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The dynamics of expanding domes of isothermal lava are studied by treating the
lava as a viscoplastic material with the Herschel–Bulkley constitutive law. Thin-layer
theory is developed for radially symmetric extrusions onto horizontal plates. This
provides an evolution equation for the thickness of the fluid that can be used to
model expanding isothermal lava domes. Numerical and analytical solutions are
derived that explore the effects of yield stress, shear thinning and basal sliding on the
dome evolution. The results are briefly compared with an experimental study. It is
found that it is difficult to unravel the combined effects of shear thinning and yield
stress; this may prove important to studies that attempt to infer yield stress from
morphology of flowing lava.

1. Introduction
Both rheological experiments on lava (Shaw 1969; McBirney & Murase 1984;

Pinkerton & Stevenson 1992) and the actual morphology of real lava flows (Hulme
1974; Blake 1990; Fink & Griffiths 1998) suggest that, over a significant range of
temperatures, silicic lava behaves like a visco-plastic fluid; that is, due to its crystal
content, lava has a yield stress. In the simplest geometrical setting, namely the
extrusion of such a lava from a small vent onto a horizontal surface, this yield stress
is thought to shore up thick domes against gravity and support vertical ‘spines’ and
upheaval plugs. From a practical viewpoint, these domes can be the setting of violent
and dangerous events: domes can rupture and release confined gas in a pyroclastic
outflow, or collapse at their periphery to create landslides and debris flows. Two views
of a dome that grew inside the crater of Mount St Helens are shown in figure 1.
Notably, these domes are nearly axisymmetric, of relatively low aspect ratio and
evolved slowly, features which all suggest that some progress may be possible using
mathematical modelling.

In addition to the yield stress, lavas also have at least two other non-Newtonian
qualities: a strongly temperature-dependent viscosity, and solidification. It is upon
these second two effects that most previous work has concentrated, and it is only
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Figure 1. Two views of a lava dome on Mount St Helens that started growing on October 18,
1980. When photographed for the top view (October 24, 1980) the dome was 34 m high and 300
m wide. The side view shows the dome in August 1981, when it was 163 m high and 400 m
wide. Photographs are courtesy of the USGS/Cascades Volcano Observatory and further details
regarding these domes and others can be found at http://vulcan.wr.usgs.gov/home.html

lately that attention has focused on the lava yield stress. For non-isothermal flows, the
viscosity variation and the formation of a solidified crust are undoubtedly important.
But if the lava does not cool significantly as it flows, the yield stress may play a
dominant role. It is to this latter situation that we direct our attention is this study.

One way to study lava flow is through laboratory experiments with analogue
materials. Such materials include viscous fluids (Huppert 1982), water–clay (kaolin)
slurries (Hulme 1974; Blake 1990), cooling wax (Hallworth, Huppert & Sparks 1987;
Fink & Griffiths 1992) or corn syrup (Stasiuk, Jaupart & Sparks 1993), and mixtures
of clay and wax (Griffiths & Fink 1997). Clay suspensions typically impart a yield
stress to the fluid, whereas wax and corn syrup have temperature-dependent viscosity.
Wax also solidifies if the experiment is conducted at the right temperature, and so, in
principle, wax–kaolin slurries potentially possess the three significant non-Newtonian
effects present in lava.

But for isothermal studies of yield stress effects, water–clay slurries are most
useful since they are standard materials used in chemical engineering and have well-
documented rheological properties. The extrusion of such a slurry onto a horizontal
plane then provides the experimental analogue of a slowly cooling lava dome. One
such experimental extrusion is shown in figure 2; this picture displays a snapshot of
an expanding dome of kaolin–water slurry in air. Figures 1 and 2 are essentially the
motivating images for the present study. Some physical properties of these slurries
are shown in tables 1 and 2.

Experimental studies have elucidated several features of lava flow dynamics. In
particular, by comparing the morphology of laboratory analogues with those of real
lava flows, the occurrence of certain naturally occurring features has been rationalized.
But several studies have attempted to advance further and infer the rheology of real
lava, based on this comparison. In particular, by extruding visco-plastic fluids such
as clay–water slurries, and recording the shape of the expanding dome (such as that
in figure 2), there have been several attempts to infer lava yield stress (Hulme 1974;
Blake 1990).

On the theoretical modelling side, significantly less has been accomplished. Theory
to date mostly consists of a set of scaling arguments for cooling flows (Griffiths
& Fink 1993), though Huppert (1982) gave similarity solutions suitable for radial
extrusions of isothermal viscous fluid and Nye (1952) presented a solution for the
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Figure 2. Snapshot of top and side view of a growing dome created by extruding a slurry of kaolin
and water onto a horizontal, smooth aluminium plate in air. Pictures are taken using a CCD camera
placed 1.5 m above the plate; a mirror placed at a 45◦ angle to the edge of the plate enables both
side and top views to appear in the same frame. The slurry is 1.2 : 1, kaolin to water, by weight.

radial flow of plastic (large yield stress) material. However, visco-plastic fluid models
are also used in the theory of the flow of glaciers (Hutter 1983) and muds (Liu & Mei
1989, 1991; Coussot 1997), and have been used to describe debris flows (Davies 1986)
and snow avalanches (Dent & Lang 1983). By contrast, mathematical modelling in
these theories is significantly more advanced. The purpose of the present work is to
outline some related theoretical developments for lava flow.

The simplest visco-plastic fluid is described by the Bingham model. This model
has the characteristic relationship between stress and strain rate shown in figure 3:
beyond a certain yield stress, the stress increases linearly with strain rate. A more
versatile non-Newtonian fluid model is the Herschel–Bulkley fluid. This model has a
power-law relationship between stress and strain rate once the yield stress is exceeded
(figure 3), and compares more favourably with rheological measurements of clay
slurries and muds (Coussot 1994, 1997; Huang & Garcia 1998). Indeed the stress–
strain-rate curves shown in Blake (1990), Hulme (1974), Griffiths & Fink (1997) all
clearly have a nonlinear dependence upon the strain rate. We illustrate this feature
further in figure 3(b), which shows the relationship between the stress and strain rate
for the mixture shown as an expanding dome in figure 2. To allow greater flexibility
we therefore adopt the Herschel–Bulkley constitutive model.

