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We report a striking traveling wave instability in low Reynolds number flows of aqueous concen-
trated suspensions of corn starch. These experimental observations are at odds with theoretical
predictions for simple shear thickening flows which are supposedly stable at low Reynolds number.
A distinct threshold in Reynold’s number is observed above which the finite amplitude disturbances
persist and otherwise decay.
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Aqueous suspensions of corn starch show several re-
markable features: as many know from observations in
the kitchen, or from dining hall trials in English schools.
These result from the rheology of the suspension which
is decidedly non-Newtonian [1]. We highlight two salient
properties of the material. First, on stirring or deform-
ing in other ways, the fluid clearly possesses a resistance
to flow that increases with the rate of flow. That is,
there is an apparent shear-thickening effect: when suffi-
ciently vigorous shear forcing is applied at a free surface,
the surface appears to solidify and even fracture. Sec-
ond, the material appears to possess a relaxation time:
the concentrate reacts differently to impulsive or sud-
den loading differently than it does to a slow forcing.
For example, a probe, gently applied, slides easily into
the material, whilst rapid insertion encounters consider-
able resistance. Alternatively a compressed handful of
corn starch suspension, when released, appears dry and
temporarily solid: it can be crumbled and easily breaks.
However, in the absence of external forcing, it appears to
melt and flow away. The timescale over which this change
occurs indicates a relaxation timescale, such as exists for
viscoelastic fluids. Nevertheless, the material does not
appear to exhibit other classical viscoelastic rheological
features, such as rod climbing of a rotating spindle, open
siphoning, or other normal stress effects.

Although a commonly encountered material, to our
knowledge there are few fluid dynamical experiments that
have been performed with cornstarch suspensions. We
mention only two previous ones: First, Simpson [2] re-
ported wave formation on a flowing layer of custard pow-
der in water. His objective was to offer the flow as a lab-
oratory analogue for a debris flow, although whether the
custard suspension mimics properties of that geophysi-
cal material is certainly debatable. Nevertheless, Simp-
son reported an interesting fluid phenomenon which has,
thus far, gone unexplained theoretically and unquantified
experimentally, and our purpose in the present letter is
to record efforts in this particular direction.

Second, Merkt et al. [1] have recently performed the

Faraday experiment with corn starch suspensions, uncov-
ering some novel flow dynamics. In particular, they found
that persistent “holes” appear in the vibrated fluid layer,
with surrounding elevated collars, which they attribute
to the shear-thickening property of the material.

The current article describes a new suite of experi-
ments on the flow dynamics of cornstarch. Specifically,
we have performed a laboratory study on wave formation
on a layer of corn starch flowing down an inclined plane.
Instabilities on falling fluid films of water are an everyday
phenomena, being commonly seen on gutters and win-
dows on rainy days, and have a well-established theoret-
ical rationalization in terms of the linear instability of a
uniform flow [3, 4]. This is the so-called Kapitza problem,
for which theory predicts that instabilities arise when the
Reynolds number, Re = UH/ν, based on the surface flow
speed, U , and depth, H , exceeds a critical value of or-
der unity (ν is the kinematic viscosity). The instability
prompts the growth of what are commonly referred to as
“roll waves” [5, 6], which resemble propagating hydraulic
jumps. The surprising property of the corn-starch sus-
pensions examined here is that similar waves arise on a
falling film, but at Reynolds numbers far below the crit-
ical value appropriate for a Newtonian fluid. These are
the waves first reported by Simpson [2], but in a suspen-
sion of custard (which is cornstarch with flavouring). We
proceed by reporting the results of an experimental in-
vestigation of this phenomenon, indicating how it defies
current theoretical explanation, and discussing a number
of physical mechanisms that might be responsible.

