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Matched asymptotic expansions are used to obtain a reduced description of the
nonlinear and viscous evolution of small, localized vorticity defects embedded in a
Couette flow. This vorticity defect approximation is similar to the Vlasov equation,
and to other reduced descriptions used to study forced Rossby wave critical layers
and their secondary instabilities. The linear stability theory of the vorticity defect
approximation is developed in a concise and complete form. The dispersion relations
for the normal modes of both inviscid and viscous defects are obtained explicitly. The
Nyquist method is used to obtain necessary and sufficient conditions for instability,
and to understand qualitatively how changes in the basic state alter the stability
properties. The linear initial value problem is solved explicitly with Laplace trans-
forms; the resulting solutions exhibit the transient growth and eventual decay of the
streamfunction associated with the continuous spectrum. The expansion scheme can
be generalized to handle vorticity defects in non-Couette, but monotonic, velocity
profiles.

1. Introduction
One of the most challenging problems in fluid dynamics is the evolution of dis-

turbances on a shear flow at very high Reynolds number. Such situations arise in
laboratory and industrial settings, as well as in the fluid envelopes of planets, in stars
and in circumstellar disks. It is common to attack shear flow problems of this kind by
either idealizing the fluid as inviscid, or including the small viscosity as a perturbation.
It is from this direction that much of the complication arises: the mathematics of
ideal fluids entails difficulties such as critical layer singularities, continuous spectra
and continuum damping (and amplification) produced by phase mixing. The intro-
duction of small viscosity has all the attendant difficulties of singular perturbation
problems.

The main thrust of this paper is to study the dynamics of a particular kind of
shear flow. Specifically, we consider a shearing flow in which there is embedded
a localized region over which the vorticity varies rapidly. That is, a situation in
which there is some strong, ambient shear, but seeded within it is a rapidly varying
‘defect’, like that shown in figure 1. One can use a matched asymptotic expansion
to produce a simplified description of the evolution of this vorticity defect. Linear
and inviscid versions of this approximation have been developed by Gill (1965) and
Lerner & Knobloch (1988). These authors consider defects of inviscid Couette flow;
they show that this slight imperfection can be sufficient to destabilize the shear flow.
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Figure 1. An illustration of the shear flow configuration under discussion in this paper. The velocity
profile, U(y), is largely a two-dimensional and incompressible Couette flow, with a superposed
vorticity defect.

However, these earlier works do not fully exploit the simplifications which follow
from the assumption of a localized vorticity defect. We continue to mine this vein by
showing that both dissipative effects and advective nonlinearity can be included in
the approximation. Hence, the approximation enables us to present a rather complete
picture of linear stability theory (both ideal and viscous), and to advance into the
nonlinear regime with substantially less effort than if we were to follow the usual
route from the Navier–Stokes equations.

The matched asymptotic expansion that we use in §3 is similar to, though simpler
than, the method used by Stewartson (1978), Warn & Warn (1978), Killworth &
McIntyre (1985) and Haynes (1985, 1987, 1989) in the study of forced Rossby
wave critical layers and their instabilities. The Rossby wave critical layer problem is
not primarily a hydrodynamic stability problem because a wave-like disturbance is
forced by the passage of a shear flow over a corrugated boundary: in this case the
connection between frequency and wavenumber is imposed externally by the spacing
of the corrugations and the speed of the shear flow. By contrast, we are concerned
here with the possibly spontaneous growth of wave-like disturbances whose linear
dispersion relation is not known in advance. The waves we consider in this paper
do have critical layers, but these regions are asymptotically embedded within the
vorticity defect.

The most unappealing feature of the approximation is that, because attention is
restricted to disturbances localized within the defect, there is no guarantee that the
asymptotic formulation captures the dominant processes occurring over the entire
shear flow. But the approximation does allow us to elucidate some physical processes
very readily. For purely inviscid disturbances, we are led to an approximate description
that bears some similarity to the Vlasov equation of plasma physics. Although the
Vlasov equation is more tractable than the original Euler equation it does describe
strongly nonlinear processes such as the formation of coherent structures and the
development of subcritical instabilities.

The main results that we give in this paper are directed towards the derivation of
the equations of motion for the vorticity defect and the construction of a complete
linear stability theory for disturbances within it. For the sake of simplicity, we develop
the theory for a plane parallel, background shear flow which is linear; that is, an
ambient Couette flow like that shown in figure 1. This simplification is not essential,
and in an Appendix we develop a more general theory. A preliminary study of the
nonlinear regime is given by del-Castillo-Negrete, Young & Balmforth (1995).
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Sections 2 and 3 are concerned with the derivation of the approximate equations
of motion. In §4 we turn to a discussion of the conservation laws for energy,
momentum and circulation which the approximate system inherits from the Navier–
Stokes equation. In §5 we begin our discussion of the linear stability of parallel
flows by solving the inviscid normal-mode stability problem (the analog of the
Rayleigh equation) for some specific basic states. In §6 we present a Nyquist method
which provides necessary and sufficient conditions for determining the stability of
an arbitrary basic state. Section 7 deals with inviscid initial-value problems, and §8
develops the linear stability theory for viscous flows. Section 9 is the conclusion and
discussion. The appendix develops a more general version of the approximation which
includes the β-effect (the gradient of the planetary rotation rate) and non-uniform
background shear.

2. Formulation of the problem
Our point of departure is the forced two-dimensional vorticity equation,

∇̂2Ψ̂ t̂ +
∂(Ψ̂ , ∇̂2Ψ̂ )

∂(x̂, ŷ)
= α̂

(
ζ̂F − ∇̂2Ψ̂

)
− ν̂∇̂2

(
ζ̂F − ∇̂2Ψ̂

)
. (2.1)

The domain is −b̂ < ŷ < b̂ and −∞ < x̂ < ∞, the velocity is (û, v̂) = (−Ψ̂ ŷ, Ψ̂x̂), and

the vorticity is v̂x̂− ûŷ = ∇̂2Ψ̂ . The right-hand side of (2.1) includes damping by both
Ekman friction with a time scale α̂−1, and momentum diffusion with a coefficient of

kinematic viscosity ν̂. Motion is sustained by forcing, ζ̂F (x̂, ŷ). As boundary conditions
on (2.1), we impose

Ψ̂ (x̂,±b̂, t̂) = 0, Ψ̂ ŷ(x̂,±b̂, t̂) = ∓sb̂, Ψ̂ (x̂, ŷ, t̂) = Ψ̂ (x̂+ â, ŷ, t̂). (2.2a, b, c)

The central assumption made in this paper is that ζ̂F , the equilibrium vorticity
distribution towards which forcing and dissipation equilibrate, has the form

ζ̂F = −s+ εsF
(
y/ε
)
, (2.3)

where ε is a small non-dimensional parameter, s is a constant with the dimensions of
inverse time, and where the dimensionless coordinates are

(x, y) ≡ b̂−1(x̂, ŷ). (2.4)

The dimensionless function F in (2.3) is assumed to decay quickly when the argument
y/ε is large; in fact, we insist that F . (y/ε)−2. The parameter, ε, controls the
localization of the ‘vorticity defect,’ F , relative to the width of the channel. If F = 0
then the forcing drives a pure Couette flow with û = sŷ and v̂ = 0. More general
configurations are discussed in the Appendix.

We now non-dimensionalize (2.1) by setting

Ψ̂ (x̂, ŷ, t̂) = − 1
2
sb2
(
y2 − 1

)
+ ε2sb2ψ(x, y, t), (2.5)

and defining the following non-dimensional variables:

t = εst̂, ν = ν̂/(ε3sb2), α = α̂/(εs). (2.6a, b, c)

We refer to ψ(x, y, t) as the ‘disturbance’, meaning that this field contains all departures
from the Couette flow.
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The non-dimensional equation of motion for the disturbance is then

ε∇2ψt + y∇2ψx + ε2 ∂(ψ,∇2ψ)

∂(x, y)
= εα

(
ε−1F − ∇2ψ

)
− ε3ν∇2

(
ε−1F − ∇2ψ

)
. (2.7)

Equation (2.7) is scaled in the most convenient form for the ‘outer’ expansion, that
is, the solution in the regions where y/ε � 1.

3. The vorticity defect approximation
In this section we develop the ‘vorticity defect approximation’ using a matched

asymptotic expansion of (2.7).

3.1. The outer solution

In the outer region, where y = O(1), we assume that the forcing function, F , is small.
In this case (2.7) can be solved with an expansion,

ψ = ψ0 + εψ1 + · · · . (3.1)

The leading-order balance in (2.7) is

y∇2ψ0 = 0, (3.2)

so that the disturbance motion in the outer region is irrotational at leading order. On
dividing out the factor y in (3.2), we find

∇2ψ0 = −2A(x, t)δ(y), (3.3)

where A(x, t) is an undetermined function allowing for what appears to be a vortex
sheet at the defect. The physical interpretation of (3.3) is that all of the disturbance
vorticity is confined to the defect where y = O(ε). To the flow in the outer field this
vorticity concentration looks like a δ-function with an evolving strength, A(x, t). This
δ-function singularity produces a jump in the leading order x-velocity at y = 0,

ψ0y(x, 0
+, t)− ψ0y(x, 0

−, t) = −2A(x, t). (3.4)

The discontinuity in the outer velocity is smoothed on the scale ε by the inner
expansion.