In this paper we consider isothermal fluid flows, and so the problem does not
contain the mathematical and physical complications associated with temperature-
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Figure 3. Non-Newtonian fluid models. (a) A sketch of the constitutive models for the Bingham
fluid (solid line), a Newtonian fluid (dotted line) and a Herschel–Bulkley material (dashed curve);
the scales are arbitrary in this panel. (b) Real rheological data for the mixture used in figure 2
(which is 1.2 : 1, kaolin to water, by weight). The measurements were made on a TA Instruments
CSL500 controlled stress rheometer with stress first increasing, then decreasing. The dotted lines
are measurements for increasing stress, and the dashed lines are for decreasing stress. The curves
are slightly different and show some hysteresis; this is typical of a rheopectic material (a material
with strain hardening structure development), and shows that the slurry is even more complicated
in its rheology than we admit here. A fitted Herschel–Bulkley model is shown as the solid line. In
both (a) and (b), the index of the Herschel–Bulkley model is n = 1/3.

dependent rheology and solidification; we aim to begin a theoretical discussion of the
thermal effects in a sequel. The major non-Newtonian effect that we model is the yield
stress. More specifically, we exploit a thin-layer theory to derive a reduced model of
the flow dynamics. This reduced model consists of an evolution equation for the local
thickness of the fluid layer and is similar to equations derived for spreading mud (Liu
& Mei 1991). The mathematical formulation of the isothermal problem is described
in § 2. The expansion that leads to the evolution equation follows in § 3. The next
three sections detail various solutions to our equation, both analytical and numerical.
In § 7, we generalize the theory to account for the possibility that the visco-plastic
fluid slips over the surface onto which it is extruded. The potential importance of
this physical addition is suggested by rheological measurements of clays and slurries
(Barnes 1995), and by Griffiths & Fink (1997) for isothermal dome extrusions below
water. In § 8, we compare the predictions of the theory with a laboratory experiment
in which a clay–water slurry is extruded onto a horizontal plate (figure 2). Section 9 is
our point of summary. A preliminary report by Shen (1998) describes both isothermal
and non-isothermal extrusions.

2. Formulation
2.1. The equations

We consider a thin film of incompressible fluid on a flat plane with axisymmetry. The
fluid is described by the velocity field, (u(r, z, t), 0, w(r, z, t)), density, ρ, and pressure,
p(r, z, t). The equations for the film are

ut + uur + wuz = −1

ρ
pr +

1

ρ

[
∂rτrr + ∂zτrz +

1

r
(τrr − τθθ)

]
, (2.1)

wt + uwr + wwz = −1

ρ
pz − g +

1

ρ

[
∂rτzr + ∂zτzz +

τrz

r

]
(2.2)
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and
1

r
∂r(ru) + wz = 0, (2.3)

where the τij denote the deviatoric stresses and the symbol ∂r denotes partial differen-
tial with respect to r and so forth. For a visco-plastic fluid, these stresses are related
to the strain rates through a constitutive model; this will be discussed shortly.

We solve these equations subject to the free-surface conditions

ht + uhr = w (2.4)

and (
τrr − p 0 τrz

0 τθθ − p 0
τzr 0 τzz − p

)(−hr
0
1

)
=

(
0
0
0

)
, (2.5)

on z = h(r, t).
At the base we impose no slip on the velocity field, except just above the vent where

there is a source of fluid with a specified vertical velocity (we ignore the back-reaction
of the dome upon the fluid moving up the vent):

u = 0 and w = ws(r, t) on z = 0. (2.6)

This boundary condition is replaced by a slip law in § 7 to study the effect of basal
sliding. In all illustrative examples, the source term, ws(r, t) is taken to be of the form

ws(r, t) = w0(t)(r
2
∗ − r2)ϑ(r2

∗ − r2), (2.7)

where w0 depends only on t, r∗ is the vent radius and ϑ(x) indicates the step function.

2.2. Constitutive model

As we discussed in the introduction, the constitutive relation we employ is the
Herschel–Bulkley model,

τij =

(
Kγ̇n−1 +

τp

γ̇

)
γ̇ij for τ > τp (2.8)

and

γ̇ij = 0 for τ < τp (2.9)

(Oldroyd 1947; Herschel & Bulkley 1923), where γ̇ij is defined here as

γ̇ij =

(
2ur 0 uz + wr
0 2u/r 0

uz + wr 0 2wz

)
, (2.10)

that is, it is twice the rate-of-strain tensor. The second invariants of τij and γ̇ij are
defined as

τ =
√

1
2
τjkτjk and γ̇ =

√
1
2
γ̇jkγ̇jk. (2.11)

The yield stress is τp, and K is the consistency. For a Bingham material, once the yield
stress is exceeded, the deviatoric stresses are directly proportional to the shear rate;
thus n = 1 and K = η = ρν, where η is the plastic viscosity and ν is the kinematic
viscosity. Hence, in this case, K is just conventional viscosity. In general, K provides a
measure of resistance to shear. The parameter n characterizing the nonlinearity in the
flow regime determines whether the fluid is shear thinning (n < 1) or shear thickening
(n > 1); lavas are almost invariably assumed to be shear thinning. However, this may
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Constants Silicic lava Wax–kaolin slurry

Density, ρ (kg m−3) 2600 1320
Viscosity, η (Pa s) 109 15
Yield stress, τp (Pa) 105 14
Index, n, 1 0.35

Table 1. Physical constants for lava and a kaolin–water slurry used in laboratory experiments
(§ 8). The data for lava are taken from Griffiths & Fink (1993), McBirney & Murase (1984), Shaw
(1969). The characteristic value of viscosity corresponds to the maximal value at the low end of the
temperature range.

not be true for extremely high crystal concentrations (Smith 1997) which may occur
close to the freezing temperature.

2.3. Non-dimensionalization

We non-dimensionalize the equations as follows: H , a characteristic thickness of the
fluid layer, is taken as the dimension of z, and L as a horizontal length scale. We
measure the speeds, u and w, by V and HV/L respectively, and time by L/V . Then,

r = Lr̃, z = Hz̃, u = V ũ, w = (VH/L)w̃, t = (L/V )t̃ and h = Hh̃. (2.12)

For pressure we introduce

p = ρgHp̃, (2.13)

and for general n we define

η =
KVn−1

Hn−1
, (2.14)

and then select V = ρgH3/ηL. This definition of V assumes balances between gravity
and hydrostatic pressure, and between the horizontal pressure gradient and the stress
due to the vertical shear of the radial outflow. Note that it is more natural to take
this relation as defining H , given the rate of extrusion, in the circumstance that we
allow a fixed inflow rate through the vent. We will consider this explicitly when we
turn to a laboratory experiment in § 8.