Experiments. Experiments were conducted on the flow
of a concentrated solution of corn starch in water down
a constant incline. The laboratory set-up involved a
rectangular chute, 10 cm wide and 1.5 or more meters
long, fed upstream from a reservoir whose level was kept
roughly constant. By varying the angle of inclination we
were able to vary flow speed and depth. Typical fluid
thickness were of the order of 0.5-1 cm; flow speeds were
in the 1-10cm/sec range. We also varied the concentra-
tion of the cornstarch in solution; suspensions slightly in
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excess of 1 part cornstarch to 1 part water, by weight,
were those that showed the phenomena described below.

If the fluid were Newtonian, the force of gravity down
the plane, associated with the gravitational accelera-
tion g sin θ (where θ is the angle of the plane and
g ≈ 9.81m/sec2), would be balanced by that stemming
from the viscous shear stress, νuzz (orientating a two-
dimensional Cartesian coordinate system so that z = 0
denotes the inclined plane, x points directly downslope,
and (u, w) denote the velocity field). Very roughly, this
signifies that

νU

H2
∼ g sin θ.

Hence, Re = UH/ν ∼ U2/(gH sin θ). For the roll wave
typically seen on films of water, i.e. the Kapitza problem,
the fluid is millimeters in depth and flows at centimeters
per second on a shallow slope of perhaps 10 degrees, sug-
gesting a Reynolds number of order 10 or more (comfort-
ably above the theoretical prediction of (5/4) cot θ [3, 4]).
For our cornstarch solutions, on the other hand, we see
waves at smaller Reynolds numbers of order 0.1.

A picture showing the developing roll waves is shown
in figure 1(a) and (b). Naturally occurring perturba-
tions apparent at the inlet seed growing, propagating dis-
turbances that steepen into an unsteady train of waves.
Near initiation, the waves are remarkably regular, and
fairly evenly spaced, with a wavelength of a few cen-
timeters. They quickly grow and reach relatively large
amplitude (the heights of their crests can be a significant
fraction of the fluid depth), and generally form with a
range of strengths. As a result, the waves travel with
different speeds, overtaking one another in their progres-
sion down the chute. The collision of two waves leads
to their merger into a larger wave. Thus the wavetrain
undergoes a process of coarsening, as illustrated in figure
1(c), which is a typical feature of many nonlinear wave
propagation problems [7]. Surprisingly, both the initial
wavelengths and the coarsened wavelengths further down
the channel showed little dependence on the inclination
of the chute.

Though showing a spread of speeds, the roll waves
travel with velocities that typically exceed the flow speed
by approximately 33-50 percent or so. The structure of
the waves is also unusual: the fluid surface appears to be
advected with the waves, creating a characteristic cater-
pillar action as the disturbances “roll” over the fluid layer
ahead.

Lastly, by varying the inclination, we observe what ap-
pears to be a critical threshold in slope (that depends
on concentration) below which small waves initiated at
the top of the chute no longer grow or persist as they
propagate, but decay to the base flow (see figure 1(d)).
The critical angle is shown in figure 2 where it is plot-
ted against concentration. Note that this critical angle is
difficult to establish for two reasons. First, and least im-

portantly, the chute is not sufficiently long to state defini-
tively whether a small disturbance grows or decays over
the timescale of the experiment. Second, even though it
is clear that small amplitude waves decay in the “sta-
ble” regime in the experiment, it appears that larger
amplitude disturbances are able to persist and survive.
In other words, it appears that there may be a finite-
amplitude instability, which significantly complicates the
identification of the threshold slope, especially given the
large-amplitude perturbations encountered at the inlet
(see below).

Further details and observations.

Jitter. In addition to the main wave generation pro-
cess, the flow of the corn starch suspension exhibited an-
other curious feature resembling a superimposed high-
frequency jitter or flutter. More precisely, the large-
scale flow of the material appeared to generate a high-
frequency vibration in a manner reminiscent of the gen-
eration of acoustic waves by flow in a compressible fluid.
The jitter could be seen clearly at the crests of the roll
waves, where the caterpillar-like overturning motions vi-
brated with periods of order 0.1 seconds. However, sim-
ply pouring the material from one receptacle to another
also excited the vibrations, to the degree that they could
be easily felt if one were to hold one of the containers.
This process was also responsible for creating substantial
agitation in the feeding reservoir at the top of the chute,
which in turn quite clearly helped to seed the roll waves
themselves. An unappealing consequence was that the
nucleation of fairly large-amplitude roll waves obscured
the identification of the stability boundary.

