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A lubrication theory is presented for the effect of fluid compressibility and solid
elasticity on the descent of a two-dimensional smooth object falling under gravity
towards a plane wall through a viscous fluid. The final approach to contact, which
takes infinite time in the absence of both effects, is determined by numerical and
asymptotic methods. Compressibility can lead to contact in finite time either during
inertially generated oscillations or if the viscosity decreases sufficiently quickly with
increasing pressure. The approach to contact is invariably slowed by allowing the
solids to deform elastically; specific results are presented for an underlying elastic
wall modelled as a foundation, half-space, membrane or beam.

1. Introduction
Without additional physical effects, an object falling under gravity through an

incompressible viscous fluid will take an infinite amount of time to make contact with
an underlying wall if the surfaces of both are smooth and rigid. In a preceding paper
(Cawthorn & Balmforth 2009), we explored how this conclusion is modified when the
surfaces are not smooth but feature an asperity in the form of a sharp corner. The
main focus of the complementary analysis presented here is to determine whether
fluid compressibility and the elastic deformation of the solid surfaces can also modify
the classical result. More specifically, we present a compressible, elasto-hydrodynamic
lubrication theory for the approach of smooth surfaces to contact.

Compressible lubrication theory often features in models of gas-filled bearings
(Pinkus & Sternlicht 1973), as well as in discussions of the impacts of colliding solid
spheres or the coalescence of liquid droplets in gases (Hocking 1973; Barnocky &
Davis 1989; Gopinath, Chen & Koch 1997). Compressibility can play a role because
the large increases in pressure that occur in the fluid-filled gap between approaching
surfaces can also raise local fluid densities. Perhaps equally importantly, the pressure
increase can also substantially raise the fluid viscosity (the ‘piezo-viscous’ effect; Chu &
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Figure 1. Sketch of the sedimenting particle falling towards an elastic base.

Cameron 1962; Barus 1973). On the other hand, countering the pressure-induced rise
in viscosity is the potential increase in temperature through either compression or
viscous heating, which usually reduces the viscosity. In bearings and piston rings, all
these effects can be important (e.g. Dowson, Ruddy & Economou 1983).

The elevated lubrication pressures also indicate that the deformability of the surfaces
of the sedimenting object and wall may play a role. Elastic deformation has previously
been considered for particle–particle and particle–wall collisions in viscous fluid,
both theoretically (Davis, Serayssol & Hinch 1986; Barnocky & Davis 1989) and
experimentally (Barnocky & Davis 1988; Verneuil et al. 2003). Related studies in
physiology include the elasto-hydrodynamic lubrication of artificial synovial (e.g. hip)
joints (Dowson & Jin 1992), cartilage biomechanics and the motion of red blood cells
in blood vessels (e.g. Skotheim & Mahadevan 2005), the dynamics of cell adhesion
and peeling (Weekley, Waters & Jensen 2006) and the relatively strong adhesion of
the footpads of insects to vertical or inverted walls (Jiao, Gorb & Scherge 2000).

The paper is structured as follows. In § 2 we formulate the problem and discuss
the models that we employ for fluid compressibility and the elastic substrate. The
effects of compressibility are explored in § 3. Elastic substrates with the form of a
foundation (mattress of springs), half-space, stretched membrane and clamped beam
are considered in § 4. We mention the effects of two other potentially important effects
(slip and van der Waals forces) in the Appendix.

2. Formulation
The geometry of the problem is illustrated in figure 1: a two-dimensional object

falls towards a nearby wall under gravity. Between the wall and the object lies
a compressible fluid with velocity field (û, v̂), pressure p̂, density ρ̂ and dynamic
viscosity μ̂. The object has a reduced mass per unit length of M in comparison
with the far-field, ambient density. For simplicity, we take the object to be rigid
but allow the underlying wall to deform elastically, according to some prearranged
geometrical constraints; for example, as illustrated in figure 1, there could be a rigid
foundation supporting a deformable layer of finite thickness. Provided the falling
object is sufficiently close to the wall, the gap between the two is approximately given
by

ĥ = ε̂ +
x̂2

2L
+ d̂, (2.1)
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where ε̂ is the minimum separation of the undeformed surfaces, L is the local radius
of curvature of the falling object, and d̂ is the displacement of the lower surface
(measured downwards).

2.1. Fluid equations

Invoking the lubrication approximation, the governing fluid equations are

∂ρ̂

∂t̂
+

∂

∂x̂
(ûρ̂) +

∂

∂ẑ
(ŵρ̂) = 0, (2.2)

∂p̂

∂x̂
=

∂

∂ẑ

(
μ̂

∂û

∂ẑ

)
,

∂p̂

∂ẑ
= 0, (2.3)

together with the boundary conditions

û = 0 and ŵ = −∂d̂

∂t̂
, on ẑ = −d̂, (2.4)

û = 0 and ŵ =
∂

∂t̂
(ĥ − d̂) on ẑ = ĥ − d̂. (2.5)

At the outset, p̂(x̂, 0) = p̂0, the ambient pressure, and ε̂(0) = H, where H is the
initial minimum gap thickness. Moreover, the elastic solid is initially undeformed; so
d̂(x̂, 0, t̂) = 0. In principle, we should further impose the far-field boundary conditions
p̂(x̂, t̂) → p̂0 and d̂(x̂, t̂) → 0 as |x̂| → ∞. In practice, however, for the numerical

computations reported later, we impose these conditions at the outer edges, x̂ = ±�̂,
of a domain chosen large enough such that the precise length has no significant effect
on the fluid dynamics (although it certainly does influence the solid mechanics as we
describe later).