On substituting the non-dimensional variables into the governing equations, and
dropping the tildes, we arrive at

ε2Re(ut + uur + wuz) = −pr + ε∂rτrr + ∂zτrz +
ε

r
(τrr − τθθ), (2.15)

and

ε4Re(wt + uwr + wwz) = −pz − 1 + ε2∂rτzr + ε∂zτzz + ε2 τrz

r
. (2.16)

The stresses are given explicitly in (2.21), (2.22) below. The incompressibility condition
remains as

1

r
∂r(ru) + wz = 0. (2.17)

In the above equations, ε = H/L� 1 is the small aspect ratio of the fluid layer.
We also define a Reynolds number as

Re =
V 2

gH

(
H2

L2

)−1

≡ ρ2gH3

η2
≡ ρVL

η
. (2.18)
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Extrusion conditions Lava Kaolin–water

Dome radius, L (m) 102 0.10
Effusion rate, Q (m3 s−1) 0.1− 10 10−6

Table 2. Typical extrusion conditions for lava and kaolin–water experiments. The data for lava is
taken from Griffiths & Fink (1993), McBirney & Murase (1984) and Shaw (1969).

Non-dimensional parameter Lava Kaolin–water

ε = H/L (ηQ/ρgqL4)1/4 0.1 0.01
Re = ρVL/η (ρ5gQ3/η5q3)1/4 10−8 1
B = τp∗H/ηV τp∗L(q/ηρgQ)1/2 1 100

Table 3. Typical values of non-dimensional numbers, given the physical constants and extrusion
conditions in tables 1 and 2, assuming n = 1, q = π and Q = 1 m3 s−1 for lava. The parameter
q is a non-dimensional flow rate introduced in § 8 where we relate the analysis to an experiment.
(By taking q ∼ 1, we scale the problem so that the extrusion time is order unity and no further
rescalings of time are necessary; this is unlike our numerical computations reported in § 6 in which
q ∼ 10−4 and extrusion times are long.)

We take Re to be order unity, which ensures a low Reynolds number flow, or,
equivalently, the absence of inertial effects to leading orders (see table 3 for typical
values).

Next, with the units V/H , the components of γ̇ij become

γ̇θθ = 2εu/r, γ̇rr = 2εur, γ̇rz = uz + ε2wr and γ̇zz = 2εwz, (2.19)

and

γ̇ =
[
(uz + ε2wr)

2 + 4ε2u2
r + 4ε2(u/r)2

]1/2
. (2.20)

Hence, in the units ρgH2/L and provided τ > B, the dimensionless stresses are given
by

τrr = 2ε

(
γ̇n−1 +

B

γ̇

)
ur, τzz = 2ε

(
γ̇n−1 +

B

γ̇

)
wz (2.21)

and

τθθ = 2ε

(
γ̇n−1 +

B

γ̇

)
u/r, τrz =

(
γ̇n−1 +

B

γ̇

)
(uz + ε2wr), (2.22)

with

τ =
√
τ2
rz + 1

2
(τ2
rr + τ2

θθ + τ2
zz). (2.23)

The non-dimensional group,

B =
τpH

ηV
≡ τpL

ρgH2
, (2.24)

is a measure of the yield stress relative to the horizontal pressure gradient acting over
the thickness of the fluid; henceforth we refer to B as the Bingham number, even if
n 6= 1.

If τ < B, on the other hand, then ur = uz + ε2wr = wz = 0.
The rescaled boundary conditions are

u = 0 and w = w0(t)f(r) on z = 0, (2.25)
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and, on z = h(r, t),

ht + uhr = w (2.26)

and

τrz + phr = εhrτrr and p = ε(τzz − εhrτrz). (2.27)

3. The expansion
We now solve the equations by introducing an asymptotic expansion. Though there

are some subtleties in the expansion (Balmforth & Craster 1999), we actually need
only the leading-order terms of all the equations. These are

−pr + ∂zτrz = 0, (3.1)

pz = −1, (3.2)

1

r
∂r(ru) + wz = 0, (3.3)

and

γ̇ = |uz|, (3.4)

subject to

u = 0 and w = w0f(r) on z = 0 (3.5)

and

ht + uhr = w and τrz = p = 0 on z = h(r, t). (3.6)

The constitutive model is

τrz =

(
γ̇n−1 +

B

γ̇

)
uz, for τ > B ≡ |τrz|, (3.7)

and uz = 0 if τ < B.
Equation (3.2) integrates to

p = h(r, t)− z, (3.8)

and then (3.1) to

τrz = −hr(h− z). (3.9)

Evidently, τ = |hr|(h− z) decreases with z and the largest shear stress occurs along
the base of the fluid. Here,

τ(r, 0, t) = |τrz(r, 0, t)| = |hhr|, (3.10)

which must exceed B in order for the fluid to move at all. Furthermore, at z = h,
τ = 0. Hence, if the fluid is moving, the stress must fall beneath the yield stress at
some level, z = Y (r, t). This surface is given by

Y (r, t) = h− B

|hr| , (3.11)

with Y > 0 in order for the fluid to move.
Below z = Y , the fluid is yielding and so

B + |uz|n−1uz = −hr(h− z), (3.12)

or

uz = [|hr|(Y − z)]1/n sgn(−hr). (3.13)
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Above z = Y the fluid is rigid and uz = 0. That is, we have a ‘plug flow’. The
identification of the plug is actually a little confusing (Lipscomb & Denn 1984) and
some clarification is required; a more detailed discussion follows equation (3.17).

Now, we define

U(r, t) =

∫ h

0

u(r, z, t) dz ≡
∫ h

0

(h− z)uz(r, z, t) dz. (3.14)

Then,

U(r, t) = − n

n+ 1
|hr|1/n−1Y 1+1/n

(
h− nY

2n+ 1

)
hrϑ(Y ), (3.15)

where ϑ(x) is the Heaviside step function. The introduction of this discontinuous
function into U(r, t) takes care of the yield criterion, which is that, if Y < 0, the fluid
is insufficiently stressed to move. In that case, the fluid as a whole is stationary and
the free surface cannot evolve (we distinguish stationary from plug flow).