Ageing. After repeating experiments over the course

(c) Mergers(b) Detail(a) Unstable flow (d) Stable flow

FIG. 1: A typical experimental view of (a) developed roll-
waves, (b) a detailed view of a pair of waves, (c) merging
waves at a downstream location, and (c) a stable flow.
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FIG. 2: The plot of slope versus concentration showing
the threshold values. The stars show flows in which waves
appeared to amplify as they propagated downstream, the
squares represent flows in which the waves appeared to de-
cay, and the dots show cases that seemed borderline between
those two behaviours. The lines are a fit to the data.

of days with fresh or old material, it became clear that
the properties of the corn starch suspensions were slowly
evolving, presumably owing to some combination of evap-
oration of the suspending fluid and the swelling of the
starch grains. For example, the material used in the ex-
periment illustrated in figure 1 was fresh (prepared at
most an hour before the experiment). Leaving the sus-
pension for a period of a day or two allowed the corn-
starch to separate from the solution, although it could
be re-mixed to leave a suspension that appeared much
the same as before. However, when the flow experi-
ments were performed a second time, the roll waves that
appeared were very different. In particular, the criti-
cal slope angle increased, the roll-wavelength was visi-
bly smaller, the instability appeared to saturate at much
lower amplitude and there was little sign of coarsening.
Snapshots of the re-run experiment are shown in figure
3.

Theoretical background. One of the primary theoretical
problems posed by the cornstarch suspension is charac-
terizing its rheology. Existing studies suggest that the
suspension can be shear thickening (and even thinning
over some ranges of applied shear) and show a definite
relaxation time [8], much as we anticipated on observa-
tional grounds. However, there is currently no accepted
rheological model for this material. Instead, given its ap-
parent behaviour, we outline known theoretical results
for commonly used shear thickening or visco-elastic fluid
models.

First, shear-thickening behaviour is captured in the
standard power-law fluid model, for which the viscosity,
ν, depends on the local deformation rate, γ̇: ν = Kγ̇n−1,
where K is a constant. Long-wave stability theory [7, 9]
establishes that the critical Reynolds number for this
flow, Re = Un−2Hn/K, is given by Re = Rec ≡

cot θ (2n+3)/4. (For n = 1 we recover the familiar New-

Roll waves in aged materials

FIG. 3: Roll waves on fluid layers of aged material. The
second panel shows an experiment in which the inclination
was steeper than that shown in the first panel.

tonian result of Benjamin [3] and Yih [4].) Evidently,
the critical threshold increases with n: shear thickening
fluids (with n > 1) are more stable than Newtonian and
shear thinning ones. Thus, the observed behaviour of the
cornstarch suspension apparently cannot be rationalized
in terms of a simple shear-thickening rheology. In fact,
roll waves have been observed on mud flows (kaolin sus-
pensions) in laboratory flumes [9, 10], and mud is usually
thought to be shear thinning. The experimental obser-
vations suggest critical Reynolds numbers that are much
higher than those observed with our cornstarch suspen-
sions, and which are more consistent with the theoretical
predictions based on power-law fluid model. Moreover,
the observed wavelengths of muddy roll waves are much
longer than those seen in the cornstarch suspension. Re-
cent theory for shear thickening, viscoplastic fluids [11]
suggests that yield stresses could substantially lower the
critical Reynolds number. However, cornstarch suspen-
sions show apparently negligible yield stresses, draining
as they do from inclined surfaces over long timescales to
films that are very thin indeed.