The equations must be supplemented by an equation of state, which, in principle,
demands that we explicitly consider heat transfer and solve for the temperature
field. In the interest of simplicity, we will ignore such complications and consider the
barotropic law ρ̂ = ρ̂(p̂) with the adiabatic form p̂ = Kρ̂γ taken by way of an example
(with K a suitable thermodynamic constant). Also, a key feature of the problem is
that the viscosity may vary, and so μ̂ = μ̂(p̂). For example, a popular model in the
piezo-viscous literature is the relation of Barus (1973),

μ̂ = μ̂0 exp(ap̂), (2.6)

with μ̂0 a reference viscosity and a a parameter. This exponential behaviour is a fit
to experimental data, and one could equally well adopt an algebraic dependence on
pressure, μ̂ = μ0(p̂/p̂0)

m, as we shall later, to gauge the effect of pressure variations
on the viscosity; the parameter m allows for viscosity increases (decreases) for m > 0
(m < 0).

2.2. The elastic solid

For the solid, we entertain four main options: an elastic (Winkler) foundation, a linear
elastic half-space, a stretched membrane and a beam. From a theoretical perspective,
the foundation is the simplest type of elastic base to explore and is typically the
first model to be adopted in theoretical explorations (e.g. Skotheim & Mahadevan
2005; Weekley et al. 2006), even though, in principle, it applies only if the substrate
is relatively thin, compressible and has an underlying rigid backing (as shown in
figure 1). Though more difficult to work with, the elastic half-space is arguably more
realistic. We also provide results for membranes and beams because it turns out
that the detailed dynamics of the contact problem depends critically on the solid
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mechanics, and so including them in our exploration gives a greater sense of the
range of possibilities.

For each case, the displacement of the fluid–solid interface is related to local normal
force (primarily given by the fluid pressure in lubrication theory) via the equations of
linear elasticity: for the foundation,

p̂ − p̂0 =
(1 − ν)Ed̂

δ(1 + ν)(1 − 2ν)
, (2.7)

where E is Young’s modulus, ν is Poisson’s ratio and δ is the solid’s thickness. For
an elastic half space the relation between pressure and displacement is given by

p̂ − p̂0 =
E

4π(1 − ν2)
−
∫ ∞

−∞

∂d̂

∂x̂ ′
dx̂ ′

(x̂ − x̂ ′)
, (2.8)

as described in Muskhelishvili (1963), where the additional decoration on the integral
sign signifies that the Cauchy principal value of the singular integral is taken. For the
membrane,

p̂ − p̂0 = − 	δE

(1 − ν2)

∂2d̂

∂x̂2
, (2.9)

where 	 is the fractional change in length because of the applied tension. Finally,
for the beam,

p̂ − p̂0 =
Eδ3

12(1 − ν)

∂4d̂

∂x̂4
. (2.10)

2.3. The falling object and our main equations

By Newton’s third law, and because the pressure dominates the resistive force in
lubrication theory,

M
d2ε̂

dt̂2
=

∫ ∞

−∞
[p̂(x̂, t̂) − p̂0] dx̂ − Mg, (2.11)

where g is the gravitational acceleration (neglected in the equations of motion of the
fluid and elastic solid). We retain the inertia of the particle whilst neglecting the fluid
inertia, which is legitimate when the fluid gap is sufficiently thin. The object initially
falls from rest and so dε̂/dt̂ = 0 with ε̂ = H at t̂ = 0.

To find the lubrication pressure force that enters this equation, we integrate (2.3)
to determine the velocity field and then integrate (2.2) across the gap to find the
integrated mass conservation equation,

∂

∂t̂
(ρ̂ĥ) =

∂

∂x̂

(
ĥ3ρ̂

12μ̂

∂p̂

∂x̂

)
. (2.12)

Equations (2.1), (2.7)–(2.12), together with the constitutive laws, ρ̂ = ρ̂(p̂) and
μ̂ = μ̂(p̂), comprise the main dimensional equations for our analysis.

2.4. Non-dimensionalization

We now rescale to remove dimensions,

x̂ = (LH )1/2x, (ẑ, ĥ, ε̂, d̂) = H (z, h, ε, d), (2.13)

(p̂, p̂0) =
Mg√
HL

(p, p0), t̂ =
12μ0L

Mg

√
L

H
t, (2.14)
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to arrive at

∂

∂t
(ρh) =

∂

∂x

(
h3ρ

μ

∂p

∂x

)
, (2.15)

Mε̈ =

∫ ∞

−∞
(p(x, t) − p0) dx − 1. (2.16)

The fluid density and viscosity are scaled with their reference values so that the
dimensionless constitutive laws are ρ = ρ(p) and μ =μ(p) (and taken as ρ = p1/γ and
μ = pm in all examples), and the parameter

M =
H 2M2g

144μ2
0L

3
(2.17)

measures the importance of the inertia of the falling object.
We write the pressure–displacement relation for the elastic lower surface formally

as

p − p0 = KD[d], (2.18)

where D[d] is a dimensionless version of the integro-differential operators listed earlier
in (2.7)–(2.10) and K is a dimensionless parameter measuring the strength of solid
elasticity: for the elastic foundation,

p = p0 + Kd, K =
(1 − ν)EH

√
LH

Mgδ(1 + ν)(1 − 2ν)
; (2.19)

for the half-space,

p = p0 +
K
π

−
∫ ∞

−∞

∂d

∂x ′
dx ′

(x − x ′)
, K =

EH

4Mg(1 − ν2)
; (2.20)

for the membrane,

p = p0 − K∂2d

∂x2
, K =

	δE
√

HL

(1 − ν2)MgL
; (2.21)

and for the beam,

p = p0 + K∂4d

∂x4
, K =

Eδ3

12(1 − ν)MgL
√

HL
. (2.22)