The quantity U(r, t) is needed for the evolution equation for h(r, t), which we now
derive by vertically integrating the continuity equation (3.3) and using the free-surface
condition in (3.6):

ht +
1

r
∂r (rU) = ws. (3.16)

The evolution equation (3.16) has a simple conservation law,

d

dt

∫ ∞
0

h(r, t)r dr =

∫ ∞
0

ws(r, t)r dr (3.17)

(conservation of mass), provided the only source of fluid is the vent at the origin.
Note that the evolution equation models a radially expanding flow. This means that

the flow is extensional everywhere, and so there cannot be a true plug flow anywhere.
This is seemingly inconsistent with the claim above that the region h > z > Y
contains a rigid plug (cf. Lipscomb & Denn 1984). In fact, what really happens is
that the leading-order solution breaks down inside this region. Further developments
of the problem (Balmforth & Craster 1999; see also Lawrence & Corfield 1998)
reveal that this region is, in fact, weakly yielding and uz ∼ O(ε). This slight yielding
is created by the conspiracy of the order-ε stress components (which includes the
normal stresses), and is sufficient to compensate the radial expansion. Importantly,
the theory remains consistent. Another route out of this apparent inconsistency is to
use a fluid model that does not have a real yield stress, but behaves as a very viscous
fluid for small strain rates. This type of fluid model is sometimes claimed to be more
realistic than Bingham-type models (Barnes & Walters 1985), but this view is not
uniformly accepted (N’Guyen & Boger 1992). Although unnecessary for analytical
work this alternative route is convenient for numerical reasons, and we outline some
developments of the problem along this line in the Appendix; there we formulate
the thin-layer theory for a modified constitutive model which yields weakly at small
rates of strain. The purpose is to derive another version of our theory in which the
non-smooth functions in (3.16) become smooth.

4. Two limits in yield strength
Two limiting cases of B are of particular importance: The power-law fluid, B → 0,

and a high yield stress fluid, B → ∞. We consider these for a constant source
(ws = ws(r)).
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4.1. Power-law fluid: B → 0

When B → 0, the effect of the yield stress vanishes. If n = 1, we then recover the
thin-film equation for Newtonian fluid (Huppert 1982):

B = 0, n = 1: ht − 1

3r
∂r(rh

3hr) = ws. (4.1)

Provided ws is a constant point source, this equation has a similarity solution,

h(r, t) = f(r/
√
t) ≡ f(η), (4.2)

with

− 1
2
η2fη =

1

3

d

dη
(ηf3fη), (4.3)

as found previously by Huppert (1982); see also Barenblatt (1979). Thus radius R(t)
and thickness h(0, t) vary as R ∼ t1/2 and h(0, t) ∼ constant.

When n is not unity, we obtain a thin-film equation for a power-law fluid:

B = 0, n 6= 1: ht − n

(2n+ 1)r
∂r(rh

2+1/nh1/n
r ) = ws. (4.4)

(This is a version of the porous medium equation in radial geometry.) Again we have
a similarity solution,

h(r, t) = tαf(r/tβ) = tαf(η), R(t) = R0t
β and h(0, t) = h0t

α, (4.5)

with

α =
1− n
3n+ 5

, β = 2

(
1 + n

3n+ 5

)
, (4.6)

and constants, R0 and h0.

4.2. High yield stress: ‘large’ B

The opposite limit, in which the fluid is dominated by the yield stress, and B is in
some sense large, is not so straightforward. As is evident from the numerical results
presented later, this limit is characterized by solutions for which Y → 0. That is,
h = h̄+ y, where |h̄| � |y| for all time, and

h̄ = −B
h̄r

(4.7)

(so the associated yield surface is precisely zero). This solution, and the smallness of
y must be verified from the equation satisfied by y. From (4.7) we obtain

h̄ =

{ √
2B(R − r), r < R

0, r > R
(4.8)

where the time rate of change of the radius, R(t), is dictated by the conservation law
(3.17) and the time-dependence of the source. For a constant inflow rate, Q,

R(t) =
1

(2B)1/5

(
15Qt

8π

)2/5

, h(0, t) = (2BR)1/2. (4.9)

This solution represents a quasi-static expansion and a steady progression through
the equilibrium solutions found by Nye (1952); see also Blake (1990).

The scalings in (4.6) and (4.9) can also be found from dimensional analysis (Griffiths
& Fink 1993) in which one assumes a balance between terms representing the pressure
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gradient and basal shear stress in the governing equations. But these scalings only
follow in the appropriate asymptotic limits, and for general parameter values there
is no characteristic temporal dependence of height and radius of the form (4.5), as
illustrated by the numerical results described shortly.

5. A similarity solution for a time-dependent source
If ws takes the form of a point source at r = 0, then we may look for a similarity

solution to the evolution equation (3.16) with the form

h(r, t) = tαf(r/tβ) = tαf(η). (5.1)

If ws ∼ tγ , then the conservation law (3.17) implies that

α+ 2β = γ. (5.2)

Moreover, direct substitution of (5.1) into the evolution equation gives

1

n
(n+ 1)(2n+ 1)ηtβ(1+1/n)−α(1+2/n)−1(αf − βηfη)

=
d

dη

[(
f − nY

2n+ 1

)
Y1+1/n|fη|1/n−1fη

]
, (5.3)

where the function Y is defined via

Y = tα
[
f +

B

fη
tβ−2α

]
+

≡ tαY, (5.4)

and where the + subscript is to remind us to take the quantity in brackets only where
it is positive, and zero otherwise. Evidently, due to the form of Y, a similarity solution
will not in general exist. However, if β < 2α, then ultimately Y → tαf(η) and the
solution may converge to one of similarity form. In this case,

β(1 + n) = α(2 + n) + n and β < 2α. (5.5)

The conditions (5.2) and (5.5) can be rewritten in the form

α =
(n+ 1)γ − 2n

3n+ 5
, β =

n+ γ(n+ 2)

3n+ 5
(5.6)

and γ > 5.
There is a special case in which an exact similarity solution exists. This is when

γ = 5 and

h(r, t) = tf(r/t2) = tf(η), (5.7)

with

1

n
(n+ 1)(2n+ 1)η(f − 2ηfη) =

d

dη

[
η

(
f − nY

2n+ 1

)
Y1+1/n|fη|1/n−1fη

]
(5.8)

and Y = f + B/fη. This special case is significant also in Blake’s (1990) dimensional
analysis. In general, however, there is no solution of similarity form for a constant
source (γ = 0). In that circumstance, the problematic term in Y does not remain
subdominant as it does if γ > 5.
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6. Numerical results
We now describe some numerical results utilizing the thin-layer theory. The evolu-

tion equation

ht +
1

r
∂r(rU) = ws, (6.1)

together with equation (3.15) for U(r, t), is solved using an adaptive grid scheme; the
scheme utilized is designed to solve nonlinear parabolic equations and is described
in some detail by Blom & Zegeling (1994).† We also performed some comparative
simulations using a finite element collocation scheme, PDECOL, Keast & Muir (1991).

