2
T (1 − ε2)3/2(1 − q2)

√
RT

Rc

, (5.1)

and find the values of λT , q and ε that minimize the coefficient of
√

RT /Rc. Guided
by energy stability theory, we set αβ ∼ O(1). In this limit, the constraint (4.21) gives
λS = −

√
β and

bT =
1

λT

+ λT − 2αβχ, (5.2)

where χ = q
√

1 − ε2. We minimize (5.1) with respect to λT to obtain

λT = −2αβχ +
√

4α2β2χ2 + 5, (5.3)

which then leads to

Nu∗ − 1 �
33

55

(−3αβχ +
√

4α2β2χ2 + 5)3(2αβχ +
√

4α2β2χ2 + 5)2

ε2(1 − ε2)1/2(1 − χ2 − ε2)

√
RT

Rc

. (5.4)

This expression is optimized for

ε2 =
7

10
− 3χ2

10
+

[
9

100
(1 + χ2)2 − χ2

5

]1/2

, (5.5)

which leaves Nu∗ as a function of only χ . The final minimization in χ must be
done numerically. The result is Numax = C(αβ)

√
RT /Rc, where the function C(αβ) is

plotted in figure 4. At αβ = 0, the coefficient takes the value for thermal convection,
C(0) =

√
27/4, and then decreases smoothly to zero as αβ approaches 1 (the energy

stability condition for RT /Rc → ∞). Also included in the figure are the results of the
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T for scaling. In

(c), the effect of α is shown for RT /Rc = 100 (topmost), 50, 10 and 5 (lowermost).

full numerical optimization for β =0.1 and RT = 1000Rc, which display quantitative
agreement with the limiting solution.

5.2. T-fingers

The bound for β = 10 is plotted in figure 5. As is clear from this picture, the
asymptotic behaviour of the bound is again R

1/2
T for large RT , and, once more, Numax

is discontininuous at the energy stability boundary. A closer look reveals a relatively
weak dependence of the bound on α. Indeed, the bound obtained for α = 0 is a
very good approximation to the bound for other values of α. Figure 6 shows the
dependence of the bound on α and β for fixed RT = 1000Rc, and illustrates again
how Nu∗ is only weakly sensitive to α in the limit of large β . Thus, we infer that, with
the constraints employed and the family of backgrounds chosen, the bound is not
reduced on adding the stabilizing component in this limit. Perhaps Straus’ asymptotic
solution of the S-equation could be used to improve the situation.

5.3. Discontinuity in the bound

There are two obvious reasons why the bounds computed above could be discon-
tinuous on the energy stability curve, neither of which is correct. First, a discontinuity
can arise due to the appearance of new finite-amplitude solutions in a saddle-node
bifurcation. Indeed, the loss of energy stability at the point where the saddle-node first
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appears (see figure 1) suggests that a jump of this kind might well be present around
these parameter settings. In this way, the bounding machinery could prove an effective
tool for exploring the nonlinear dynamics of the system. Unfortunately, it turns out
that the bound jumps discontinuously even in cases where there is no saddle-node
and the energy stability condition coincides with linear onset (as for the fingering
case). Moreover, no qualitative change occurs in the extent of the discontinuity when
we approach parameter settings for which we know a saddle-node exists. Thus, the
discontinuity observed in our computations does not appear to be caused primarily
by the appearance of new nonlinear solutions.

The second reason why the bound could be discontinuous is that the background
profiles change from being linear to piecewise linear on passing through the energy
stability curve. In fact, for this reason, discontinuities exist in bounds for thermal
convection. As shown by Doering & Constantin (1996), those discontinuities can be
removed by using a smoother background profile near the energy stability threshold,
which raises the question of whether we can smooth out the current discontinuity by
similar means.