The initial conditions are ε(0) = 1, ε̇(0) = 0, p(x, 0) =p0, and we demand p → p0

and d → 0 as |x| → ∞ or at the edge of a finite computational domain (x = ±�

for computations in real space; we also use a domain that shrinks in time for the
computations of § 3, defined by ξ = x/

√
ε(t), in which case the condition is imposed

at fixed ξ = Ξ ).
To give a general idea of the parameter settings expected in a typical physical

situation, consider a steel cylinder of density 8 g cm−3, radius 1 cm and length
10 cm (giving a mass per unit length of M ≈ 2.5 kg m−1) falling through glycerine
(density 1 g cm−3) with a viscosity of 1 Pa s at near-atmospheric pressure (105 Pa).
If the cylinder begins a distance 1 mm above the underlying wall, then p0 ≈ 13 and
M ≈ 0.43. The elasticity parameter varies significantly according to the underlying
material; considering the half-space, we estimate K to take values of 105 for a
relatively hard material (such as a metal, with E ∼ 1010 Pa) or 100 for a softer
material such as rubber (with E ∼ 107 Pa) and even 0.1 for a very soft solid such
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as gelatin (E ∼ 103 Pa). Overall, it therefore seems reasonable to assume order-one
values for all these parameters.

3. Compressibility
We first focus on the effect of compressibility by assuming that the lower surface is

rigid, d =0, implying that

h(x, t) = ε(t) +
1

2
x2. (3.1)

Existing results for incompressible fluids can be recovered from (2.15) and (2.16) in
the limit p0 	 1. In that situation, at least provided that the fluid gap does not become
too narrow, the pressure does not vary too much from its initial value, and we may
adopt the approximations ρ ≈ 1 and μ ≈ 1. The left-hand side of (2.15) then becomes
ε̇, and we integrate to find the pressure distribution

p = p0 − ε̇

2h2
. (3.2)

The lubrication force is computed to be
∫
(p−p0) dx = πε̇/2

√
2ε3/2, and the result that

ε decreases like t−2 finally follows from (2.16). We emphasize this classical result here
because it implies that the pressure is expected to increase continually over a range in
x that shrinks with time like x ∼

√
ε. Importantly, this motivates a convenient change

of variable, ξ = x/
√

ε, which accounts for the dynamical rescaling and expedites
accurate numerical computations of the compressible problem.

With the change of variable,

h(x, t) = ε(t)H(ξ ) = ε(t)

(
1 +

1

2
ξ 2

)
, (3.3)

and the lubrication equations become(
∂

∂t
− ε̇ξ

2ε

∂

∂ξ

)
[εHρ(p)] = ε2 ∂

∂ξ

[
H3ρ(p)

μ(p)

∂p

∂ξ

]
, (3.4)

Mε̈ =
√

ε

∫ ∞

−∞
[p(ξ, t) − p0] dξ − 1. (3.5)

We solve (3.4) and (3.5) numerically by approximating the spatial derivatives by
centred finite differences on a uniform grid in ξ and then time stepping the
resulting coupled ordinary differential equations using a standard stiff time integrator
(MATLAB’s ODE15S or the DASSL algorthm of Petzold 1983). The spatial domain
is taken to be 0 � ξ � Ξ , with suitable symmetry conditions applied at the midpoint
and Ξ chosen to be 20 or more, which is sufficiently large to make the precise location
of the outer boundary irrelevant. A grid of 1000 points was typically used, and the
integration tolerances were set to forbid errors exceeding 10−5. For the elastic problems
discussed later, the numerical computations are performed on a fixed, uniform grid
in x, and the outer boundary conditions are applied at x = ±� with � � 10. As stated
earlier, we take ρ = p1/γ and μ = pm.

3.1. Numerical results

Sample numerical solutions to (3.4) and (3.5) are shown in figure 2. Figure 2(a)
displays the evolving pressure field on the (ξ, t)-plane for (M, p0, γ, m) = (1, 2, 1, 0),
which gradually increases in time because of the narrowing of the fluid gap, although
a sequence of decaying oscillations punctuates the initial fall.
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Figure 2. (a) The pressure variation versus time for M = 1 and p0 = 2; (b,c) ε(t) and
p(0, t) − p0 for p0 = 10 and varying M with the inset in (c) showing the detail of the
transients at small times; (d,e) ε(t) and p(0, t) − p0 for M = 1, with the three values of p0

indicated. The density and viscosity laws have m= 0 and γ = 1.

The other panels display time series of the minimum gap thickness and central
pressure p(0, t), for various values of M and p0, and illustrate how the initial
oscillations are transients arising from the sedimenting particle’s inertia: the
oscillations in the time traces depend on M (as M decreases, the inertial time
scale lengthens, delaying the onset of the oscillations though amplifying them), but
once they decay, ε(t) and p(0, t) converge to a common curve that is independent
of both M and p0. A major difference arises for the smaller values of p0, where the
inertial oscillations are persistent and even appear to grow with time. We shall return
to the effects of small p0 later.