To avoid some numerical difficulties that occur where h(r, t)→ 0, we take an initial
condition in which h(r, t) is everywhere small and finite, h(r, 0) = 10−3 exp(−r2/25),
and add a linear viscous term to (6.1) with a very small coefficient (10−8). We also
prescribe the gradient of h at the origin, and at a radius r∞ that is sufficiently large
to be considered infinite:

hr(0, t) = hr(r∞, t) = 0. (6.2)

The only remaining term to identify is the source behaviour; for this we choose

ws(r) = 0.1(r2
∗ − r2)ϑ(r2

∗ − r2), (6.3)

and r∗ = 0.15, which prescribes the vent radius and flux. The value of 0.1 used for w0

has no special significance, and, in fact, a suitable scaling of r, t and B can be used
to explicitly remove this ‘free parameter’ from the problem.

Because our thin-layer equation contains some non-smooth functions, there are
some minor numerical difficulties that are circumvented by smoothing out U(r, t),
as described in the Appendix. We have verified that the numerical solutions are
insensitive to the details of this regularization and the size of the parameter µ which
measures the degree of smoothing (see Appendix).

6.1. Bingham fluids

We first take n = 1, which corresponds to the Bingham model, and explore the effect
of varying the yield stress.

In figure 4, we display results for a fluid with a very small yield stress (B = 10−5)
representative of an almost Newtonian fluid. This fluid behaves essentially like a
Newtonian fluid, and converges to the similarity form h(r, t) = f(r/

√
t) away from

the vent (see figure 4c). Because the source has finite radius, the similarity scaling is
broken over the vent, r < r∗. Note that the extent of the source is reflected in the
morphology of the dome.

A case with a relatively large yield stress is shown in figure 5; the value of B here
is 0.1 which is not actually a very large number; we enter the yield-stress-dominated
limits at these low values of B because of our choice of dimensional units and w0 = 0.1
(see table 3 and § 8). This value of B is representative of a thick paste-like material. As
we remarked earlier, Y → 0 for the outflow. Consequently, the fluid marches slowly
through an approximate sequence of equilibria given by Nye’s parabolic profile (4.8).
The radius and height then have the scalings (4.9), as illustrated by figure 5(c).

An intermediate case with moderate yield stress, B = 0.01, is shown in figure 6;
this is representative of a slurry which has a substantial proportion of water. Here the
‘plug’ occupies roughly half of the fluid (figure 6a), and it is not possible to collapse
the solutions in figure 6 to one of similarity form.

† The code is available at the web-site: http://www.ma.ic.ac.uk/∼rvcras/dome.f.gz.
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Figure 4. Evolution for B = 10−5. (a) The height field, h(r, t), together with the ‘yield’ surface, Y (r, t)
shown by the dotted lines. The yield surface is everywhere indistinguishable from the height except
in a slender region around the origin. (b) U(r, t), the vertical integral of u(r, z, t). (c) The height field
is plotted against the similarity coordinate η = r/t1/2. Shown are snapshots of the solution every
500 time units. The regularization parameter of the Appendix is µ = 10−7.

A selection of dome shapes is shown in figure 7. This figure shows the height, h(r, t),
at t = 104 for various computations using different B. As the yield stress increases,
the aspect ratio of the dome increases and the shape becomes increasingly parabolic.‡
Note that for the larger values of B, the dome appears to have a finite gradient at
r = 0, hr(0, t) 6= 0, in violation of the symmetry condition imposed there. The reason
for this is that if hr → 0, then Y (0, t) = 0 and the central portion of the fluid never
yields. But if Y → 0, then the fluid at the centre of the dome cannot flow radially;
instead we have the balance ht = ws, which implies a continual build-up of the dome
centre. But such a fluid structure must yield sideways. The fluid finds its way out of
this conundrum by building up the gradient of h(r, t) in an increasingly narrow region
around r = 0. However, over the region with r = O(ε), the thin-layer theory breaks

‡ The pictures are all displayed in dimensionless units. This means that εh(0, t)/R(t) is the actual
aspect ratio, which is much smaller (by the factor of ε) than the figures appear to suggest.
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Figure 5. As figure 4 but for B = 0.1. In (c), the height field is scaled by t1/5 and plotted against
the similarity coordinate η = r/t2/5. µ = 10−4.

down and we should strictly use a different asymptotic expansion (cf. Johnson 1984).
We assume that the global structure of the dome is insensitive to this slight deficiency
in the model.

In figure 8 we show radius and height evolution for five values of B. (For computa-
tional convenience, we define the radius R(t) as the location for which h(R, t) = 0.01.)
This shows the convergence to a scaling somewhere between the Newtonian and
dominating yield-stress limits. One other feature brought out in this figure is the
linear-in-time increase in the height field for small times. This stage of the dome
growth involves the predominantly vertical rise of the fluid out of the vent: the fluid
initially rises up like extruded toothpaste and does not yield radially. Eventually (and
depending on the size of B), the extruded fluid yields under its own weight and flows
radially (as shown in figure 9); similar behaviour has been noted in the flows of
pastes (Burbidge & Bridgwater 1999) and observed in the experiments of Griffiths &
Fink (1997). If the extrusion of fluid from the vent were abruptly to cease whilst the
expansion was still in this phase, and solidification then to ensue, the dome would ap-
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Figure 7. Dome shapes for varying B after t = 104. µ = 10−2B.

pear more like a vertical column. This is a plausible mechanism for the emplacement
of upheaval plugs.

An important property of the curves shown in figure 8 is that, after the fluid
yields radially at t ≈ 102, there are no abrupt transitions. In fact, R(t) and h(0, t)
follow smooth curves over times much longer than those shown in figure 8(a–d);
see figure 8(e) for B = 0.01. This is contrary to expectations based on dimensional
analysis (Blake 1990), which suggests that a transition occurs between viscous and
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yield-stress-dominated dynamics at a time

tB =
q1/4

B2
, (6.4)

in dimensionless units, where q = πr4∗w0/2 is the dimensionless effusion rate. For
example, tB = 944 for B = 0.01, but no transition occurs for such times in fig-
ure 8(e). The dimensional analysis assumes a switch between dominant behaviours
but, evidently, the dome chooses a more balanced path between the two extremes.