The streamfunction can be obtained from (3.3) using a Fourier transform,

ψ̃0(k, y, t) ≡
∫ ∞
−∞
ψ0(x, y, t)e

−ikx dx. (3.5)

In terms of the transformed streamfunction, equation (3.3) is

ψ̃0yy − k2ψ̃0 = −2Ãδ(y). (3.6)

For the purpose of matching with the inner solution it is convenient to introduce

B(x, t) ≡ ψ0(x, 0, t), (3.7)

and write the solution of (3.6), with boundary conditions ψ̃(k,±1, t) = 0, as

ψ̃0(k, y, t) = Ã(k, t)k−1sech(k) sinh
[
k(1− |y|)

]
(3.8a)

= B̃(k, t)cosech(k) sinh
[
k(1− |y|)

]
(3.8b)

= B̃ − Ã|y|+ O(y2). (3.8c)
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In (3.8c) we have indicated the |y| � 1 expansion of the streamfunction: the velocity
jump in (3.4) is evident. From (3.8a) and (3.8b) it follows that

B̃(k, t) = k−1 tanh(k)Ã(k, t), B(x, t) =

∫ ∞
−∞
K(x− x′)A(x′, t) dx′, (3.9a, b)

where K(x) = π−1 ln
[
| coth(πx/4)|

]
is the inverse Fourier transform of K̃(k) ≡

k−1 tanh k.
We summarize the calculation above by saying that the outer flow is driven by

the defect, which introduces the term −2A(x, t)δ(y) into the right-hand side of (3.3).
This source induces an irrotational outer flow which in turn advects the defect. This
advection is associated with the streamfunction at the defect, denoted by B(x, t) in
(3.7). The two fields A and B are connected by (3.9). The system is closed by examining
the inner region in which y = O(ε).

3.2. The inner region

Inside the defect we define an inner variable,

η ≡ y

ε
. (3.10)

We simplify (2.7) by posing a solution of the form

ψ = B(x, t) + εϕ1(x, η, t) + O(ε2), (3.11a)

ψy = ϕ1η + εϕ2η + O(ε2), (3.11b)

∇2ψ = ε−1ϕ1ηη + Bxx + ϕ2ηη + O(ε). (3.11c)

The function B(x, t) on the right-hand side of (3.11a) is the value of the outer
streamfunction at y = 0. Thus a match between the outer solution in (3.8) and the
inner solution in (3.11a) is secured. The outer solution in (3.8) also has a jump in its
y-derivative at y = 0. In physical space this discontinuity of size 2A(x, t) is smoothed
by the inner solution in (3.11). Thus the second matching condition is

2A(x, t) = −
∫ ∞
−∞
Z(x, η, t) dη, (3.12)

where the leading-order vorticity in (3.11c) is

Z(x, η, t) ≡ ϕ1ηη. (3.13)

The velocity jump across the defect is equal to the integrated vorticity within the
defect.

The evolution equation for Z(x, η, t) is now obtained by substituting (3.11) into
(2.7) and collecting the leading-order terms. One finds that the difficult nonlinear
term, ∂(ϕ1, ϕ1ηη)/∂(x, η), is smaller by O(ε) than the leading-order contributions.

We can collect the results of the inner and the outer expansions and form the
vorticity defect equation:

Zt + ηZx + BxZη = α(F − Z)− ν(F − Z)ηη, (3.14a)

2B̃(k, t) = −k−1 tanh k

∫ ∞
−∞
Z̃(k, η, t) dη. (3.14b)

The remainder of this paper is concerned with the solution of (3.14).
An important feature of the vorticity defect approximation in (3.14) is that, when

we set the dissipative terms to zero, it becomes analogous to the Vlasov equation of
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plasma physics (e.g. Nicholson 1983). In this analogy, η is a velocity-like coordinate,
the defect vorticity, Z(x, η, t), plays the role of particle distribution function, and
B(x, t) corresponds to the potential of the electric field. The two problems differ
in that, whereas the particle distribution function is always positive for the Vlasov
problem, the vorticity in (3.14a) can have either sign, and in that the relation in (3.14b)
is more complicated than the Poisson equation which occurs in the Vlasov case.

4. Conservation laws
In this section we show that the vorticity defect approximation in (3.14) inherits all

of the conservation laws of the complete equations of motion. In view of our interest
in conserved quantities we restrict attention to the unforced and dissipationless version
of (3.14a, b), i.e. we now take α = ν = 0. Because (3.14a) is an advection equation, with
a streamfunction, B−η2/2, there is an infinitude of vorticity invariants corresponding
to rearrangements of Z . That is to say

d

dt

∫ ∞
−∞

∫ ∞
−∞
C(Z) dηdx = 0, (4.1)

where C is any function.
Additionally, there is a momentum invariant,

d

dt

∫ ∞
−∞

∫ ∞
−∞
ηZ dηdx = 0, (4.2)

and an energy invariant,

d

dt

[
1

2

∫ ∞
−∞

∫ ∞
−∞
η2Zdηdx+

∫ ∞
−∞
AB dx

]
= 0. (4.3)

The energy in (4.3) is divided between the outer irrotational field,
∫
AB dx, and the

inner vortical field,
∫ ∫

(η2Z/2)dxdη. The conservation laws in (4.1) follow from (3.14a)
alone, whereas to obtain (4.2) and (4.3) one must also use the relation in (3.14b).

5. Inviscid linear stability theory for some specific profiles
Our primary goal in this section is to use the vorticity defect approximation in (3.14)

to solve the linear stability problem for some specific vorticity profiles. The analogous
linearized stability problem for the full equations of motion is the Rayleigh equation
(Drazin & Howard 1966; Maslowe 1985). Setting aside ‘broken-line’ profiles, there are
only a few explicit solutions of the Rayleigh equation available, and these are usually
restricted to isolated regular neutral modes which mark stability boundaries. Even
though the broken-line idealization leads to straightforward calculations, the ensuing
artificial elimination of critical layer singularities means that the results so obtained
are not compelling if one is interested in smooth profiles (Maslowe 1985). As we now
illustrate, the defect approximation results in comparably simple calculations which
capture the important effects of critical layer singularities.

5.1. The inviscid dispersion relation and the Rayleigh–Fjørtoft theorem

One class of steady solutions of (3.14) are parallel flows in which Z and B are
independent of x. We study the linear stability of these parallel flows by substituting

Z(x, η, t) = F(η) + ζ(x, y, t), (5.1a)

B(x, t) =
1

2

∫ ∞
−∞
F(η′) dη′ + b(x, t), (5.1b)
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into (3.14) and neglecting both the nonlinear term, bxζy , and the dissipative effects
(ν = α = 0). Thus, the associated linear problem of (3.14) is

ζt + ηζx + bxFη = 0, (5.2a)

2b̃(k, t) = −k−1 tanh k

∫ ∞
−∞
ζ̃(k, η, t) dη. (5.2b)

In §7 we discuss the solution of (5.2) as an initial value problem and in §8 we
include the effects of dissipation. In this section we address the problem of find-
ing modal solutions of (5.2). This means that we look for solutions of the form
ζ(x, η, t) =Z(η) exp(ikx− iωt). On substituting this modal form into (5.2), we obtain
the eigenfunction,

Z(η) = 1
2
k−1 tanh k

Fη(η)

η − c

∫ ∞
−∞
Z(η1) dη1, (5.3)

where the phase speed is c = ω/k = cr + ici. By integrating (5.3) over η we recover
Gill’s (1965) dispersion relation,∫ ∞

−∞

Fη(η)

η − c dη = 2k coth k. (5.4)

The ease with which we have obtained the dispersion relation in (5.4) illustrates the
advantages of the vorticity defect approximation over the Rayleigh equation. In the
next subsection we will evaluate the integral in (5.4) for some specific vorticity defect
profiles.

To conclude this subsection we record the analogues of the Rayleigh and Fjørtoft
stability theorems. These are obtained by separating the real and imaginary parts of
(5.4): ∫ ∞

−∞

Fη(η)(η − cr)
(η − cr)2 + c2

i

dη = 2k coth k, (5.5a)∫ ∞
−∞

ciFη(η)

(η − cr)2 + c2
i

dη = 0. (5.5b)

It follows immediately from (5.5b) that, if ci 6= 0, then Fη(η) must change sign at
least once. This is Rayleigh’s necessary condition for the existence of an unstable
eigenmode. In the present context this result is nugatory because all defect vorticity
profiles will have at least one point where Fη = 0.

To obtain the Fjørtoft theorem, we suppose that ci 6= 0 and that there is a point,
η∗, at which

Fη(η∗) = 0 (5.6)

(that is, an inflection point of the velocity profile). If we take a linear combination of
(5.5a) and (5.5b), then we obtain

ci 6= 0 ⇒
∫ ∞
−∞

Fη(η)(η − η∗)
(η − η∗)2 + c2

i

dη = 2k coth k. (5.7)

In certain cases it is possible to prove that (5.7) leads to a contradiction so that the
profile is stable even though there is an inflection point at η∗. For example, if there is
only a single inflection point then the function Fη(η)(η− η∗) has a definite sign, which
is the same as the sign of Fηη(η∗). Thus profiles with a single inflection point, η∗, and
Fηη(η∗) < 0 are stable because in this case the integral on the left-hand side of (5.7)
is negative, whereas the right-hand side is positive.
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Figure 2. The region of the (k, f)-plane in which the top-hat vorticity profile has an unstable mode
is shaded. If f > −1/2 the profile is stable.

As an illustration, consider a basic state with a ‘Lorentzian’ vorticity profile:

F(η) =
f

1 + η2
. (5.8)

This profile is stable when f > 0 (i.e. Fηη(η∗) < 0) even though it has a velocity
inflection point at η∗ = 0. But f < 0 (i.e. Fηη(η∗) > 0) is not sufficient for instability;
in §5.3 we show by explicit solution that linear instability occurs only if f < −2/π.
Thus, as usual, the Fjørtoft condition is necessary, but not sufficient, for instability.
In §6, we improve on this situation by describing a Nyquist method that leads to
necessary and sufficient conditions for instability.

5.2. The top-hat profile

We begin with a simple special case by selecting a ‘top-hat’ profile for F(η):

F(η) =

{
f if |η| < 1

2

0 if |η| > 1
2
.