3.2. Long-time similarity solution

Over long times, the numerical solutions converge to power-law behaviour in t ,
suggestive of a long-time similarity solution (see figure 3). The insensitivity to p0 and
M, coupled with the equation of motion (3.5), indicate that this similarity solution
must take the form

p = p0 +
1√
ε
f (ξ ) ≈ 1√

ε
f (ξ ), (3.6)

with ∫ ∞

−∞
f (ξ ) dξ = 1. (3.7)

Substituting the similarity form (3.6) into (3.4) further demands that

ε̇ =
2λ

m + 1
ε(3+m)/2, (3.8)
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Figure 3. The long-time scalings for p(0, t) and ε(t) for M = 0.1, γ = 1 and (a) m= −1/2,
(b) m= 0 and (c) m= 1. In each case the ambient pressures p0 = 10 and 100 are illustrated.
In (b) the similarity solution (3.11) is the dotted line, and in the other panels the dotted line
indicates the expected similarity scalings.

for some constant λ. That is

ε ∼ (1 + λt)−2/(1+m), (3.9)

using ε(0) = 1 (which is not necessarily the correct initial condition for the final
self-similar phase), reproducing the scalings evident in the numerical data. Moreover,
the similarity function f (ξ ) satisfies

λ

1 + m

[
(2 − γ −1)f 1/γ H − ξ (f 1/γ H)ξ )

]
= (H3f 1/γ −mfξ )ξ . (3.10)

For m =0 and γ =1, (3.7), (3.8) and (3.10) have the explicit solution

ε(t) =
2π2

(π
√

2 + t)2
, f (ξ ) =

1

πH(ξ )
√

2
. (3.11)

For other values of m and γ , (3.10) must be solved numerically. Note that the gap
thickness always decreases algebraically for the similarity solution, implying contact
in infinite time. Also, the equation of state does not affect the long-time similarity
scaling for ε(t). Thus, only the pressure dependence of the viscosity (dictated by the
parameter m) affects the approach to contact, with increases in viscosity impeding
contact and viscosity decreases expediting contact.
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Figure 4. The variation of (a) ε(t) and (b) p(0, t) − p0 for the three values of the
piezo-viscosity parameter m indicated, with M = 0.1, p0 = 10 and γ = 1.

3.3. Contact because of viscosity weakening

The form of ε(t) predicted by (3.9) fails to work when m � −1, suggesting that a
different dynamical regime exists when the viscosity decreases with pressure sufficiently
quickly. Numerical computations with varying values for m that cross into this regime
(and γ =1) are shown in figure 4. The case m = −2 provides numerical evidence for
contact in finite time.

To confirm this prediction, we retire to the case γ → ∞, which corresponds to an
incompressible fluid with a pressure-dependent viscosity. In this limit, from (2.15),

ε̇ = (h3p−mpx)x −→ p =

[
p1−m

0 − (1 − m)ε̇

2h2

]1/(1−m)

. (3.12)

Near contact, this leads to a lubrication force which, in the absence of particle inertia,
implies that ε̇ ∼ ε(3+m)/2. For m > −1, we then recover the power-law behaviour in
(3.9). If m < −1, on the other hand, we deduce that ε ∼ (tc − t)−2/(1+m), with a finite
contact time tc. With m = −1, the approach to contact is exponential. In other words,
contact occurs in finite time if the viscosity weakens sufficiently quickly with increasing
pressure (with density changes playing little role).

3.4. Contact at low ambient pressure

The pronounced oscillations for low ambient pressures displayed in figure 2 suggest
that a different dynamical regime also arises when p0 < 1. A longer computation
showing the oscillations for p0 = 1/2, M = γ = 1 and m = 0 is shown in figure 5
and illustrates the extremes reached as the falling object bounces above the plane.
However, although p(ξ, t) increases exponentially during those bounces, the quantity
A= ε(t)H(ξ )p(ξ, t) varies much less significantly. This can be understood from (3.4),
which indicates that this quantity must remain roughly constant during relatively fast
temporal variations provided there are no strong spatial gradients (the term (εHp)t
cannot be balanced in this equation if the time derivative becomes large but the
ξ -derivatives remain small).

For the example shown in figure 2, the sharp bounces eventually subside, and
the object approaches contact in the manner expected previously. In contrast, a
computation at yet lower p0 is shown in figure 6. In this instance, the oscillations are
sufficiently severe that the falling object appears to make contact with the underlying
plane after a finite number of bounces. Gopinath et al. (1997) have also found that
contact can occur in finite time with particle inertia and fluid compressibility in the
collision of spheres suspended in viscous fluid.
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Continuing to focus on the case m =0 and γ = 1, we observe that an exact solution
of (3.4) is

p =
A(t)

ε(t)H(ξ )
, for A(t) =

p0

1 + t
. (3.13)
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M = 10−3, ε(0) = 16, ε̇(0) = 0 and A(t) =p0/(1 + t) is shown in (b) and (c), with (b) displaying
ε(t) and the energy E and (c) displaying a phase portrait on the (ε, ε̇)-plane.

Although this exact solution does not satisfy the correct boundary or initial conditions
on p(ξ, t), it does offer further insight into the compressional, inertial bounces of
figure 5. Inserting the solution into (3.5), we arrive at

Mε̈ = πA

√
2

ε
− 1, (3.14)

which is the equation of a nonlinear oscillator with a time-dependent potential. If A

were actually constant, the oscillator energy

E =
1

2
Mε̇2 + V (ε), V (ε) = ε − 2πA

√
2ε, (3.15)

would also be constant, and the solution is given implicitly by

2π
√

2A sin−1

(√
ε − π

√
2A√

E + 2π2A

)
− 2

√
E − V (ε) = ±

√
2

M (t + t0), (3.16)

with t0 an integration constant. The potential V (ε) and a phase portrait of the
solutions for A=1 are illustrated in figure 7. The oscillation period 4π2

√
MA is

independent of the oscillator energy or equivalently the initial condition. Thus, in
particular, the orbit with E =0 which connects the origin of the phase plane to itself
traverses that trajectory in finite time.