6.2. Variations with power-law index

The clarity of this picture of the dynamics of lava-dome expansion is obscured when
we allow n to vary; once the fluid flows it now follows a nonlinear stress–strain-rate
relation and the resulting dynamical changes can compete with or complement the
effect of yield stress. Note that experiments invariably have n < 1, corresponding to
shear thinning; physically this models the destruction of the internal structure of the
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Figure 9. The initial evolution of the height field for B = 0.1 and µ = 10−4. Shown are snapshots
of the solution every 25 time units.

fluid (such as brittle crystal structure or particulate interlinkage) by the increasing
shear. Results for n = 1/2, n = 1/3 and n = 1/5 are shown in figures 10–12.

Figure 10 shows the evolution of radius and height for fluids with different values
for B and n. The cases without yield stresses in (a) and (b) illustrate how reducing
n alters the B = 0 scalings, and the evolution of radius and height follows temporal
dependences that scale more closely with the yield-stress-dominated limit. The reason
why this is the case is seen immediately from the scaling exponents in (4.6); for
small n, these approach the values 1/5 and 2/5, respectively. As can be seen from
figures 11 and 12, this feature leads to domes that are significantly less influenced by
the introduction of the yield stress.

In other words, the power-law behaviour of the fluid can masquerade as a yield-
stress effect. This has potentially important ramifications for studies that attempt to
identify yield stress values from the morphology of flowing lava (Shaw 1969; Walker
1973; Hulme 1974; Blake 1990). Yield stress estimates derived from studies of static
fluid do not, of course, suffer this problem (Fink & Griffiths 1998).

This problem is also commonly encountered in chemical engineering: rheometers
that operate with a controlled strain rate are not suitable to distinguish between yield
stress effects and power-law behaviour because the differences are only evident at low
shear rates where devices are prone to experimental error. A proper discrimination
requires a controlled stress rheometer. But our model of an expanding lava dome
is closer to having a controlled strain rate because the source represents a fixed
material influx. Nevertheless, if we allowed the source to become time-dependent
and, in particular, varied the inflow rate with the basal shear stress, we might move
towards a situation more like the controlled stress rheometer. Then the morphology
of the dome expansion might better distinguish the two effects.

7. Basal sliding
As a final piece of the isothermal theory of dome expansion, we relax the condition

of no slip on the base of the fluid and allow the expanding dome to slide. In visco-
plastic fluids, many experiments show significant slip near bounding walls as a result
of the migration of particles, crystals or polymers away from regions of high shear.
This migration leaves behind a layer of relatively dilute and less viscous fluid that
effectively lubricates the wall (Barnes 1995).

This type of extension of the theory may also be necessary when modelling
extrusions below water, where the plate may have a reduced coefficient of friction
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(Griffiths & Fink 1997); such experiments are typical in non-isothermal studies
(Hallworth et al. 1987). Moreover, in real lavas (and in glaciers), motion over a rough
base can take place through a succession of solidification and melting. This process
can produce an effective slip (Hutter 1983).

In many engineering contexts, the no-slip condition is replaced by some empirical
law relating the stress at the wall to the sliding velocity. Here we adopt the relation,

|τrz| = Bw + p0Ω(p0)u
α
b if |τrz| > Bw,

ub = 0 if |τrz| < Bw
(7.1)

in dimensionless notation, where p0 = p(r, z = 0, t) is the pressure at the base of the
fluid, ub is the radial sliding speed, and Bw = τwH/ηU is a Bingham number that
measures a yield stress at the base (so the fluid only slips if the stress exceeds a
certain threshold, τw). Also, α is some power-law index and the arbitrary function
Ω(p0) allows for a nonlinear friction law. Equation (7.1) is a version of Mooney’s
law (Mooney 1931). Without the basal yield stress, boundary conditions of this kind
are used in glaciology (Hutter 1983; Fowler 1989; Morland 1997) and for flows of
concentrated suspensions (Benbow & Bridgwater 1993).

We may now proceed with the asymptotic expansion once again. The calculation
is little different; manipulations like those used earlier lead to

U(r, t) =

∫ h

0

(h− z)uz(r, z, t) dz

= − n

n+ 1
|hr|1/n−1Y 1+1/n

(
h− nY

2n+ 1

)
hrϑ(Y ). (7.2)

However, U(r, t) is no longer the vertical average of the radial outflow speed. Rather,

U(r, t) =

∫ h

0

u(r, z, t)− hub. (7.3)
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Moreover, from our sliding law,

ub =

[−hrYw
hΩ(h)

]1/α

, (7.4)

where

Yw =

(
h− Bw

|hr|
)

+

. (7.5)

This minor modification introduces a new term into the evolution equation, which
is now

ht +
1

r
∂r[r(U + hub)] = ws. (7.6)

Note that, if Bw < B (for pastes Bw is typically 10–30% of B), the fluid layer can be
insufficiently stressed to shear internally, but it may still slide if Yw > 0. Again, there
is a conceptual difficulty with this interpretation of the radial expansion: the fluid
cannot be truly unyielding, but is order ε above the yield stress.

We illustrate the effects of sliding on the character of the dome expansion by
choosing Ω(h) = constant, α = 1 and Bw = 0. Then ub = −hr/Ω. Some numerical
results for this case are illustrated in figure 13.

Evidently, the slip of the fluid breaks the characteristic temporal scalings of radius
and height for the yield-stress-dominated limit, which would otherwise be found for
the particular case shown in figure 13 (B = 0.1). Instead, there is no longer a similarity
scaling for the slipping dome. Note that sliding also changes the shape of the dome
near its edge, and, in particular, produces a characteristic ‘skirt’. This feature might
be useful in empirically estimating the degree of sliding simply from the dome shape.

In fact, a difference in the temporal scalings of radius and height was previously
noted by Griffiths & Fink (1997) between isothermal extrusions in air and below
water. They found that domes below water were significantly lower than dry domes,
a feature that is naturally explained in terms of basal slip. However, the experimental
domes also showed little tendency to form a leading ‘skirt’. Perhaps the fracturing
process mentioned by Griffiths & Fink offers a better explanation of the differing
experimental scalings than basal slip.

8. Experimental results
To provide a laboratory comparison with the theoretical results we conducted

experiments with kaolin–water slurry; these are similar to Hulme (1974) and Blake
(1990). In particular, we extruded slurries in the fashion illustrated in figure 2. We
performed two sets of experiments with two quite different experimental configura-
tions: one is described by Shen (1998), and the results of a particular experiment with
the other set-up are reported here (the extrusions showed no essential differences in
the two cases).