To address this question one can return to the formulation of the variational prob-
lem in § 4.2. Near the energy stability threshold, it is possible to develop asymptotic
solutions via perturbation theory without choosing a particular background. The final
value of the bound depends on integrals of various functions that are related to the
background fields, and one could, in principle, optimize the procedure to find the best
bound. However, it becomes immediately clear on heading down this avenue that the
bound always jumps discontinuous at the energy stability boundary, irrespective of
the choice of background. The reason can be traced to the conditions in (4.21) which,
in combination with the solution of the Euler–Lagrange equations in (4.20), lead
to the optimal Nusselt number in (4.24). The trouble is that the matrix R becomes
singular at the energy threshold (where q → 1 and ε → 0), and with the choice (4.21)
already made, there is no way to adjust the background fields to ensure that Ψ ∗
remains regular there. The result is that Nu∗ −1 always converges to a non-zero value
as RT approaches RT c from above. Given the failure of the perturbation expansion, it
seems clear that the only possible way in which the discontinuity might be eliminated
is by avoiding one of the two extra assumptions made at the beginning of § 4.2
(namely u∗ = 0 or (4.21)).
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6. Discussion and open questions
In this work, we have bounded fluxes in double-diffusive convection using the

Constantin–Doering–Hopf background method. Of particular interest is the behaviour
of the bound for large Rayleigh numbers, where we find the dependence R

1/2
T . This

bound is different from empirical flux laws often quoted in the literature (Turner
1965), which show Nu ∼ R

1/3
T . One reason for this discrepancy is that our bound may

simply be too conservative and grossly overestimate the physically realized flux, as can
be seen in comparison with the some numerical and asymptotic solutions (Radko &
Stern 2000). Indeed, many examples of double-diffusive convection in the laboratory
and ocean show the formation of internal boundary layers (salt finger interfaces,
diffusive steps), yet our optimal backgrounds only exhibit such sharp features next
to the walls and do not capture whatever process is responsible. However, as is also
true in Rayleigh–Bénard problem, it is not clear whether the observed flows have
converged to the ultimate asymptotic state of double-diffusive convection. If that
state is characterized by flux laws which do not depend explicitly on the molecular
values of diffusivity and viscosity, a 1/2 scaling law must eventually emerge.

A main difficulty addressed in this article is to account for the effect of the
stabilizing element on the bound. This effect disappears from the most straightforward
implementation of the background method, as it does from regular energy stability
theory. A similar problem is posed for geophysical and astrophysical systems in a
rotating frame of reference, where there is no effect of rotation rate in standard
energy stability theory and its extensions. The Prandtl number also plays no role
in the bounding theory of thermal as well as double-diffusive convection. The fact
that the theory does not depend on these parameters does not mean that the system
is insensitive to them, but is merely a result of discarding the governing PDEs and
keeping only certain integral equations derived from them. Thus, the problem facing
us is to add more integral constraints in order to incorporate the missing physics (see
Ierley & Worthing 2001).

Here, we have identified and exploited a key constraint for doubly diffusive con-
vection. The role of this constraint in energy stability theory is instructive, and amounts
to generalizing the definition of the energy function so that one can suppress transient
amplification in the absence of finite–amplitude instability. The constraint, however, is
far from sufficient in describing all the features of double-diffusive convection. In fact,
the generalized energy stability threshold still seems to fall short of where we expect
nonlinear solutions to come into existence. This leaves one suspicious that there may
still be inconsequential transient amplification above threshold, and prompts the two
key questions: Is it possible to differentiate between such transient growth and a true
finite-amplitude instability? Is it possible to improve energy analysis further so that
the loss of energy stability always signifies a linear or nonlinear instability?