If A is not constant but slowly varying, we can apply the method of averaging
to (3.14) to determine the slow drift of the oscillator energy, an approximation that
applies to the limit M 
 1. We substitute (3.15) into (3.14), to find Ė = −2πȦ

√
ε, and

then average over the relatively fast oscillation period, holding E fixed and taking
ε(t; E) to be given by (3.16), yielding

dE
dt

= − Ȧ

2π
√

MA

∮ √
ε dt = − Ȧ

A
(E + 6π2A2). (3.17)

Hence,

E =
1

A
[E(0) + 2π2] − 2π2A2. (3.18)

A sample numerical solution of (3.14) with M = 10−3, ε(0) = 16 and A(t) = 1/(1 + t)
(which is designed to compare with the averaging result and does not correspond
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Figure 8. Solution for the elastic foundation with M = 2, K = 1 and �= 10. Shown are
(a) the pressure distribution p(x, t) as a surface above the (t, x)-plane, (b) ε(t) and p(0, t) and
(c) the central gap thickness h(0, t). The dotted line in (b) shows the asymptote from (4.4);
(c) includes data from a second computation with the lower mass, M = 0.1, and the long-time
asymptote, h(0, t) ∼ (1 + 2Kt)−1/2. Three snapshots of the fluid gap are shown in (d–f ) at the
times indicated.

to our original problem) is shown in figure 7; the oscillator energy increases
monotonically in time. Thus, states that fall initially into the potential well with
E(0) < 0 execute transient oscillations before eventually gaining positive energy and
intersecting ε = 0 after a finite time.

4. Elastic deformation
Given that high pressures can arise beneath the sedimenting object, it is natural that

the substrate could respond by deforming elastically. We consider elastic deformation
without fluid compressibility and return to (2.15) with ρ = μ = 1:

∂h

∂t
= ε̇ +

∂d

∂t
=

∂

∂x

(
h3 ∂p

∂x

)
, (4.1)

with p − p0 = KD[d], p(x, 0) = p0 and d(x, 0) = 0. Once more we solve the equations
numerically in conjunction with (2.16), using a scheme similar to the compressible
problem but imposing the boundary conditions p → p0 and d → 0 at x = �. The
parameter p0 now becomes irrelevant, with pressure differences from the ambient
playing the only role; consequently we lighten the mathematical formulae below by
setting p0 = 0.

4.1. The elastic foundation

A numerical solution for the elastic foundation (p = Kd) is displayed in figure 8.
The object falls from its initial position, raising the fluid pressure directly underneath
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Figure 9. The behaviour near x = X = (3/2K)1/3, for M = 2, K = 1: (a) the emergence of
a sharp corner near x = X in snapshots of h(x, t) for t =2, 10, 100 and 200; (b) illustrates
the collapse of the height profiles (at the times t = 20 up to t = 200 in steps of 20) under
the scalings ζ = t1/2(x − X) and h =Z(ζ )t−1/2 and limit to an asymptotic solution denoted by

the dashed line (satisfying [Z3(X − Zζ )]ζ = 0, with Zζ → X as ζ → ∞ and Z → 1/
√

2K as
ζ → −∞; Weekley et al. 2006).

(figure 8b), which correspondingly depresses the surface of the elastic solid (figure 8d ).
The descent of the object is interrupted by a series of inertial, decaying oscillations.
Those bounces eventually disappear to leave a quasi-steady state in which the object
sits close to its rest position, wherein the weight is balanced by the elastic forces. A
finite, but gradually thinning, fluid gap still persists, however, with the fluid pressure
field transmitting the upward elastic forces on to the object. The gap appears to
thin at the rate t−1/2, substantially slower than for a rigid surface. The thin gap is
connected to the exterior fluid via gradually narrowing ‘corner regions’ (figure 9).

To understand the long-time dynamics illustrated in figure 8, we pass to the limit
in which h 
 1, implying

h ≡ ε +
1

2
x2 + d = ε +

1

2
x2 + K−1p ≈ 0 −→ p ≈ −K

(
ε +

1

2
x2

)
. (4.2)

Since the object has largely ended its fall, (2.16) becomes

1 ≈
∫ ∞

−∞
p dx →

∫ X

−X

p dx ≈ −2K
(
ε + 1

6
X2

)
X, (4.3)

where (−X, X) is the horizontal length of the gap (the depressed section of the elastic
foundation). Equation (4.3) expresses the force balance between the weight of the
fallen object and the upward elastic reaction, as transmitted by the fluid pressure.
Moreover, because d ≈ −(ε + 1

2
x2) → 0 at the corner (see figure 8), ε + 1

2
X2 ≈ 0 and

X ≈
(

3

2K

)1/3

or ε ≈ −1

2

(
3

2K

)2/3

. (4.4)

Returning now to (4.1),

∂h

∂t
≈ −K ∂

∂x
(xh3), (4.5)

which is solved by the method of characteristics to give the implicit solution,

h = (1 − 2Kth2)1/2h0[x
3/2(1 − 2Kth2)3/2], (4.6)
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where h0(x) is a suitable initial condition that should, in principle, be matched to
the full numerical solution at the beginning of the quasi-steady phase of evolution.
Irrespective of that initial condition, underneath the centre of the falling object, we
find

h(0, t) =
h0(0)√

1 + 2Kth0(0)2
, (4.7)

which recovers the t−1/2 thinning of the gap. A similar result was derived previously
by Weekley et al. (2006), together with an asymptotic self-similar solution for h, which
also holds in the present context (see figure 9).

The physical interpretation of these results is that as the falling object approaches
its final position, fluid is driven out of the residual gap by the gradient of the pressure
field that is set up by the elastic solid to balance the object’s weight. The pressure
field is determined purely by the mechanics of the elastic solid in what is equivalent
to a classical type of punch problem. This interpretation is not obviously specific to
the elastic foundation and, in principle, applies to any underlying elastic solid. Indeed,
in all the examples we consider, inertial transient bounces precede a much slower
phase in which the object lies close to its final position, and a squeeze flow clears
out residual fluid from an intervening gap. Moreover, that gap invariably contains
a central core with elevated pressures dictated by the elastic solid and is connected
by narrowing corner zones to an outer region at the ambient pressure. Such ‘dimple
dynamics’ bears similarities with that observed in studies of impacting viscous drops
(Gopinath & Koch 2002; Griggs, Zinchenko & Davis 2008).