(5.9a)

The vorticity profile in (5.9) is equivalent to a broken-line velocity profile. In this case,

Fη(η) = f
[
δ
(
η + 1

2

)
− δ

(
η − 1

2

)]
. (5.9b)

Because of the δ-functions, the integral in (5.4) is trivial and one finds the dispersion
relation

c2 = 1
4

+ 1
2
fk−1 tanh(k). (5.10a)

If f < −k coth k/2, this relation has the complex conjugate solutions

c = ±i

[
|f|
2k

tanh k − 1
4

]1/2

; (5.10b)

that is, a growing/decaying conjugate pair of modes. If, on the other hand, f >
−k coth k/2, the dispersion relation has a pair of real solutions, or two neutral
modes. The relation f = −k coth k/2 is therefore the stability boundary, which is
illustrated in the (k, f)-plane in figure 2. The shaded region below the curve contains
the instability; in the unshaded region above the curve, there are the two neutral
modes. The bifurcation to instability occurs when the two neutral modes collide at
the origin of the complex c-plane, then move off the real axis as the complex conjugate
pair in (5.10b). This is an example of the Hamiltonian Hopf bifurcation (for each
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Figure 3. A comparison of the approximate dispersion relation in (5.10) with the exact result
obtained from the Rayleigh equation. f = −1.

colliding pair with k > 0, there is a complementary duo with k < 0, so this is the
usual interaction of a modal quartet).

In figure 3 we compare (5.10) with the exact result that is available from Rayleigh’s
equation (e.g. Drazin & Howard 1966). One remarkable aspect of this comparison is
that the exact and approximate curves parallel each other with an offset which remains
constant as k increases. The offset in figure 3 is proportional to ε in (2.3), so that the
curves coincide as ε → 0. A surprising point is that the approximation is accurate
even when k = O(ε−1). Thus the approximation does not seriously misrepresent the
linear dynamics of small-scale disturbances whose inverse wavenumber is comparable
to the width of the defect. Unfortunately, as illustrated by the Lorentzian example
below, this accuracy is a peculiarity of the top-hat vorticity profile.

5.3. The Lorentzian profile

The normal modes of the top-hat vorticity profile do not possess critical layer
singularities: the integral in the dispersion relation (5.4) is non-singular even when c
is real (except in the pathological case when the critical layer lines up along one of
the vorticity discontinuities). Consequently the top-hat profile has a pair of discrete
neutral modes, with ci = 0, in the unshaded portion of the (k, f)-plane in figure 2.

As an example of a less trivial basic state, we consider the Lorentzian profile of
(5.8). Provided that c has a non-zero imaginary part, the integral in the dispersion
relation (5.4) is non-singular and can be evaluated with the Cauchy residue theorem.
The result is

fπ

2k
tanh k =

{
(c+ i)2 if ci > 0
(c− i)2 if ci < 0.

(5.11)

In order for the relation (5.11) to be consistent, we require

πf

2k
tanh k < −1. (5.12)

In that case, we find

c = ±i

([
π|f|
2k

tanh k

]1/2

− 1

)
, (5.13)

which, as for the broken-line profile, reveals a growing/decaying mode pair.
The stability boundary is given by the relation f = −2k coth k/π. We illustrate this

boundary on the (k, f)-plane in figure 4; the conjugate pair of modes with ci 6= 0 in
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Approximation
ε = 0.01

k

f

1 5

ε = 0.10

Figure 4. The stability boundary in the (k, f)-plane for the Lorentzian (the region below the
curve is unstable). Also shown is the stability boundary obtained from a numerical calculation of
the eigenmodes of the Lorentzian vorticity profile using the full Rayleigh equation. Two curves are
shown representing calculations in which ε = 0.1 and ε = 0.01. The error in the defect approximation
is of the order of εk2. Thus the approximation fails both for defects which are either not sufficiently
localized in η, or for perturbations that vary rapidly in x.

(5.13) exists in the region below the solid curve. This region is qualitatively similar to
the unstable region of the top hat shown in figure 2. Both cases have similarly shaped
stability boundaries with marginal stability points at k = 0; for the Lorentzian, the
marginally stable profile is given by fc = −2/π.

In contrast to the top hat, however, if the parameters do not satisfy (5.12), then
there is no consistent solution to the dispersion relation, (5.11). In other words, it is
not the case that we can construct neutral modes with ci = 0, in the region above
the solid curve in figure 4. In fact, if ci = 0, there is an unphysical singularity in
the linear eigenmode, (5.3), at the critical layer, unless this layer coincides with an
inflection point. We conclude that for the stable case the linear problem in (5.2) does
not have, in general, smooth solutions proportional to exp(ikx − iωt). This signifies
the existence of the continuous spectrum of singular eigenmodes in which there is no
definite connection between the wavenumber and frequency of a disturbance. Thus
the bifurcation to instability in (5.13) is an example of a Hamiltonian Hopf bifurcation
in which a complex conjugate pair of modes emerges from a continuous spectrum.

5.4. Finite-wavelength instabilities

In both of the examples above, the instability is confined to long wavelength so that
the critical wavenumber is kc = 0. It is interesting to consider basic states with more
structure so that there is a shear flow instability with a finite critical wavenumber. To
this end we consider a family of vorticity profiles with three parameters,

F(η) = f
1 + pη + qη2

(1 + η2)2
. (5.14)

The ‘shape parameters’ p and q can be adjusted to produce a vorticity profile with as
many as three extrema (see figure 5). As before, the parameter f controls the overall
magnitude of the vorticity bump.

If ci 6= 0, then a residue evaluation of the integral in the dispersion relation (5.4)
gives

k coth k =
π

4
f

[
1 + q

(i + c)2
+ 2

p+ (1− q)i

(i + c)3

]
if ci > 0. (5.15)
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Figure 5. Two vorticity profiles from the family in (5.14).

Equation (5.15) reduces to (5.11) when (p, q) = (0, 1) and so we anticipate that if f
is sufficiently negative we will once again find a long-wavelength instability. In view
of our interest in instabilities with finite kc we restrict attention to f > 0 and focus
on the particular family of profiles with q = 2 (illustrated in figure 5). When p = −2,
the defect profile has a double inflection point at η = 1. That is, F ′(1) = F ′′(1) = 0.
We anticipate that this flow is marginally stable since profiles with smaller values of
p contain two inflection points straddling η = 1.

We now rewrite (5.15), with q = 2, as a cubic polynomial in c:

c3 + 3ic2 − 3
2
(2 + ρ)c− ρp− 1

2
(2 + ρ)i = 0 if ci > 0. (5.16)

In (5.16) we have introduced the parameter,

ρ ≡ πf

2k
tanh k. (5.17)

The stability boundary in the three-dimensional space (k, f, p) is located by assuming
that ci = 0 and separating the real and imaginary parts in (5.16). In this way we find
that on the stability boundary

c2 =
2 + ρ

6
, p = −8

ρ

[
2 + ρ

6

]3/2

. (5.18a, b)

In figure 6(a) we show the relation (5.18b) which defines two critical values of ρ for
every p < −2. Within the region of the (ρ, p)-plane delimited by these two values
(shown shaded in figure 6a), the polynomial in (5.16) has a root with ci > 0. Elsewhere
(in the unshaded region of figure 6a), the roots of (5.16) have negative imaginary
parts so that there are no discrete modes. Thus in the unshaded region the profile is
stable with a continuous spectrum.

The introduction of ρ enables us to condense the number of independent parameters
from three (k, f, p), to two (ρ, p). But it is then difficult to visualize the region of
instability in terms of the quantities with the most physical meaning. Thus, at the
risk of redundancy, in figure 6(b) we show the corresponding stability boundary in
the (k, p)-plane for three values of f. The profile is unstable in the region below the
curves in figure 6(b).

According to equation (5.18) and figure 6(a), instability extends up to p = −2.
At that point of marginality, ρ(−2) = 4 and so we have a critical wavenumber, kc,
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Figure 6. (a) The region of the (p, ρ) plane in which the polynomial (5.16) has a solution with
ci > 0 is shown shaded. (b) Stability boundaries in the (k, p)-plane for several values of f > 8/π.
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Figure 7. Growth rate, kci, as a function of k for profiles with indicated values of p obtained by
solving the cubic equation (5.16). In all cases f = 8coth(1)/π = 3.34.

defined as a function of f:

f =
8

π
kc coth kc. (5.19)

It follows from (5.19) that when f < 8/π there is no instability. When f > 8/π, there
may be a band of unstable wavenumbers centred on a finite value, and in figure 7
we show growth rate, ωi = kci as a function of k with f = 8 coth(1)/π and various
values of p.

The instability described in this subsection is analogous to the ‘bump-on-tail’
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instability of plasma physics. The terminology is evident from figure 5 which shows
how the splitting of the double inflection point results in a bump on the tail of the
vorticity profile.

6. Stability theory for general vorticity defects
In the previous section we calculated the dispersion relation for various defect

vorticity profiles, F(η), and found several qualitatively different types of modal insta-
bility. To avoid the calculation of a dispersion relation every time a new profile is
encountered, it is worth developing general results for classifying profiles according
to their stability properties. We show in this section that a complete qualitative un-
derstanding of the modal stability problem can be obtained by using a variant of the
Nyquist method (Penrose 1960).

We begin by introducing the dispersion function,

D(c, k) ≡ 2k coth k −
∫ ∞
−∞

F ′(η)

η − cdη. (6.1)

For each k, the equation above defines a function, D = Dr + iDi, of c = cr + ici. The
dispersion relation in (5.4) then corresponds to a zero of D in the c–plane. In view of
our interest in unstable modes, which correspond to zeros of D in the upper half of
the c–plane, we take ci > 0 in what follows.

Except on the real axis, where the integral in the definition (6.1) is irregular, D is
a bounded function of c. In fact, D is analytic in c except along the cr-axis where it
has a branch cut. However, using the Plemelj relation, we observe that as ci ↓ 0, D
has the limiting value

D(cr, k) = 2k coth k −P
∫ ∞
−∞

F ′(η)

η − cr
dη − iπF ′(cr), (6.2)

where P denotes a Cauchy principal value.
Because D(c, k) has no poles in the c-plane, the number of zeros of D(c, k) in the

upper half-plane is given by

1

2πi

∫
γ

1

D
∂D
∂c

dc =
1

2πi

∫
γ′

dD
D . (6.3)

The contour of integration, γ, is a semicircle of infinite radius lying in the upper half
of the c-plane, with a diameter limiting to the real axis from above; γ′ is the image of
γ in the D-plane. According to (6.3) the number of unstable modes equals the number
of times γ′ encircles the origin in the D-plane. Thus, to ascertain stability we need to
know the shape of γ′. There are some straightforward considerations (illustrated in
figures 8–11) that simplify this task.