8.1. Restoring the dimensions

To compare theory and observation, we must first restore the dimensions in our
numerical solutions. To do this we need to estimate the length scales, L and H , and
the characteristic velocity, V .

To fix the horizontal length scale we match the dimensional vent radius, Lr∗ ≡
0.15L, with the size of the opening in the experimental apparatus: R∗ ≈ 1.5 mm. Thus
L = 1 cm.
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Figure 13. Evolution for a dome with basal sliding. B = 0.1 and µ = 10−4. (a) The height field every
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We also have the dimensionless flow rate (obtained by integrating the source term
over the vent),

q = 1
2
πr4
∗w0, (8.1)

in which we select w0 = 0.1, as in § 7. In dimensional units, the volume flux is

Q = LHVq. (8.2)
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But we also have the relation

V =
ρgH3

ηL
or Vn =

ρgH2+n

KL
, (8.3)

since η = KVn−1/Hn−1. Thus, on eliminating V :

H =

(
KL1−nQn

ρgqn

)1/(2n+2)

. (8.4)

This allows us to compute H and V given Q and L. Hence we may reconstruct the
dimensional radius, height and time. Finally we estimate B:

B =
τpH

ηV
≡ τp

(
L2nqn

ρngnKQn

)1/(n+1)

. (8.5)

The definitions above amount to evaluating ε = H/L and B in terms of the
experimental parameters. In fact, we could have based our non-dimensionalization of
§ 2.3 on these parameters, and couched the formalism accordingly. One consequence
of our current non-dimensionalization is that the velocity scale is given by balancing
the viscous shear stress against the hydrostatic pressure gradient. But in yield-stress-
dominated fluids, it would be preferable to balance that gradient against the yield
stress.

Also, in our numerical experiments, q = πr4∗w0/2 ∼ 10−4. It is this relatively small
non-dimensional effusion rate that leads to the deceptively low value of B at which
we enter the yield-stress-dominated regime.

Nevertheless, § 2.3 follows the standard routes of lubrication analysis in Newtonian
and non-Newtonian fluid mechanics, and for this reason we have elected to delay the
reformulation in terms of the experimental parameters until now.

8.2. Comparison of theory and experiment

We compare theory and experiment in figure 14. The particular experiment is con-
ducted with a slurry of density ρ = 1.32 g cm−3, and for which we fit the rheology with
a Herschel–Bulkley model with parameters, τp = 14 Pa, K = 15 (Pa s)n, and n = 0.35.
The flow rate is 8.445× 10−2 cm3 s−1.

With the relevant dimensional scalings, we calculate the Bingham number as
B = 0.0875. This indicates that the dome is close to the yield-stress-dominated limit.
However, as also indicated in the figure, there is certainly some difference between the
predictions of the thin-layer equation and Nye’s asymptotic solution given in § 4.2. In
any case, theory and experiment show reassuring agreement.

9. Conclusion
In this study we have presented a theory with which we can analyse isothermal

lava flow. In particular, with the thin-film evolution equation, we may attempt to pick
apart the physical ingredients in the problem. In this way we hope to separate effects
such as viscosity, yield stress, shear thinning and basal sliding, and identify which
could be most important in real lava domes. Within the limitations of the theory here,
we identify the values of B for which we enter the yield-stress-dominated limit; for
real lava domes the values of B are close to that regime suggesting that yield stresses
are indeed important.
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Figure 14. Experimental and theoretical comparison of dome evolution. (a) The radius: three
measurements shown by dotted lines (part of the difference in the three curves is due to the fact
that the dome was not precisely axisymmetrical, but showed slight asymmetry), that are averaged
to compute the solid line. The dashed line is the analogous theoretical curve from solving the thin
layer equation, and the dot-dashed line is that for Nye’s asymptotic solution. (b) Comparison of
height measurements, but there is only a single experimental curve (the solid line).

The results agree with the laboratory experiments that we have also conducted.
This gives us extra motivation to continue on to the non-isothermal problem that we
will describe in future work.

We should, however, warn the reader of some deficiencies in the thin-layer theory.
One drawback of the asymptotic reduction of the problem has already appeared in
the discussion of numerical results: the expansion must surely fail close to the centre
of the dome, and the physical significance of solutions that appear to develop radial
gradients near r = 0 is questionable. A similar breakdown of the asymptotic theory
arises where h→ 0. We have tacitly avoided a discussion of this contact ring here by
taking initial conditions in which fluid was present everywhere. But we could explicitly
consider the contact ring in more detail, much as has been done in a variety of studies
of spreading of liquid drops (Greenspan 1978; Ehrhard & Davis 1991; Ehrhard 1993).
This entails a more involved discussion of the dynamics of the contact ring and draws
in more physics. Notably, as the asymptotic expansion is currently set out, the theory
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must break down in order for the dome to expand: the no-slip condition rules out
expansion without some kind of local overturning of the fluid surface at the dome
edge. It is typical to avoid this inconsistency by allowing for some slip of the contact
ring (Dussan V. 1979); basically, the no-slip condition is relaxed using a slip law like
that described in § 7.

One might also argue that if the extrusion takes place on a surface that is not
perfectly horizontal, then the dome will slump to one side, and we will lose the
axisymmetry that underlies the theory. Indeed, Fink & Griffiths (1992) and Coussot,
Proust & Ancey (1996) display experiments in which just this effect was studied
experimentally. However, whereas many geophysical settings for lava domes will not
be horizontal, there are many examples of domes that are nearly axisymmetric, sug-
gesting that the slumping is not important (see figure 1). Moreover, in the laboratory,
we may engineer the plate to be as horizontal as desired. Thus we do not consider
desymmetrizing effects to be especially important. Nevertheless, provided the slope is
not too steep (the angle made between the plate and the horizontal is order ε or less),
we can easily add the effects of the slope into the thin-layer theory; the equations
become two-dimensional and the slope enters as a symmetry-breaking term. The
extension of the theory follows that for flows on planes by Balmforth & Craster
(1999).

Finally, we mention that the numerical computations presented here have exclu-
sively dealt with the case of a constant source. It is largely as a result of this
prescription that we have difficulty in distinguishing power-law behaviour from the
yield stress. However, we need not prescribe w0(t) in this way, and there may be better
source functions that facilitate a discrimination of the two effects. Such modifications
to our model may guide future experiments.