Nonetheless, differences between the various cases do arise because the limiting
pressure field depends sensitively on the mechanics of the elastic solid, which impacts
the clearing of the residual gap. Consequently, the approach to contact depends upon
the precise elastic model, as illustrated by the next three examples. This also suggests
that the dynamics will be different still if the falling object is made elastic (except
if that object has a rigid core with an elastic coating, which leads to an identical
problem to our elastic foundation).

4.2. An elastic half-space

For the elastic half-space, the pressure and deformation are related via the non-local
relation (2.20). A sample numerical solution is shown in figure 10. As mentioned
above, although the sedimentation dynamics are qualitatively similar to that seen for
the foundation, the approach to contact is quantitatively different: the gap thins most
rapidly over the corner regions, which close like t−9/16 and trap a gradually decreasing
amount of fluid underneath the object (so that the central core of the gap closes like
t−1/2).

As also emphasized earlier, the explanation for this behaviour lies in the limiting
pressure distribution, which is equivalent to the classical solution for the indentation
of a frictionless parabolic punch into a half-space (Muskhelishvili 1963): for |x| <X,
where the object is almost in contact with the underlying solid,

d = −ε − 1

2
x2 and p = K

√
X2 − x2. (4.8)

Beyond, in |x| >X, p → 0 and

∂d

∂x
=

√
x2 − X2 sgn(x) − x (4.9)
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or

d =
1

2

[
|x|

√
x2 − X2 − �

√
�2 − X2 − x2 + �2 − X2 cosh−1

( x

X

)
+ X2 cosh−1

(
�

X

)]
.

(4.10)

Force balance (
∫

p dx = 1) and the continuity of d at x = ±X then imply that

X =

√
2

π
and ε = −1

2

[
�2 − �

√
�2 − X2 + X2 cosh−1

(
�

X

)]
. (4.11)

Note that the displacement field (4.10) grows logarithmically at large x, a standard
feature in planar elasticity; because we impose d → 0 at the edge of our computational
domain, x = �, this introduces a weak dependence of the solution on �. The gradient
of the pressure distribution in (4.8), which expels fluid from the gap, also diverges at
x = ±X. Although the divergence is actually prevented by the flow dynamics in the
vicinity of the corners during the approach to contact, the gap nevertheless closes
quickest there.

The scalings characterizing the approach to contact can be confirmed by matched
asymptotic analysis, the details of which are sketched as follows: for the central core
of the gap, substitution of the pressure solution into (4.1) furnishes

ht ≈ −K ∂

∂x

(
h3x√

X2 − x2

)
, (4.12)
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illustrating the convergence of the numerical solutions to the asymptotic long-time behaviour
(shown by the dots, as given by (4.8) and (4.9)); (c) shows the collapse of the data under the
asymptotic scalings suitable for the corner, for t = 103 to t = 104 in steps of 103.

which may again be solved by the method of characteristics (cf. (4.5)). Alternatively,
we can find a separable solution, h(x, t) = t−1/2G(x), describing the eventual closure.
Importantly, we discover that G(x) ∼ (X−|x|)1/6+. . . , as x → ±X from within the gap.
Conversely, given (4.9) or (4.10), it follows that h(x, t) ∼ (|x| − X)3/2, as x → ±X from
outside the gap. Over the corner regions surrounding |x| =X, one can find a similarity
solution h(x, t) = t−βJ (ζ ) in terms of a stretched variable ζ = (|x| − X)t s . Demanding
that this solution matches with the limits of the adjoining ‘outer’ solutions to either
side of the corner determines the exponents β = 9/16 and s = 3/8. The convergence of
a numerical solution to the form expected from the preceding arguments is illustrated
in figure 11.

4.3. The membrane

A sample numerical solution for the stretched membrane (with p = −Kdxx) is shown
in figure 12. The transient inertial oscillations are now relatively pronounced but again
give way to leave a quasi-steady, thinning gap. The approach to contact is slower
than for the foundation and half-space, with the central core of the gap thinning like
t−1/4 and the corners closing with t−1/2.

The relatively slow approach to contact is straightforward to rationalize in terms
of the limiting pressure distribution: putting h 
 1 over the core of the gap, |x| <X,
and setting p at the ambient level beyond, |x| >X, we find

d ≈

⎧⎨
⎩−ε − 1

2
x2, |x| < X,

X(� − |x|), X < |x|
and p ≈

{
K, |x| < X,

0, X < |x|,
(4.13)

with

X =
1

2K and ε = −X

(
� − 1

2
X

)
(4.14)



Contact in a viscous fluid. Part 2 355

100 101 102 103

100 101 102 103

0

5

10

–10

–5

(a)

ε(t)
p(0,t)
d(0,t)

100

t

(b)

h0(t)

h(0,t)
h(X,t)

0 2 4 6 8 10

0

5
(c)

t = 5

0 2 4 6 8 10

0

5

t = 25

0 2 4 6 8 10

0

5

x

t = 103

0 0.5 1.0

Figure 12. Solution for the membrane with M = 1, K = 1 and �= 10. Shown in (a) are ε(t),
p(0, t) and d(0, t); (b) shows the gap thickness at the centre, h(0, t), and at X = 1/2K, h(X, t),
together with the predicted scalings and h0(t) from (4.16). The right-hand column of the panels
marked as (c) show snapshots of the fluid gap at the times indicated, with the final picture
showing a magnification of the closing gap in the snapshot at t = 103.

demanded by the force balance and continuity of d . Thus, the pressure gradient
driving the fluid out of the gap is much reduced (and vanishes to leading order). The
gradients remain largest over the corner regions, which become bottlenecks for the
flow.