The image of the whole semicircular arc of γ is the single point

Dr + iDi = 2k coth k, (6.4)

in the D-plane. We refer to this point as the asymptote, and we use the notation
G(k) ≡ 2k coth k. The other part of γ is the real axis of the c-plane. The image of
this segment gives γ′ which departs from the asymptote, wanders in the D-plane, and
eventually returns to the asymptote. Equation (6.2) implies the following rules that
constrain the topology of γ′ using only qualitative properties of the defect vorticity
profile:
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(i) The direction in which γ′ leaves and returns to the asymptote is determined by
the sign of F ′(cr) as cr → ±∞; e.g. if F ′(−∞) > 0, then γ′ leaves the asymptote into
the lower half-D-plane, and so forth.

(ii) In addition to the asymptote, γ′ can only cross the Dr-axis at points for which
F ′(cr) = 0; that is, at cr = ηn where ηn is one of the n = 1, 2, · · ·N inflection points of
the profile.

(iii) The crossings of γ′ on the Dr-axis are located at

dn = 2k coth k −
∫ ∞
−∞

F(η)− F(ηn)

(η − ηn)2
dη. (6.5)

(iv) The direction in which γ′ crosses the Dr-axis at dn is determined by the sign
of F ′′(ηn). If F ′′(ηn) = 0, then γ′ touches the Dr-axis but does not cross it. (This rule
must be modified in obvious ways if higher derivatives such as F ′′′(ηn) are zero.)

(v) If ηn is the global minimum (maximum) of F(η) then dn is to the left (right) of
the asymptote. This follows from (6.5).

Next, we can vary k, and this affects only the location of the asymptote, G(k). The
function 2k coth k increases monotonically from 2 as we raise k; hence increasing k
drags γ′ from its leftmost position at k = 0 to the right. This simple image enables
us to decide if γ′ will ever encircle the origin, O. For example, if at k = 0, the locus γ′

does not cross the Dr-axis to the left of O, then γ′ can never encircle O at any value
of k and the profile is stable. But if at k = 0, γ′ does cross the Dr-axis to the left of
O then there must be some value of k for which O is encircled. This follows since the
origin is either encircled at k = 0, or there is an even number of crossings to the left
of O. In the former case the profile is unstable at k = 0. In the latter circumstance,
increasing k drags γ′ to the right until two crossings straddle O and consequently γ′

encircles O. Hence there is instability centred on a finite value of k.
The action of varying k and dragging γ′ to the right therefore allows us to determine

the bands of unstable wavenumbers. These must be delimited by the values of k for
which γ′ passes through the origin. In other words, if dn = 0, we must have a stability
boundary.

For profiles with a single inflection point, the rules imply that γ′ is a single loop.
The locus γ′ crosses the Dr-axis at the asymptote, and at d1 which is the image of the
inflection point cr = η1. If η1 is a maximum (figure 8a), then γ′ circulates to the right of
the asymptote (figure 8b) and the origin is never encircled. Therefore, single-humped,
positive-vorticity defects are always stable (a restatement of the Fjørtoft extension
of Rayleigh’s Theorem). On the other hand, when η1 is a minimum (figure 8c), γ′

circulates to the left of the asymptote (figure 8d). Then, if d1 < 0, the origin is encircled
and the profile is unstable. In this unstable case, as we vary k, we drag the loop to
the right. At some value of k, the loop passes through the origin, and so for higher
k, γ′ cannot encircle the origin any more. In other words, as we increase k, we pass
through a high-wavenumber cut-off. If we now reduce the size of the loop by varying
the profile (by reducing the size of the minimum), we move this cut-off to smaller
and smaller values of k. Eventually, instability cuts off entirely (cf. figure 4), and this
necessarily occurs at k = 0. Thus the singly peaked profiles, if unstable, are marginal
at k = 0.

For profiles with two inflection points, γ′ crosses the Dr-axis at two points away
from the asymptote. In the example shown in figure 9, the crossing at d1 is associated
with the global vorticity minimum, and so it is located to the left of the asymptote.
The crossing at d2, being the global maximum, is to the right of the asymptote.
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Figure 8. Nyquist plots for (a) positive, and (c) negative, vorticity defect profiles with a single
inflection point. Because there is only one inflection point, γ′ crosses the Dr-axis twice: at the
asymptote G(k) denoted by a heavy dot, and at d1, the image of η1 in the D-plane. In (a) η1 is a
global maximum and therefore γ′ in (b) loops to the right of the asymptote. On the other hand, in
(c) η1 is a minimum and γ′ in (d), loops to the left of the asymptote.
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Figure 9. Nyquist plot for a vorticity defect profile with two inflection points. Because η2 is a global
maximum, the crossing d2 is to the right of the asymptote. On the other hand, because η1 is a
minimum, the crossing d1 is to left of the asymptote.

Instability occurs provided d1 < 0. However, γ′ can only encircle the origin at most
once, so the profile in figure 9(a) can support only one unstable mode, and this is
again marginal only at k = 0.

For profiles with three inflection points, there are yet more crossings of the Dr-axis.
Now the topology of γ′ is less constrained and there are various ways in which γ′

might encircle the origin. For example, the profile shown in figure 10(a) leads to a
locus that does not encircle the origin for k = 0 (figure 10b). However, for large
enough k, γ′ is dragged to the right and encircles the origin. Figure 10(c) shows the
profile for which the two inflection points at η2 and η3 coalesce and F ′′(η2) = 0. In
this critical case, γ′ does not cross the Dr-axis at d2 = d3, but touches it tangentially
(figure 10d). There is then a critical wavenumber, kc, at which the non-transversal
intersection of γ′ with the Dr–axis is at the origin. In this case, any perturbation of
the vorticity profile which moves the two coincident inflection points apart will open
up an unstable band of wavenumbers centred on kc (cf. figure 7).

Another interesting example with three inflection points is shown in figure 11. In
this case, γ′ encircles the origin twice over a range in k, and therefore there are two
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Figure 10. Nyquist plots for profiles with two maxima and one minimum. The profile shown in (a)
is not unstable at k = 0 (see the solid curve in b), but there are two crossings, d2 and d3, to the left
of the origin. Increasing k therefore drags γ′ to the right so as to encircle the origin, as shown by
the dotted curve in (b). (c) A case in which η2 and η3 have merged into a double inflection point
with F ′′ = 0. In this case, as shown in (d), γ′ does not cross the Dr-axis and there is a point of
marginal stability.
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Figure 11. Nyquist plot for a profile with two minima and one maximum (a). In this case, γ′

encircles the origin twice (b).

unstable modes. A concrete example of this double instability is provided by the
vorticity profile F(η) = f(1− η2)/(1 + η2)2 which is the member (p, q) = (0,−1) of the
family in (5.14). Consideration of the dispersion relation (5.15) shows that the profile
has two modes of instability if f > 8/π. Because of the symmetry of the vorticity
profile the two modes are simultaneously marginal at f = 8/π.

With Nyquist plots we can categorize all of the bifurcations that can take place as
we scan through a family of profiles. In particular we can understand the stability
boundaries for the family. This naturally leads us to a necessary and sufficient criterion
for modal instability. Namely, the profile is unstable if and only if there is at least
one inflection point, ηn, with F ′′(ηn) 6= 0, for which∫ ∞

−∞

F(η)− F(ηn)

(η − ηn)2
dη > 2. (6.6)

The inequality above ensures that when k = 0 there is at least one crossing point, dn,
to the left of the origin. Hence, for some k, γ′ must encircle the origin at least once.
The criterion (6.6) is the analogue of the Penrose criterion in plasma physics (Penrose
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1960) and, for profiles with a single inflection point, (6.6) is equivalent to Rosenbluth
& Simon’s (1964) necessary and sufficient condition for instablity.

It is also clear from the Nyquist plots that there can only be as many unstable
modes as inflection points, which repeats Howard’s (1964) theorem for monotonic
velocity profiles. In fact, we can make a much stronger statement than this. In order to
encircle the origin, we need two crossings of the Dr-axis. Hence the number of times
γ′ encircles the origin in total cannot exceed half of the number of times γ′ intersects
the Dr-axis. The number of intersections is given by the number of inflection points
plus the asymptote; that is N + 1. Thus, the total number of unstable modes cannot
exceed (N + 1)/2.

7. The initial-value problem
In §5 we obtained the regular normal modes (the discrete spectrum) of the linearized

vorticity defect equation for a number of basic states. This approach is limited because
these normal modes do not form a complete set. Indeed, some of the stable profiles
in §5 have no discrete modes. Thus, the solution of the initial-value problem demands
the continuous spectrum in order to represent an arbitrary disturbance (Case 1960). In
this section we follow this route and study the evolution of a small disturbance,

ζ(x, η, 0) = ζ0(x, η), (7.1)

by solving the linearized equation (5.2) as an initial-value problem with Laplace
transforms. Unlike earlier applications of this technique to the Rayleigh equation
(Case 1960), our solutions are explicit, and they concretely display the competition
among the transient amplification of the continuum, its eventual decay, and the
sustained growth of unstable normal modes.