The bound we have derived is discontinuous along the energy stability boundary.
Such jumps could reflect the appearance of additional finite-amplitude solutions at
saddle-node bifurcations, an eventuality that certainly occurs for double-diffusive
convection. Unfortunately, our numerical computations offer little evidence that this
is the main cause of the discontinuity. The jump could also have been introduced
because we have used piecewise linear background fields. Forcing the backgrounds to
be smooth removes any discontinuity of this kind in the Rayleigh–Bénard problem.
For the current problem, however, the difficulty is far more insidious: one can
establish for the simplified variational formulation in § 4.2 that the bound remains
discontinuous even for smooth background fields. The only remaining possibility for
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further progress in using the bounding machinery to detect saddle-node bifurcations
is to retain the more general version variational problem in § 4.1.

Finally, the background method is geared towards extending energy stability theory
to find the properties of the solution with the biggest norm. While this method
has provided us with some useful insight, other modifications of energy stability
theory must also be possible. In particular, it is conceivable that one may be able
to incorporate thresholds on the norm of perturbations that decay to the trivial
state, thus allowing one to extend the energy stability threshold for sufficiently ‘small’
disturbances. Such a method could address important issues like the abrupt transition
to turbulence in some shear flows. Double-diffusive convection remains a rich testing
ground for all such future developments.
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Appendix. Energy stability
Starting with (3.20), we consider two cases.

Case 1: β < 1

We substitute

λT = kT

√
1 + β

1 − β
and λS = kS

√
β(1 + β)

1 − β
(A 1)

into the constraint (3.17), to obtain

kT − 1

kT

= −α

(
kS − 1

kS

)
. (A 2)

By letting A ≡ kS − 1/kS , (A 2) leads to the following relations:

kT =
−αA ±

√
α2A2 + 4

2
and kS =

A ±
√

A2 + 4

2
. (A 3)

We seek the largest RT for nonlinear stability which satisfies (3.19). Therefore, we
would like to minimize |bT |. By substituting (A 1) and (A 3) in (3.12), we see that the
best choice to make |bT | as small as possible is when the signs of the second terms of
kT and kS in (A 3) are different. Therefore,

|bT | =
1√

1 − β2
|
√

α2A2 + 4 − βα
√

A2 + 4|. (A 4)

Case 1a: α � β

bT attains the minimum when

A2 =
4

α2

β2 − α2

1 − β2
,

which gives |bT | = 2
√

1 − α2. From (3.19) and the definition of α, we obtain

RT − RS < Rc. (A 5)
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Case 1b: β � α � 1/β

bT attains the minimum when A= 0, which gives bT = 2(1 − βα)/
√

1 − β2. In this
case, we obtain √

RT − β
√

RS <
√

1 − β2
√

Rc. (A 6)

Case 1c: α � 1/β

In this case |bT | =0 because we may choose

A2 =
4(β2α2 − 1)

1 − β2
. (A 7)

Therefore, the system is nonlinear stable for all values of RT .

Case 2: β > 1

Here, we substitute

λT = kT

√
β + 1

β − 1
and λS = kS

√
β(β + 1)

β − 1
(A 8)

into the constraint (3.17) to obtain

kT +
1

kT

= −α

(
kS +

1

kS

)
. (A 9)

By letting A ≡ kS + 1/kS , (A 9) leads to the following relations:

kT =
−αA ±

√
α2A2 − 4

2
and kS =

A ±
√

A2 − 4

2
. (A 10)

By substituting (A 8) and (A 10) in (3.12) and choosing different signs of the second
terms of kT and kS in (A 10), we obtain

|bT | =
1√

β2 − 1
|βα

√
A2 − 4 −

√
α2A2 − 4|. (A 11)

Case 2a: α < 1

|bT | attains the minimum when

A2 =
4

α2

β2 − α2

β2 − 1
,

which gives |bT | =2
√

1 − α2. We then obtain

RT (1 − α2) < Rc (A 12)

or

RT − RS < Rc. (A 13)

Case 2b: α � 1

By substituting

A2 =
4

α2

β2α2 − 1

β2 − 1
,

in (A 11), we obtain |bT | =0. It is straightforward to show that α � 1 is a sufficient
and necessary condition for A2 � 4. Therefore, the system is nonlinearly stable for all
values of RT .
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