The long-time behaviour is rationalized by adapting asymptotic analysis presented
by Jones & Wilson (1978): inside the central core of the gap, we discard the time
derivative in (4.1), integrate in x and apply a no-flux condition at x = 0, to find
hxxx ∼ 0. Because h → 0 at x = ±X and hx(0, t) = 0, this provides the leading-order
gap thickness h(x, t) ∼ (1 − x2/X2)h0(t) with h0(t) to be determined by matching with
the solution over the corner regions. Beyond the gap, on the other hand, we have
the steady state profile, h(x, t) → (|x| − X)2/2. For the corner regions, a similarity
solution can be found:

h(x, t) = h2
0(t)J (ζ ), ζ =

|x| − X

h0(t)
, (4.15)

with

h0(t) =

(
1 +

6KΛt

X

)−1/4

and Jζζζ =
Λ

J 3
. (4.16)

The constant Λ, which approximately equals 1385 for the example in figures 12 and 13,
is found by integrating the differential equation for J numerically, imposing boundary
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Figure 13. The corner region at x = X showing the collapse of the height field (the solid
lines at t = 1000, 2000, . . . , 10 000) to the similarity solution (circles and dashed line) J (ζ ).

conditions demanded by matching: (J, J ′, J ′′) → (−2ζ/X, −2/X, 0) as ζ → −∞ and
J ′′ ∼ 1 as ζ → ∞ (cf. Jones & Wilson 1978). By way of comparison with the preceding
results, figures 12(b) and 13 show, respectively, the evolution of the central and corner
gap thicknesses in time and the collapse of snapshots of h(x, t) under the similarity
scaling in (4.15).

4.4. The beam

For the beam, p = Kdxxxx , and we must supply additional boundary conditions at
the edges of the domain; we adopt clamped conditions with d(±�, t) = dx(±�, t) = 0.
A sample numerical solution is shown in figure 14; although transient oscillations
once more punctuate the initial fall and subside to leave a quasi-static settling phase,
the final evolution now shows an qualitative difference with the previous examples
– instead of fluid being gradually squeezed out of a thinning gap, a central, static
bubble now emerges with constant pressure that supports the weight of the object.
The fluid thins to contact only at the corners, x = ±X, and the fluid in the bubble
becomes permanently pressurized and trapped beneath the object.

The limiting state is given by

p =

{
P, |x| < X,

0, X < |x|,
and h ≡ heq(x) =

1

12K

⎧⎪⎨
⎪⎩

|x|(|x| − X)2, |x| > X,

1

2
P (x2 − X2)2, |x| < X,

(4.17)

where P is the excess bubble pressure and

P =
1

2X
, X = 2� −

√
�(� + 12K) and ε =

1

12K�(� − X)2 − 1

2
�2, (4.18)

given the requirements of force balance and the continuity of d and its first three
derivatives. Thus, once again, the pressure in the gap is unable to effectively drive out
the intervening fluid; coupled with the stiffness of the underlying beam, this generates
the permanent bubble.

The approach to the final state observed numerically is rationalized as follows: we
first set h − heq = θ(x, t) for the residual gap thickness. Everywhere but in the vicinity
of the corners, heq 	 θ ∼ O(Δ), where Δ(t) 
 1 is the time-dependent magnitude
of the residual. Near the corners, however, θ and heq ≈ (X − |x|)2X/12K must be
comparable, implying a characteristic length scale of |x| − X ∼ O(Δ1/2). In turn,
from the beam equation, this indicates that the residual gap thickness must be
constant in space to leading order: θ = Δ(t) (over the corner regions, p = O(1),
but Kdxxxx → Kθxxxx ∼ O(Δ−1); moreover, outside those regions, θxxxx ∼ 0, and so
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Figure 14. A numerical solution for the beam with M = K = 1 and �= 10. In (a) are shown
ε(t), h(0, t) and d(0, t); the dots indicate the expected long-time results; (b) shows h and
ε + x2/2 at t = 103; (c) shows h and p (scaled by a factor of 100) at the same instant, with the
dots indicating the expected final values; (d ) shows the gap thickness at the corner, h(X, t),
together with Δ(t) from (4.22); (e) shows the collapse of snapshots of the height field (at
t =100, 200, . . . , 1000) using the self-similar variables, t2/3h(x, t) and t1/3(x − X); the dashed
line denotes prediction in (4.20).

a match of the solutions, together with the boundary conditions at x =0 and �,
demands the result).

Given these scalings (and their implication that |(h3px)x | 	 |ht | near the corners),
we now equate the flux through each corner region, h3px , with the rate of leakage of
the residual extra fluid from half of the bubble, XΔ̇, giving

px ≈ ±XΔ̇

h3
, (4.19)

where

h ≈ X

12K (|x| − X)2 + Δ. (4.20)

The integral of the left-hand side of (4.19) must furnish the pressure jumps across
each corner region. Considering explicitly the jump of −P across the corner at x = X,

−P ≈ XΔ̇

∫ ∞

−∞

d(x − X)

[X(x − X)2/12K + Δ]3
=

3π

8
XΔ−5/2Δ̇

√
12K
X

. (4.21)
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h(0, t) ∼ t−b h(X, t) ∼ t−β

Foundation b = 1/2 β = 1/2
Half-space 1/2 9/16
Membrane 1/2 1/4
Beam 0 2/3

Table 1. A summary of the long-time asymptotic scaling of the central and
corner gap thicknesses.