7.1. Growth and decay of disturbances on a Couette flow: F(η) = 0

We begin our study of the initial-value problem with the special case F(η) = 0. For
this case, the solution of the vorticity defect equation (5.2a), with initial condition
(7.1), is (Kelvin 1887; Orr 1907)

ζ(x, η, t) = ζ0(x− ηt, η). (7.2)

By substituting this solution into (5.2b), we find

b̃(k, t) = − 1
2
k−1 tanh k

∫ ∞
−∞

e−iktη ζ̃0(k, η) dη. (7.3)

The integral on the right-hand side of (7.3) is the Fourier transform in η of ζ̃0(k, η)
where kt is the transform variable. Therefore, the behaviour in time of the streamfunc-
tion, b̃(k, t), is determined by the Fourier transform in η of the initial perturbation.
For example, if

ζ0(x, η) =
eik0x

1 + η2
, (7.4)

then

b(x, t) = − 1
2
πk−1

0 tanh k0 e−|k0t|eik0x. (7.5)

If one sets the time origin at t = t0 < 0, then (7.5) exhibits a transient exponential
growth up to t = 0, abruptly followed by an exponential decay of the perturbation
when t > 0.
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Because the dependence on time of b(x, t) depends on the Fourier transform of the
initial vorticity perturbation one can manufacture qualitatively different examples of
growth followed by decay. For example, if ζ0 = exp(−η2 + ik0x) then the analogue
of (7.5) is b ∼ exp(−k2t2/4), so that there is superexponential growth until t = 0,
followed by superexponential decay. These examples show that there is no universal
expression for the time dependence of the streamfunction b(x, t). The one general
result is that, provided the initial condition in (7.1) is infinitely differentiable in η,
repeated integrations by parts in (7.3) shows that b(x, t) vanishes faster than any
power of t as t→ ±∞.

The transient growth described above is the classical result of Orr and Kelvin.
Note however, that because of the defect localization the quasi-exponential transient
in (7.5) is stronger than the algebraic behaviour associated with the shearing of a
uniform plane wave.

The conclusion that b decays faster than any power of t contrasts sharply with the
well-known result that the streamfunction of a perturbation to a stable shear flow
decays as t−2 (e.g. Brown & Stewartson 1980). This contradiction is resolved at next
order in the expansion of the streamfunction within the defect; that is, by the term,
ϕ1(x, η, t), in (3.11a). If we substitute solution (7.2) into (3.13), then we obtain

ϕ1ηη = ζ0(x− ηt, η) . (7.6)

We first take the Fourier transform in x of (7.6) and then follow Brown & Stewartson
by substituting ϕ̃1(k, η, t) = θ(k, η, t)e−ikηt, so that

θηη − 2iktθη − k2t2θ = ζ̃0. (7.7)

In the limit t → ∞, the leading-order solution of (7.7) is θ ≈ −ζ̃0/(kt)
2, which is the

universal law for algebraic decay of the streamfunction.

Thus, the solution of the F(η) = 0 problem using the vorticity defect approximation
leads us to conclude that the streamfunction of a localized disturbance in Couette
flow is, to leading order, composed of two parts. The dominant part, b(x, t), has a
non-universal time dependence and, provided that the initial condition is smooth,
b(x, t) decays faster than any power of t. The second, smaller (by one power in
ε) correction, ϕ1(x, η, t), has a milder time dependence and contains the universal
asymptotic decay, t−2. Because of the different rates of decay, the expansion ψ =
b(x, t) + εϕ1(x, η, t) + O(ε2) becomes disordered as t→∞.

7.2. Disturbances on a state with non-zero vorticity: F(η) 6= 0

To study the case with non-zero F(η) we use the Fourier–Laplace transform

ζ̂(k, η, p) ≡
∫ ∞
−∞

dx

∫ ∞
0

dt ζ(x, η, t) e−ikx−pt, (7.8)

where p = pr + ipi. The convergence of the t-integral in (7.8) requires that pr > p0

where p0 is a real number. The ‘abscissa of convergence’ is the smallest value of p0

for which the t-integral converges. The t-integral defines an analytic function of p in
the half-plane of convergence, pr > min(p0). The Laplace transform is the analytic
continuation into the whole of the p-plane of the function defined by the t-integral.
Outside the half-plane of convergence, the Laplace transform may have singularities
(see Pipkin 1991). These technicalities will be important in what follows.
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The solution of the transformed version of (5.2) is

b̂(k, p) =
N
D , ζ̂(k, η, p) =

ζ̃0 − ikF ′b̂

p+ ikη
, (7.9a, b)

where

N(k, p) ≡ i

k

∫ ∞
−∞

ζ̃0

η − ip/k
dη, D(k, p) ≡ 2k coth k −

∫ ∞
−∞

F ′

η − ip/k
dη. (7.10a, b)

The function D in (7.10b) is equivalent to the dispersion function, D(k, c), introduced

in §6, if c = ip/k. Equations (7.9) and (7.10) determine ζ̂(k, η, p) and b̂(k, p) in terms of
the vorticity distribution F(η) of the basic state, and the initial vorticity perturbation,
ζ̃0(k, η). Note that D depends only on the basic state, F(η), whereas N depends only
on the initial perturbation, ζ0(x, η). The inversion formula for the Laplace transform
of the streamfunction is

b̃(k, t) =
1

2πi

∫ p0+i∞

p0−i∞

N
D ept dp, (7.11)

where the integration is along the Bromwich contour which is a straight line parallel
to the imaginary p-axis and located to the right of the abscissa of convergence. An

analogous expression determines ζ̃(k, η, t) from ζ̂(k, η, p).
After the analytic continuation of the integrand of (7.11) into the right half of the

p-plane has been performed, (7.10) and (7.11) are equivalent to Landau’s celebrated
solution of the initial value problem for the Vlasov equation (Landau 1946). Landau
gave a prescription for accomplishing this analytic continuation for general functions
ζ̃0 and F in (7.10) (for example, see Nicholson 1983). We will not need this Landau
prescription in its full glory; rather we perform the continuation for specific illustrative
examples. The essential point is that Landau’s analytic continuation uncovers the

singularities of b̂(k, p) which lie to the left of the abscissa of convergence. With the
Cauchy residue theorem, knowledge of these singularities simplifies the evaluation of

the inversion integral in (7.11) (Pipkin 1991). The uncovered singularities of b̂(k, p)
arise from either the denominator, D, or the numerator,N, of the integrand in (7.11).

The poles arising from the denominator in (7.11) are the zeros of D, and these are
of two types depending on the sign of pr . The zeros of D with pr > 0 correspond
to the unstable normal modes discussed in §5: the residues of these poles provide
exponentially growing contributions in b(x, t). The zeros of D with pr < 0, however,
are not the stable normal modes to which the unstable eigenvalues are complex
conjugates. This is because, as we have seen before, the function D contains a
potentially singular integral. That integral defines a function with a branch cut along
the pi-axis. The analytic continuation of the integral into the left-half-plane passes
through this branch cut, and so to remain on the Riemann surface we must evaluate
D on a different Riemann sheet. Thus the zeros of D in the left-half-plane are not
solutions to the dispersion relation, but are zeros of its analytic continuation (the
distinction becomes more obvious for the explicit example described below). The

resulting singularities in b̂ are the so-called ‘Landau poles’, whose residues contribute
exponentially decaying contributions to b(x, t). This is the fluid analogue of Landau
damping.

Singularities in b̂ can also be due to singularities in N (cf. Weitzner 1963). We
restrict attention to the case in which the singularities of N are poles, and we refer
to these as N-poles. The N-poles have not been widely discussed in either plasma
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Figure 12. Zeros (p± = pr± + ipi±) of the function D for the Lorentzian basic state, as function of
ρ, for k = 1. For ρ < −1, the basic state is unstable and the branch pr+ gives the growth rate of the
unstable normal mode found in §5. The other branches, including pr+ for ρ > −1, are the Landau
poles.

physics or fluid dynamics; indeed there is no accepted term for these objects. Perhaps
this is because Landau restricted attention to initial conditions for which ζ0 is an entire
function of the complex variable η. This means thatN has no singularities. However,
these analyticity requirements are too restrictive; indeed, the initial condition we will
use in (7.15) has poles at η = ±i.

In what follows we will present several examples which illustrate the interplay
among unstable normal modes, Landau poles, and N-poles.

7.3. The initial-value problem for the Lorentzian

To illustrate the previous generalities, we now present an explicit solution of the
initial-value problem for the Lorentzian vorticity distribution, F(η) = f/(1 + η2). For
this basic state, evaluation of the integral D in (7.10b), for p to the right of the
abscissa of convergence, gives

D(k, p) =
2k coth k

(p+ k)2
(p− p+)(p− p−), (7.12)

where

p± ≡ −(1± iρ1/2) |k|, ρ ≡ πf tanh k/2k . (7.13)

The analytic continuation into the region to the left of the abscissa of convergence is
now accomplished by declaring that (7.12) defines a function of p everywhere in the
p-plane.†

On substituting (7.12) into (7.11) we obtain

b̃(k, t) =
tanh k

4πik

∫ p0+i∞

p0−i∞

(p+ k)2N
(p− p+)(p− p−)

ept dp. (7.14)

If N has no singularities then the only poles of the integrand are p± and the time

evolution of the initial perturbation is of the form b̃ ∝ R−ep−t + R+ep+t, for some R±.
Figure 12 shows p± = pr±+ipi± as function of ρ. According to the results on §5, when
ρ < −1 the basic profile is unstable. Indeed the branch pr+ with ρ < −1 in figure 12

† The integral in (7.10b) produces the expression in (7.12) only if pr > 0. The analytic continuation
of (7.12) (which amounts to ignoring the restriction that pr > 0) passes through this branch cut.
Hence the zeros of (7.12) with pr < 0 lie through the cut on a different Riemann sheet and are
uncovered by analytic continuation.
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corresponds to the unstable normal mode of §5. The other branches in figure 12, with
pr < 0, are Landau poles.

7.4. Instability and Landau damping

We now consider the evaluation of (7.14) for a family of initial perturbations given
by

ζ0(x, η) = − 2η

(1 + η2)2
eik0x+il0η. (7.15)

If l0 = 0 then ζ0 is an antisymmetric function of η and thus (7.15) corresponds to
a sinuous deformation of the Lorentzian vorticity distribution. The parameter l0 can
be used to produce additional sinusoidal structure in the η-direction. When k0 and
l0 have the same sign this sinusoidal structure tilts backwards against the Couette
shear flow. The mechanism of Orr and Kelvin suggests that this backwards tilt should
produce substantial transient growth. Accordingly, we will assume that k0 and l0 are
both positive.