But there are also geophysical motivations for allowing the source to be time-
dependent. For example, the lava flow probably begins as the upcoming fluid forces
its way through the overlying rocks and gradually opens a vent. Thus, initially, the
flow rate slowly increases. Moreover, extrusions may be of limited duration if the
outflowing magma is of finite volume, or if the vent ultimately closes due to the
reduction in subterranean pressure caused by the outflow and the solidification of the
lava. The pressure of the expanding dome may also react back on the fluid moving
up the vent, leading to a dynamical control of the source (Stasiuk & Jaupart 1997).
In other words, the mechanics of the source can be a complicated, time-dependent
process. Indeed, there is geophysical evidence that dome growth can take place
through a sequence of distinct extrusions rather than a long continuous affair (for
example, in the case of Mount St. Helens, it is estimated that about fifteen distinct
episodes created the dome; Swanson & Holcomb 1989). But whatever is needed
for the additional physical input to the problem, the theory can be easily extended
by simply modifying the source function, ws(r, t); our evolution equation remains a
concise description of the expanding dome.
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Figure 15. Constitutive models for the Bingham fluid and its regularization according to (A 1); the
scales are arbitrary in this figure.

Appendix. Regularization
Numerical investigations utilizing the Bingham and Herschel–Bulkley models are

complicated by the presence of the discontinuity in the derivative of the stress–
strain-rate relation (there is no obstacle to careful analytical study). There are several
avenues that can ease the numerical simulations. We adopt a route that has some
physical basis, and regularize the constitutive model by, in effect, smoothing out
the discontinuity. In the non-dimensional units of the main text, we regularize by
adopting the new constitutive law,

τij =

(
|γ̇|n−1 +

B√
µ2 + γ̇2

)
γ̇. (A 1)

The parameter µ modifies the constitutive model as indicated in figure 15; the fluid
becomes weakly yielding at low strain rates, as is suggested by experiments with many
real non-Newtonian materials (Barnes & Walters 1985). There are many possible
forms for the modified model; equation (A 1) has no special significance among all
these possibilities. Provided µ is small, the form of the modification is not important;
we use (A 1) essentially only as a numerical device that ultimately smooths out the
function U(r, t) of the main discussion. We describe this in detail for the Bingham
fluid, and generalize the formulae to general n at the end of this Appendix.

In the thin-layer theory, the leading-order non-dimensional equations are sum-
marized as

pr = ∂zτrz and pz = −1. (A 2)

With the stress-free boundary condition, these may be integrated to

p = h− z and τrz = −hr(h− z). (A 3)

The constitutive model, on the other hand, leads to

τrz = uz

(
1 +

B√
µ2 + u2

z

)
, (A 4)

for n = 1. This is a quartic equation for uz . To generate the evolution equation we
need to solve (A 4), and then integrate the product of the result with h − z in order
to provide the vertical integral of u. We will not, however, do this explicitly.

For a flow of uniform depth some solutions of the quartic are displayed in
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values of µ.

figure 16. Importantly, when µ is small, the profile develops the distinctive character
of the Bingham model – a fully plastic flow below a pseudo-plug.

Rather than deal with the cumbersome formulae that result from solving the
quartic, we use a simpler regularization scheme based on the limits of (A 4) for
τrz − B � µ and B − τrz � µ. In the first limit, the stresses exceed the yield values
and |uz| � µ. Hence,

uz ∼ τrz − B. (A 5)

This gives the usual Bingham result for the velocity profile in the fully plastic region.
Moreover, the contribution to the vertical integral of u is given by∫ Y−

0

(h− z)uz dz + O(µ), (A 6)

where Y− is O(µ) below the fake yield surface, z = Y , as defined in the main text.
In the other limit, we have the plug flow with

uz ∼ µτrz

B
. (A 7)

Hence the fluid moves in a very viscous Newtonian fashion. The contribution of the
pseudo-plug to the vertical integral of u is expressible as∫ h

Y+

(h− z)uz dz, (A 8)

where Y+ is O(µ) above the fake yield surface. This contribution is of order µ, and
is significantly smaller than (A 6). In addition there is another contribution from the
vicinity of the yield surface, but this again is small. Hence, provided Y � µ, the
evolution equation remains unchanged.

The difficulty, however, is when we encounter a situation in which the plug flow ex-
pands to encompass the entire fluid layer. In that circumstance, (A 7) holds throughout
the vertical section and consequently,

U(r, t) ≡
∫ h

0

u dz ∼ − 1

3B
µh3hr. (A 9)

Thus to regularize our model we look for a replacement of the formula (3.15) for U
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which limits to a small, Newtonian-like form such as (A 9). In particular, we select

U(r, t) ≈ − 1

24
(3h− Y )

[
Y +

√
Y 2 +

µh3/2

B|hr|1/2
]2

hr. (A 10)

This formula does not limit quite to (A 9) when Y is negative, but it compares well
with the exact answer over the range of interest in h and hr , as illustrated in figure 17.
The comparison is made by plotting

∫ τ∗
0
γ̇τ dτ, where τ∗ = −hhr , and the result in

(A 10), multiplied by h2
r (both quantities can be expressed as functions of τ∗ − B).

The selection (A 10) does not completely solve all our problems with the evolution
equation. Another difficulty emerges because |hr| appears both explicitly and in Y . To
avoid this second non-smooth function we again turn to the constitutive model (A 1).
The difficulty in this instance arises where hr changes sign. Near those locations, τrz
is small. We rearrange (A 1) into

γ̇ = −hr
[
h− z +

B√
h2
r (1 + µ2/γ̇2)

]
. (A 11)

But γ̇ ∼ −hr(Y − z), and so a rough approximation near hr = 0 is furnished if
we replace γ̇ on the right-hand side of (A 11) by −αhr , where α is given by some
characteristic vertical average. Hence,

γ̇ ≈ −hr
[
h− z +

B√
h2
r + µ2/α2

]
. (A 12)

This suggests that a plausible regularization of |hr| is
√
h2
r + µ2/α2. In practice, we

take α = 1.
We summarize the arguments of this Appendix by quoting the analogous regular-

ization for the Herschel–Bulkley model:

U(r, t) = − n

n+ 1

(
h− nY

2n+ 1

){
1

2

[
Y +

√
Y 2 +

µh3n/(n+1)

B(h2
r + µ2)1/4

]}1+1/n

×(h2
r + µ2)(1−n)/2nhr. (A 13)
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This formula smooths out all the problematic terms in the evolution equation; we
need only take µ� B (and verify that the results are not dependent on the details of
the regularization, which we indeed find to be the case).
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