Thus,

Δ ≈
(

π

4P

√
12K
X

)2/3

t−2/3. (4.22)

In figure 14, the prediction for Δ(t) is compared with the numerical result for the
gap thickness at the corner, h(X, t). Figure 14(e) also shows how scaled snapshots of
numerical solutions, t2/3h(x, t) versus t1/3(x − X), collapse towards a common curve
in line with the predictions in (4.20) and (4.22).

In summary, the approach to contact reflects the pressure distribution set by the
elastic deformation required to accommodate the gravitational force exerted by the
sedimented object. For the foundation, the entire gap controls the limiting flow
dynamics, but for the half-space the corner plays the main role because the limiting
pressure gradient diverges there. The approach to contact is different still for the
stretched membrane and beam; table 1 summarizes the various results. The membrane
and beam behave quite differently primarily because the pressure in the core of the
gap becomes constant in space. This is ineffective at expelling the intervening fluid
and leads to bottlenecks in the flow over the corner regions. As a consequence, the
approach to contact for the membrane becomes the slowest of all four examples,
whereas the beam traps a permanent pressurized fluid bubble underneath the fallen
object.

5. Discussion
The current paper has explored how fluid compressibility and solid elasticity affect

the approach to contact of a two-dimensional object sedimenting through a viscous
fluid towards a plane wall; without either effect, contact takes an infinite time. Fluid
compressibility allows contact to occur in finite time via two possible pathways. First,
if the viscosity decreases sufficiently rapidly with increasing pressure, the lubrication
force is unable to diverge rapidly enough to halt the descent of the object. Second,
the object’s inertia triggers a series of oscillations or bounces during the initial fall; if
ambient pressures are low enough, the oscillations become sufficiently severe to force
an impact at the minimum of the bounce. Allowing the surfaces to deform elastically
slows the approach to contact to a degree that depends sensitively on the solid
mechanics; we have presented four examples (a foundation, half-space, membrane
and beam) to illustrate the range of possibilities. The crucial detail is the limiting
pressure distribution set up by the elastic solid to balance the weight of the fallen
object, because its gradient is responsible for expelling the intervening fluid. In the
Appendix, we also mention the effects of wall slip and van der Waals forces, which
provide alternative routes to contact in finite time for situations in which the gap
closes sufficiently to demand the introduction of molecular effects (cf. Hocking 1973;
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Serayssol & Davis 1986; Gopinath et al. 1997). All in all, the pathway to achieving
contact is strewn with competing physical effects, and in any given situation careful
attention must be paid to those that dominate.

A major simplification in the present work has been our restriction to two spatial
dimensions. Nevertheless, much of the analysis we have presented for the approach to
contact can be adapted to the problem of a sphere falling onto a plane. This indicates
that many of the conclusions and long-time scalings also apply in three-dimensional,
axisymmetrical situations. Despite this, an interesting extension of the current work
would be to allow flow perturbations to break the axial symmetry (axisymmetry) in
the cylindrical (spherical) version of the problem: our results suggest that bottlenecks
often develop as approaching elastic surfaces try to drive fluid out of the intervening
gap. Should fluid be able to migrate asymmetrically within these bottlenecks to bypass
them, three-dimensional instabilities may arise, as in the Saffman–Taylor problem
(Saffman & Taylor 1958), the printer’s instability (Pearson 1960) and the fingering
of contact lines and surfactant-driven droplets (Huppert 1982; Warner, Craster &
Matar 2004).

This work was initiated at the 2008 Geophysical Fluid Dynamics Summer Program,
Woods Hole Oceanographic Institution, which is supported by the National Science
Foundation and the Office of Naval Research. We thank the participants and in
particular L. Mahadevan for helpful conversations.

Appendix. Slip and van der Waals
Consider a constant-viscosity, incompressible fluid sandwiched between rigid

smooth surfaces (cf. Hocking 1973). Near contact, the lubrication analysis predicts
the velocity field,

u = −6(p + αh−3)xz(h − z) +
(
1 − z

h

)
u0 +

z

h
uh, (A 1)

which incorporates the van der Waals disjoining pressure with a Hamaker constant
α and where u0 and uh are the slip velocities on z = 0 and z = h, respectively. We
use the Navier slip conditions, uz(z = 0) = Su0 and uz(z =h) = −Suh, where S is the
inverse of a characteristic slip length, which indicate that

Su0 = Suh = −6h(p + αh−3)x. (A 2)

The vertically integrated mass conservation equation (2.15) now yields

ε̇ =

[(
h +

6

S

)
h2(p + αh−3)x

]
x

, (A 3)

which is integrated in x to provide the pressure field,

p = p0 − α

h3
+

1

36
S2ε̇

[
log

(
1 +

6

Sh

)
− 6

Sh

]
. (A 4)

The equation of motion of the falling object now follows:

Mε̈ = −1 − 3πα
√

2

8ε5/2
− πS2

18
ε̇
√

2

[
3

S
ε−1/2 + ε1/2 −

(
ε +

6

S

)1/2
]

. (A 5)

Without slip (S → ∞), the van der Waals forces and the resistive lubrication force
eventually dominate the gravitational force and inertia, and the approach to contact
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becomes dictated by 2εε̇ ∼ −3α. Contact therefore occurs at the finite time t = tc, with
ε ∼

√
3α(tc − t).

Without van der Waals forces (α = 0), and in the limit ε → 0,

Mε̈ ∼ −1 − 1
6
πSε̇

√
2ε−1/2. (A 6)

When inertia is negligible, M 
 1, there is contact in finite time with ε ∼ (1/2)[3(tc −
t)/πS]2. Inertia leaves this time dependence unaltered for S2/M > 36/π2 with
ε ∼ β2(tc − t)2 and β determined from 6Mβ2 −

√
2πSβ +3 = 0. Otherwise, one observes

contact in finite time with ε ∝ (tc − t).
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