By substituting (7.15) into (7.10a), evaluating the integral assuming pr > 0, and
putting the result into (7.14), we arrive at the relation,

b̃(k, t) = − 1
2
πδ(k − k0) tanh k0

∫ p0+i∞

p0−i∞

Ξ(k, l0, p) ept

(p− p+)(p− p−)
dp, (7.16)

where

Ξ(k, l0, p) ≡ e−l0
[

(k + p)2[k + l0(k − p)]
k(k − p)2

]
− e−l0p/k

[
4kp

(k − p)2

]
. (7.17)

Consider first the special case with l0 = 0. In this case Ξ = 1, and the inversion of
the transform in (7.16) provides

b(x, t) =
π

4

tanh k0

k0ρ
1/2
0

(
ep+t − ep−t

)
eik0x (7.18)

and

ζ(x, η, t) = − 2ηρ0k0 coth k0

πκ+κ−(1 + η2)2

[
2(1 + κ+κ−)e−ik0ηt +

(
κ−ep−t − κ+ep+t

)]
eik0x, (7.19)

where

κ± ≡
(η ± ρ1/2

0 ) + i

ρ
1/2
0

, (7.20)

and ρ0 ≡ ρ(k0). Equations (7.18) and (7.19) are the complete solution of the lin-
ear evolution problem with l0 = 0. Figure 13 displays the time evolution of the
streamfunction in (7.18) evaluated at x = π/2 for k0 = 1 and different values of ρ.

If ρ > −1 then,the vorticity profile is stable and there are no regular normal modes.
In this case the solution contains only Landau poles, and the streamfunction decays
exponentially through Landau damping. By contrast, in the vorticity (7.19), the term
proportional to exp(ik0ηt) remains as t→∞. This is a sheared disturbance similar to
the Couette solution considered earlier. Thus, over a sufficiently long time, all that
remains of the initial perturbation is an increasingly sheared vortical remnant, like
that shown in figure 14. Note that, even though the solution (7.18) and (7.19) contains
exponentials of the form exp(p±t), these are not normal-mode solutions except when
p+ > 0 (ρ < −1). In fact, because of the terms involving exp(−ik0ηt), (7.19) does
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Figure 13. Time evolution of the streamfunction b at x = π/2 calculated from (7.18) with k0 = 1.
The number on each curve denotes the different values of ρ considered. The profile with ρ = −1.25
is unstable and in this case b grows exponentially after a transient. In the other cases the profile
is stable and the streamfunction perturbation Landau damps. The corresponding evolution for the
vorticity when ρ = −0.2 is shown in figure 14.
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Figure 14. Contour plots showing the vorticity ζ(x, η, t) for ρ = −0.2, and k0 = 1,
calculated from (7.19).

not have separable structure, ζ(x, η, t) = Z(η) exp[ik(x − ct)]; thus the normal-mode
ansatz in §5 does not capture these exponentially decaying structures. In plasma
physics these objects are known as ‘quasi-modes’; they are coherent excitations of the
continuous spectrum.
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When ρ < −1, the profile is unstable, and (7.18) and (7.19) can be rewritten as

b(x, t) = −i
π

4

tanh k0

k0|ρ0|1/2
[
eik0(x−ct) − eik0x+p−t

]
, (7.21a)

ζ(x, η, t) =
1

2

Fη

η − ceik0(x−ct) + Fη

[
1 + κ+κ−

κ+κ−
e−ik0ηt − ep−t

2κ−

]
eik0x, (7.21b)

where c = ip+/|k0| is the phase speed of the unstable normal mode found in (5.13).
The terms involving exp[ik0(x − ct)] in (7.21) are simply multiples of the unstable
eigenfunction in (5.3). In other words, as expected, the solution contains the unstable
mode. The other exponential, exp(p−t), is not the contribution of the decaying mode
to which the unstable eigenfunction is paired by complex conjugation, i.e. p− 6= c∗. In
fact, once again, the decaying exponential exp(p−t) is an example of a quasi-mode.

7.5. Tilted wave perturbations and transient growth

We now return to (7.16) and consider the general case with l0 6= 0 so that Ξ in
(7.17) has a second-order N-pole at p = k0 > 0. At first glance, this N-pole is
puzzling because its residue is proportional to t exp(k0t) and this seems to imply that
the perturbation will always grow, even if the profile has no unstable normal modes.
However, the evaluation of the integral in (7.16) must be done in two stages. When
t < l0/k0 one should split Ξ in (7.17) into two parts. The contribution from the part
proportional to exp(−l0p/k0) is zero because this integral can be calculated by closing
the Bromwich contour in the right-half-plane where there are no singularities. The
second part, proportional to exp(−l0), must be evaluated by closing the Bromwich
contour in the left-half-plane. The resulting contour encloses the three poles at p = p±
and p = k0, and there is a non-zero residue contribution from all three. On the other
hand, when t > l0/k0, one does not split Ξ , and the integral (7.16) is calculated by
closing in the left-half-plane. In this case all three poles are enclosed. But now the
residue of the N-pole at p = k0 is zero because of cancellations amongst the various
terms in Ξ . The final result of the calculation described above is

b(x, t) = −πi
tanh k0

2k0

e−l0
(
Rk0

ek0t + Rp+
ep+t + Rp−ep−t

)
eik0x if 0 < t < l0/k0, (7.22a)

b(x, t) =
π

4

tanh k0

k0ρ
1/2
0

[
Ξ(k0, l0, p+)ep+t − Ξ(k0, l0, p−)ep−t

]
eik0x if l0/k0 < t (7.22b)

where

Rk0
≡ 4

4 + ρ0

[
k0(t− l0/k0) +

ρ0

4 + ρ0

]
, Rp± ≡ ∓

iρ
1/2
0

2

[
1 + l0(2± iρ

1/2
0 )
]

(2± iρ
1/2
0 )2

. (7.23a, b)

Note that (7.23a) is not well defined for ρ0 = −4. For this value of ρ0, p+ = k0 so that
k becomes a third-order pole, and the residue has to be evaluated using a different
expression.

The upshot of all this is that the growing term t exp(k0t) appears only when
t < l0/k0; that is, only when the perturbation wavefront is tilting against the shear.
Thus, even though the profile is stable, there is strong transient growth for t < l0/k0.
Thereafter, the growth gives way to Landau damping. In figure 15 we have plotted
the solution in (7.22) at x = π/2, for k0 = 1, and various values of ρ0 and l0 = 5.
This figure displays the transient amplification that subsides into exponential decay,
followed by the emergence of the unstable mode in the case for which it exists.
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Figure 15. Time evolution of the streamfunction b at x = π/2 calculated from (7.22),
for ρ = 5, −0.2, −1, and −1.25, with k0 = 1 and l0 = 5.

7.6. Asymptotic N-poles contributions

In the examples presented above, the asymptotic (t → ∞) decay of perturbations of
a stable vorticity profile was determined solely by the Landau poles. However, this
is not a general result. Consider the following family of initial perturbations to a
Lorentzian profile:

ζ0(x, η) =
F ′

η + iµ
eik0x , (7.24)

where µ is a real number, and F(η) is the Lorentzian basic state. On evaluating the
integral for N in (7.10a) (with pr > 0), and substituting the result into (7.14), we
conclude

b̃(k, t) = − iρ

(1 + |µ|)2
δ(k − k0)

∫ p0+i∞

p0−i∞

(p− |µ|k)[p+ (2 + |µ|)k]
(p+ µk)(p− p+)(p− p−)

eptdp. (7.25)

The pole at p = −µk is an N-pole.
If µ < 0, the residue of the N-pole at p = −µk0 vanishes because of the term

(p − |µ|k) in the numerator. In this case only the Landau poles p± contribute and,
when the profile is stable, the perturbation decays by Landau damping. If ρ < −1
and |µ| = −p−/k0 − 2 then the residue of the Landau pole at p− also vanishes, and

b̃ ∝ ep+t, where p+ = (−1 + |ρ|1/2)k0 is the unstable eigenvalue. This result is expected
because, for these values of ρ and µ, the initial condition in (7.24) is precisely the
unstable eigenfunction.

If µ > 0, on the other hand, both the Landau poles p±, and the N-pole at
p = −µk, have non-vanishing residues. Which of these contributions dominates over
asymptotically long times depends on the values of ρ and µ. More precisely, when
−1 < ρ < 0 the asymptotic behaviour is dominated by theN–pole if 0 < µ < 1−|ρ|1/2.
On the other hand, when ρ > 0, the asymptotic behavior is dominated by theN-pole
provided 0 < µ < 1. Thus, there are situations in which Landau damping is less
important than the decay intrinsic to the form of the initial condition.

7.7. To summarize

This section has shown that the linear evolution of localized inviscid disturbances
on a Couette flow can be described analytically in considerable detail. Some aspects
of these solutions, such as the transient amplification and the eventual decay of the
streamfunction, are well known. But, in addition to these commonplaces, the solutions
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show that a full understanding of the linear initial value problem requires concepts
such as Landau poles andN-poles. These ideas come from plasma physics and have
received little attention in fluid mechanics (however see Briggs, Daugherty & Levy
1970). This is probably because if one is dealing with the full linear problem then
explicit solutions of the initial value problem can only be found in the case with
F(η) = 0 (so that there are no Landau poles and no quasi-modes).

In any event, if the profile is stable and whatever the form of the initial condition
(provided it is smooth), the leading-order streamfunction, b(x, t), decays exponentially.
This signifies that the term bxFη of equation (5.2a) becomes exponentially small as
t → ∞. Thus, the linearized vorticity defect approximation, (5.2a), reduces to the
Couette problem of §7.1 after a sufficiently long time. Consequently, the exponential
decay of the streamfunction is only a feature of the leading order, and the next-
order correction to the streamfunction, ϕ1(x, η, t), eventually decays as t−2 (Brown &
Stewartson 1980).

The extent to which these defect results apply to non-localized perturbations of a
general shear flow is an open question. Some recent experimental work using non-
neutral plasmas as a laboratory analogue of inviscid two-dimensional fluid mechanics
(Driscoll & Fine 1990) may be relevant. Experiments with this system (Pillai & Gould
1994) have shown that stable disturbances have an initial exponential decay which is
then followed by a protracted algebraic decay.