Second, long-wavelength stability theories have been
presented for a number of archetypal viscoelastic fluids
[12, 13]. In particular, for the Oldroyd B model, it has
been shown that elasticity can be destabilizing: the crit-
ical Reynolds number is lowered by an amount propor-
tional to the dimensionless polymer relaxation rate, the
Deborah number. If the relaxation rate were of order sec-
onds, and the shear rates were comparable (as they are
for fluids of depth a centimeter and speed of centimeters
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per second), this elasticity parameter is order one, and
therefore important. Given that the observed, appar-
ent relaxation rate of the cornstarch suspension is close
to this apparent shear rate, there is a possibility that it
is the relaxation of the material that is partly respon-
sible for the diminution of the critical Reynolds num-
ber. However, as previously mentioned, the cornstarch
suspension does not exhibit the classic characteristics of
polymeric, viscoelastic fluids. Moreover, there has been
some question over whether this type of viscoelastic in-
stability could be observable [13].

Third, roll waves have lately been reported on flowing
granular layers [14]. The theory used to rationalize this
phenomenon is based on shallow fluid models akin to the
St. Venant model of hydraulic engineering. Simple fric-
tion laws are used to model the granular fluid stresses,
and there is some agreement between theory and observa-
tion. However, the flow speeds and depths again suggest
effective Reynolds numbers that are well above those en-
countered in our cornstarch suspensions, and more in line
with the critical values expected for viscous fluids.

Discussion. In summary, we are unable to rationalize
convincingly the appearance of roll waves at such lower
Reynolds number in cornstarch suspensions in terms of
an existing, accepted rheological model. To provide an
answer to this puzzle, more studies are required on this
material, both at the microscopic and macroscopic lev-
els. Microscopic studies are needed to understand what
properties of cornstarch particles are responsible for its
macroscopic behaviour particularly at high concentra-
tions. Macroscopic studies are needed to better identify
its rheology for theoretical modelling.

Because we have no good theoretical explanation, we
are limited to speculating on what are the likeliest pos-
sibilities, and we close by offering our views on this.

Wave excitation at such low Reynolds numbers could
be attributed to some kind of jamming phenomenon in
a highly concentrated suspension [15–17]: a localized
perturbation may jam particles together into a coher-
ent structure that accelerates to collect and jam further
particles into a growing mass. However, there does not
currently appear to be much of a rational continuum for-
mulation of this process to call upon. Related notions
have appeared in other contexts, such as in thixotropic
fluids where it has been suggested that particle interac-
tion (gauged by some internal restructuring variable) can
lead to a viscosity bifurcation and thence instability [18–
20] In a sense, this behaviour results from what might be
called “constitutive instability”, which is also a common
concept in viscoelastic fluid mechanics [21, 22].

Another possibility is related to the idea that the sus-
pension develops inhomogeneity: suspended particles are
known to migrate in solute, leaving regions of high shear
or boundary layers [23]. Effective slip in the particle-
depleted layers, both internal and at a wall, can result
from this (a phenomenon known to plague rheologists). A

similar phenomenon arises in media like wet sand, where
shear perturbs the solid matrix from its state of optimal
packing, thus increasing the fluid fraction at the base of
the layer. Either way, a more viscous, particle-rich layer
develops over a less viscous layer. A stick-slip instability
is then an obvious possible consequence, as is interfacial
instability due to the effective, abrupt change in viscos-
ity [24]. Unfortunately, although such explanations are
appealing, it remains unclear whether the form of the
instability could resemble our roll waves.

For the observed high frequency jitter, it is notable
that avalanche and large scale flows of so-called singing
or booming sand and fluidized granular media produce
acoustic signals through rapid surface and internal vibra-
tions of the grains [25, 26]. Elasto-plastic models also suf-
fer what is referred to as “flutter” instability [27], which
takes the form of unstable propagating waves with speeds
near those expected for shear and compressional waves
(i.e. relatively high speed).

Whatever the physical origin of the phenomena we
have observed, we hope that the study motivates further
study of this curious material.
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