Finally, we mention that it may be necessary to incorporate additional physics
in the long-time limit. The vortical remnant that endures after the phase mixing of
the continuum has an extremely filamentary structure. This may be susceptible to
secondary instabilities (e.g. Killworth & McIntyre 1985; Haynes 1985, 1987, 1989).
The production of small-scale structure also suggests that dissipative effects will
become important. Both of these processes can be studied within the context of the
vorticity defect approximation and in the next section we focus on the effects of
viscosity.

8. The viscous problem
To this point we have dealt only with inviscid theory. In this penultimate section

we turn to the consequences of dissipation. On restoring the dissipative terms, the
linearized vorticity defect approximation is

ζt + ηζx + bxFη = −αζ + νζηη, (8.1a)

2b̃(k, t) = −k−1 tanh k

∫ ∞
−∞
ζ̃(k, η, t) dη. (8.1b)

We now follow the development in §5 and attempt to find modal solutions by
substituting ζ(x, η, t) = exp(ikx − iωt)Z(η) into (8.1). This leads us to the following
eigenproblem:

νZηη − ik(η − cα)Z = − 1
2
i tanh k Fη

∫ ∞
−∞
Z(η′) dη′, (8.2a)

Z(η)→ 0 as |η| → ±∞, (8.2b)

where cα = (ω/k)+i(α/k) is the eigenvalue. Equation (8.2) is our approximation to the
Orr–Sommerfeld problem for localized, viscous modes associated with the vorticity
defect, F(η).

It is clear that the Ekman friction plays a minor role in (8.2). In fact, by defining cα
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we have absorbed this process into a new eigenvalue cα. That is to say, bottom drag
uniformly shifts the spectrum in the direction of stability; we will now lighten our
notation by taking α = 0. Viscosity, however, is a singular perturbation and we spend
this section exploring the ramifications of viscosity on the stability characteristics of
defects.

8.1. The Couette problem: F(η) = 0

To solve (8.2), we need to first understand the eigenvalue spectrum of operator on the
left-hand side. Hence, we initially consider the Couette problem, in which F(η) = 0
and

νZηη − ik(η − c)Z = 0, (8.3a)

Z(η)→ 0 as |η| → ±∞. (8.3b)

The solutions of (8.3) are Airy functions of complex argument:

Z(η) = a1Ai
[
κeiπ/6(η − c)

]
+ a2Bi

[
κeiπ/6(η − c)

]
, (8.4)

where

κ = (k/ν)1/3, (8.5)

and a1 and a2 are constants. Throughout this section we assume that k > 0 so that κ in
(8.5) is a real positive constant. It follows from (8.2) that if (k, c,Z) is an eigensolution
then so is (−k, c∗,Z∗). This symmetry can be used to obtain the solutions with k < 0.

It is straightforward to observe from the asymptotic forms of the Airy functions for
large argument (e.g. Abramowitz & Stegun 1972) that both independent solutions in
(8.4) are unbounded in one of the limits, η → ±∞. In other words, it is not possible
to build a solution to (8.3a) that satisfies both of the boundary conditions in (8.3b)
and we conclude that there are no regular eigenmodes.

The absence of normal-mode solutions to the Couette problem is connected to
the fact that the linear viscous problem (8.1) is defined on an infinite domain. In a
finite domain the Orr–Sommerfeld equation has a complete set of discrete normal
modes. But in an unbounded domain we must anticipate the existence of a continuous
spectrum (e.g. Murdock & Stewartson 1977).

In the present context the discrete spectrum is absent because the matched asymp-
totic expansion casts the inner problem on an infinite domain, −∞ < η < ∞, whereas
the exact problem is defined on a finite domain, −1 < y < 1. In the case of bounded
Couette flow the Airy functions in (8.4) can be used to build discrete eigenfunctions.
However, at large Reynolds number these modes fall into two classes. There are
relatively slowly decaying modes concentrated in boundary layers next to the walls
(Davey 1973) and there are rapidly decaying modes with oscillatory structure in the
centre of the channel (Schmid et al. 1992). The boundary modes are exponentially
small in the main body of the flow, whereas the central modes are not localized within
the defect region. Moreover, these central modes decay too rapidly to be seen over
the long time scales assumed by our expansion in §2. Thus it is quite natural that the
eigenvalue problem for Couette flow in (8.3) has no discrete modes; the complete set
of discrete modes of the exact problem are ephemeral creatures of the outer flow and
consequently they are filtered by the vorticity defect approximation. What remains,
for general defect profiles, are modes that are directly associated with the vorticity
defect.
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Figure 16. The Yi function on the real axis.

8.2. The function Yi(z)

Before turning to the solutions of (8.3) with non-zero F(η) it is convenient to introduce
a function

Yi(z) ≡ − 1

π

∫ ∞
0

exp
(
− 1

3
v3 − izv

)
dv, (8.6)

and collect some results which will form the basis of our investigation of the viscous
problem. The function Yi is related to the special function Hi defined by Abramowitz
& Stegun (1972, 10.4.44) by Yi(z) = −Hi(−iz). Also, Yi(z) satisfies the inhomogeneous
differential equation

Yi′′ − izYi =
1

π
. (8.7)

We plot Yi(x), with x real, in figure 16.
We will also need to consider the asymptotic behaviour of Yi(z) when |z| is large.

This is given by

Yi(z) ∼ i

πz

∞∑
n=0

(3n)!

3nn!
(iz)−3n if arg(z) < 1

6
π or 5

6
π < arg(z), (8.8a)

and

Yi(z) ∼ exp
[

2
3
z3/2
]

if 1
6
π < arg(z) < 5

6
π. (8.8b)

The asymptotic expansions in (8.8) show that if zr → ±∞, with zi fixed, then
Yi(z) ∼ i/πz.

8.3. The viscous dispersion relation

The solution of the inhomogeneous equation

νZ†ηη − ik(η − c)Z† = 1, (8.9)

can be written in terms of Yi as

Z†(η; c, k, ν) = πκ−2ν−1Yi [κ(η − c)] . (8.10)

The function Z† decays as |η| → ∞; no matter what the value of c, as |η| increases,
the argument of the Yi function in (8.10) moves into the sector of the z-plane in
which the asymptotic expansion in (8.8a) applies.
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If we now multiply the eigenvalue problem (8.2) by Z† and integrate, we obtain[
1 + 1

2
i tanh k

∫ ∞
−∞
Z†Fη dη

] ∫ ∞
−∞
Z dη = 0. (8.11)

One possible solution of (8.11) is
∫
Z dη = 0. This is not, however, consistent with

the eigenvalue problem; it implies that the right-hand side of (8.2) vanishes, and this
would require a modal solution of the Couette problem, (8.4). Therefore,

1 = − iπκ

2k
tanh k

∫ ∞
−∞

Yi [κ(η − c)]Fη(η) dη. (8.12)

The result in (8.12) is an explicit dispersion relation for the viscous eigenproblem in
(8.2). It is remarkable that the dispersion relation can be obtained independently of
the eigenfunctions.

8.4. Viscous instabilities of the Lorentzian

The dispersion relation (8.12) corresponds to a zero of the complex function

D(c, k, κ) = 2k coth k + iπκ

∫ ∞
−∞

Yi [κ(η − c)]Fη(η) dη. (8.13)

The function D is analytic in the complex c-plane and therefore the Nyquist method
can be used to establish necessary and sufficient conditions for instability. In particular,
we may once more formulate the contour integral (6.3) used in the consideration of
the inviscid problem to count the number of unstable modes. One can verify that
D(Reiθ, k, κ) → 2k coth k + O(R−1) so that the image of the arc at infinite radius in
the complex c-plane is once again the asymptote, D = 2k coth k. Thus, as before, if
the image of the real c-axis, γ′, encircles the origin of the complex D-plane then there
is an unstable mode.

To illustrate the viscous stability theory we again use the Lorentzian vorticity
profile, F(η) = f/(1 + η2). It turns out that with this choice the integral in (8.13)
can be simplified by substituting the definition of Yi in (8.6), changing the order
of integration, and then evaluating the integral over η. This procedure gives the
dispersion function,

D(c, k, κ) = 2k coth k − iπ2κ2fYi′[κ(−i− c)] (8.14a)

= 2k coth k + πκ2f

∫ ∞
0

e−v
3/3−κv+iκcvvdv. (8.14b)

With numerical evaluation of Yi′ in (8.14) we can readily construct the Nyquist plot
(see figure 17) and determine if there is an unstable mode at a particular point in the
(f, ν, k) parameter space.

When ρ ≡ πf tanh k/2k < 0, the locus has a single loop to the left of the asymptote,
D(±∞) = G(k) (figure 17a). Hence there is a bifurcation to instability at c = 0 when
ρ is decreased through some threshold, exactly as in inviscid theory. This threshold is
not, however, a simple function of wavenumber since k is contained in the dispersion
function D(c, k, κ) in a more complicated way than in inviscid theory. In addition to
determining the asymptote, k enters through the parameter κ = (k/ν)1/3, which we
can view as an effective viscosity parameter. Complications arise because, although
increasing k acts to shift the Nyquist plot to the right away from instability, the
corresponding reduction in the effective dissipation acts to increase instability for
the Lorentzian. Thus, in the viscous problem, there are two, k-dependent, competing
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Figure 17. Nyquist plots calculated from (8.14). Notice that the horizontal axis is D/G(k) where
G(k) ≡ 2k coth k. This scaling puts the asymptote at (1, 0) and ensures that the plot depends only
on two parameters (ρ, ν/k). (a) If ρ < 0 then the Nyquist plot has a large rightward loop. (b) With
ρ > 0 there are two small leftward loops emerging from the asymptote (the second, very small loop
is not easily visible above).

influences on stability. One is essentially inviscid in nature, the other inherently
dissipative. At large k, G(k) ∼ k whereas κ ∼ k1/3, so the inviscid influence dominates.
As k → 0, however, κ−1 diverges, so the viscous effect takes control for long waves.
The result for the Lorentzian is a finite marginal wavenumber (see below).

When ρ > 0, we do not expect instability according to inviscid theory. Indeed, over
much of the parameter space the main loop of the Nyquist plot passes to the right of
the asymptote and there is no instability. However, there are also two smaller loops
which lie to the left of the asymptote over a range of ν. (The smallest loop is not
conspicuous in figure 17b, but it is there.) For sufficiently large and positive values
of ρ, these small leftward loops can encircle the origin. These enclosures show that
there are two viscously catalyzed instabilities that are not anticipated by the inviscid
theory.

The Nyquist method is a useful tool for determining if there is an unstable mode
at some point in the (ν, k, f) parameter space. We can also separate the real and
imaginary parts of (8.14b) and take ci = 0 to obtain rather simple expressions for the
‘neutral surface’ in this three-parameter space. After a change of variables this gives

0 =

∫ ∞
0

exp

[
−ν
k

s3

3
− s
]

sin(crs)sds, (8.15a)

1 = −ρ(k, f)

∫ ∞
0

exp

[
−ν
k

s3

3
− s
]

cos(crs)sds. (8.15b)
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−2. As the defect Reynolds’ number, 1/ν, becomes large, the upper limit of the band of unstable
wavenumbers approaches the marginal inviscid wavenumber.

The eigenvalue, cr , varies on the neutral surface, and from (8.15a) we see that cr is a
function only of the combination ν/k. Once (8.15a) has been solved, the result for cr
as a function of ν/k can then be inserted into (8.15b). This substitution shows that
the neutral surface can be viewed as a curve in the (ρ, ν/k)-plane. This reduces the
number of independent parameters from three, (ν, f, k), to two, (ρ, ν/k).

There are two different types of neutral modes which emerge as solutions of (8.15).
There are modes with cr = 0, which are associated with the large rightward loop
of the Nyquist plot in figure 17(a) and we refer to these modes as primary neutral
modes. There are also solutions of (8.15) with cr 6= 0. These secondary neutral modes
are associated with the small leftward loops of the Nyquist plot in figure 17(b).

Figure 18 shows the neutral curve for the primary mode in the (ρ, ν/k)-plane; the
shaded region under the curve is unstable. For various values of f, we then find
stability boundaries in the (1/ν, k)-plane illustrated in figure 19. (1/ν is the ‘defect
Reynolds number’.) The boundaries in figure 19 exhibit two important features. First,
with f fixed, the stability boundaries terminate at a critical value of ν, where there
is a finite marginal wavenumber. Secondly, with fixed supercritical ν and fixed f, the
profile is unstable over a band of wavenumbers; as ν → 0 this band of unstable
wavenumbers expands until it spans the interval (0, kinv), where kinv is the inviscid
neutral wavenumber.
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Figure 20. The shaded area enclosed by the neutral curve is the region in which there is a
secondary unstable mode corresponding to the Nyquist plot in figure= 17(b).
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Figure 21. Neutral curves for viscous overstability in the (1/ν, k) plane for f = 50, 60 and 70. As
the defect Reynolds’ number, 1/ν, becomes large, the band of unstable wavenumbers narrows and
approaches k = 0.

The viscous or secondary neutral modes are solutions of (8.15a) with cr 6= 0. There
are two such solution branches which correspond to the two leftward loops in the
Nyquist plot in figure 17(b). Because cr 6= 0 these modes are unstable travelling waves
(the modes are ‘overstable’ according to Eddington’s terminology). The threshold of
instability for these viscous overstable modes then follows from substituting cr(ν/k)
into (8.15b) and computing the neutral curve in the (ρ, ν/k)-plane. Figure 20 shows the
neutral curve for the first of the two overstable branches; the shaded area is unstable.
Figure 21 displays stability boundaries for various values of f. (The second overstable
branch exists at even higher values of ρ and we do not display it.) An interesting
feature of the secondary instabilities is that we may prolong them to arbitrarily small
viscosities by taking k sufficiently small (see figure 21). In other words, instabilities
appear whenever there is any viscosity at all, but not if there is no viscosity.

9. Concluding remarks
The evolution of small, localized vorticity bumps in a shear flow is concisely

described by the vorticity defect approximation in (3.14). This equation has a simplified
nonlinear term which is structurally identical to that of the Vlasov equation, and to
the nonlinearity in the Stewartson (1978) and Warn & Warn (1978) forced critical
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layer model. We believe that the vorticity defect approximation will ultimately prove
to be a useful laboratory for investigating the nonlinear development of shear flow
instabilities. As a necessary preliminary to those efforts, our main goal here has been
to develop the linear theory in detail. It is largely in this sense that the present paper
is a successor to, and a completion of, the work of Gill on small vortical distortions
of Couette flow.

The linear theory of the vorticity defect approximation is analytically accessible
to a surprising degree. For instance, we have presented explicit dispersion relations
for the normal modes in both the inviscid and viscous cases, and we have used the
Nyquist method to develop a qualitative understanding of the eigenvalue problem.
The initial value problem has been solved using the Laplace transform and the
resulting solutions display the interplay between phenomena intrinsic to the basic
state (e.g. Landau poles and unstable normal modes) and other features which are
accidents of the initial condition (e.g.N-poles). Comparably explicit analytical results
do not exist in the literature of shear flow stability.

Finally, there is another class of shear flow stability problems that we have avoided
in constructing the vorticity defect approximation. These concern new issues that
emerge when we allow the ambient shear to become non-monotonic. In that case
there is the possibility of multiple defects that interact with one another. The de-
fect analysis then gives coupled Vlasov-like equations for the defects, much as one
handles differently charged species in Vlasov theory. There is also a special class of
defects, namely those located near the points of vanishing shear, in which the whole
inner problem changes. There results a completely different kind of temporal linear
dynamics and nonlinear solutions (e.g. Brunet & Warn 1990; Brunet & Haynes 1995).

We thank Rupert Ford, John Greene, Glenn Ierley, Phil Morrison and Ray Pier-
rehumbert for many helpful conversations. The 1995 Woods Hole Oceanographic
Institution’s Summer GFD Program provided a stimulating environment for part
of this collaboration. We are grateful to the director, Rick Salmon, and to all the
participants for a productive summer. This research was supported by the National
Science Foundation under grant OCE 93–01462 and by the UCAR Ocean Modelling
Program.

Appendix. Defects in stable, monotonic profiles
In this Appendix we generalize the vorticity defect approximation to more general

ambient flow profiles, and include the β-effect. We imagine that the background flow
field is described by a profile, U(y), which is stable (to avoid unstable global modes).
We then introduce a defect at the level y = y0, and make a Galilean shift into the
frame, moving at speed U(y0) = U0, in which the defect is approximately stationary.
Then, the equation of motion for a disturbance takes the form

ε∇2ψt + (U −U0)∇2ψx + (β −U ′′)ψx + ε2 ∂(ψ,∇2ψ)

∂(x, y)

= εα
(
ε−1/2F − ∇2ψ

)
+ ε3ν∇2

(
ε−1F − ∇2ψ

)
. (A 1)

Following Stewartson (1978) and Warn & Warn (1978), we pose an outer expansion,

ψ = ψ0 + ε log εψ`1 + εψ1 + ... . (A 2)
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If we introduce this expansion into (A1) and collect the leading-order terms, we find
the outer (Fourier-transformed) equation

(U −U0)(ψ̃
′′
0 − k2ψ̃0) = (U ′′ − β)ψ̃0 (A 3)

(i.e. the Rayleigh–Kuo equation). We can solve this equation on either side of the
critical layer in order to find two solutions, each of which satisfies one of the boundary
conditions at the walls of the channel. We can then match their amplitudes at the
critical layer to relate the critical streamfunction amplitude, B̃(k, t), to the jump in its
derivative, −2Ã(k, t):

B̃(k, t) = K̃(k)Ã(k, t). (A 4)

This solution provides a generalized transfer function, analogous to K(x − x′) in
(3.9b).

A simpler way of finding the outer solution is to turn (A3) into an integral equation
(cf. Balmforth & Morrison 1996). We write

ψ̃′′0 − k2ψ̃0 = PU
′′ − β

U −U0

ψ̃0 − 2Aδ(y − y0), (A 5)

and then make use of the Green function, Gk(y, y
′), of the Laplacian operator on the

left-hand side of (A5). Thus, we rewrite (A5) as

ψ̃0(y) = P
∫ 1

−1

Gk(y, y
′)

[
U ′′(y′)− β
U(y′)−U0

]
ψ̃0(y

′)dy′ − 2AGk(y, y0). (A 6)

This is a singular integral equation that can be regularized by suitably scaling the
streamfunction; we let

2A = 1 +P
∫ 1

−1

[
U ′′(y′)− β
U(y′)−U0

]
ψ̃0(y

′)dy′. (A 7)

Then (A6) becomes

ψ̃0(y) = P
∫ 1

−1

Gk(y, y
′)− Gk(y, y0)

U(y′)−U(y0)
[U ′′(y′)− β]ψ̃0(y

′)dy′ − ΞGk(y, y0), (A 8)

which is a regular Fredholm equation of the second kind. This equation is readily
solved numerically to furnish the kernel of the transfer function.

As before, we pose an inner expansion of the form (3.10). This leads to the
leading-order balance

Zt +U ′0ηZx + (β −U ′′0 )Bx + ZηBx = α(F − Z)− ν(F − Z)ηη, (A 9)

where U(n)
0 = U(n)(η0). We supplement this equation with the integral constraint (3.11)

and the transfer relation (3.9b). Both the β-effect and the background flow field
contribute to a constant vorticity gradient in (A9) (provided it does not vanish, U ′0
can simply be scaled out).

At large |η|, the asymptotic behaviour is governed by

U ′0ηZx ∼ (U ′′0 − β)Bx. (A 10)

Hence Z ∼ η−1, and so we need to interpret the integral in (3.12) in terms of its
principal value. Moreover, the streamfunction behaves like η log η, which matches the
function ψ`1 of the outer expansion, (A2), to give a consistent solution.
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