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a b s t r a c t

We derive an asymptotic reduced model for the extensional dynamics of long, slender, axisymmetric
threads of incompressible Herschel–Bulkley fluids. The model describes the competition between vis-
coplasticity, gravity, surface tension and inertia, and is used to explore the viscoplastic Rayleigh instability.
A finite-amplitude initial perturbation is required to yield the fluid and initiate capillary-induced thin-
ning. The critical amplitude necessary for thinning depends on both the wavelength of the perturbation
and on the yield stress. We also numerically examine the inertialess growth of the instability and the
progression towards pinch-off. The final self-similar form of inertialess pinch-off is similar to that for a
power-law fluid.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of how a liquid thread pinches into drops has
excited the attention of fluid mechanicians for over three cen-
turies. The systematic study of pinch-off in viscous fluids dates
back at least as far as Savart, Plateau and Rayleigh in the 1800s,
and nowadays the problem has developed into a common setting
in which to study the competition between inertia, surface tension
and fluid viscosity for Newtonian fluids. Comprehensive reviews of
many aspects of extensional flows, for which thread breakup and
drop formation problems are quintessential examples, are given
by Eggers [1] and Eggers and Villermaux [2]. The viscoelastic ver-
sion of the problem has also proved popular as it affords a means
to explore and calibrate the effects of an elastic rheology (e.g. [3]
and references therein). Indeed, a number of commercial devices
exploit the detailed dynamics of viscoelastic filaments to perform
rheometry.

By contrast, viscoplastic fluids have been studied very lit-
tle in extension. Our goal in the current work is to provide a
study of the extensional dynamics of viscoplastic filaments with
a Herschel–Bulkley rheology. The study is split in two: in this first
part we begin by deriving a theoretical model that captures the
effects of surface tension, inertia and gravity in addition to the dom-
inant rheological processes. All we demand is that the filament is
axisymmetric and thin relative to its length, which allows us to take
advantage of the slenderness of the configuration to simplify the
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governing fluid equations. We then apply the theory to study the so-
called Rayleigh instability, the thinning and pinching of a uniform
cylindrical jet of fluid driven by the action of surface tension, focus-
ing for simplicity on the inertialess case. In the companion paper
we consider two other problems: gravitationally induced dripping
and thinning under imposed extension.

Slender filament models have been used extensively to provide a
quantitatively accurate description compared to both simulations
and experiments for Newtonian fluids (e.g. [4,5]) and to a lesser
extent generalized Newtonian fluids (e.g. [6,7]). The predictions of
the slender filament model can remain accurate even when the
thread under consideration is not necessarily long and thin [4], but
can fail under more extreme physical conditions [6,8,9].

The Rayleigh instability provides the simplest theoretical setting
in which to study the dynamics underlying pinch-off in Newtonian
fluids [1]. We consider the viscoplastic version for similar reasons,
and explore whether the configuration also provides a similarly
exemplary model. Unfortunately, it turns out that the viscoplastic
Rayleigh instability is less natural than the corresponding Newto-
nian problem, largely because an undisturbed uniform filament is
rigidly held by its yield stress, and the fluid structure cannot be bro-
ken by an infinitesimal perturbation. Instead, a finite initial stress
perturbation is required and the subsequent dynamics depends
on the detailed structure, rendering the problem more artificial.
Nevertheless, our objectives in this paper are to gauge how yield
stresses affect both capillary-induced extensional dynamics and
the progression towards pinch-off, both of which can be conve-
niently studied within the relatively simple theoretical framework
of the Rayleigh problem. We thereby set the stage for part II, in
which we explore more realistic extensional flows.

0377-0257/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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Fig. 1. The geometry of a long, slender filament.

Because we focus on the effect of the yield stress, the cur-
rent article is distanced from earlier work focusing on generalized
Newtonian fluids. Nonetheless, as surface tension drives the thin-
ning of a thread, stresses grow substantially, suggesting that yield
stresses play only a minor role in the limiting pinch-off dynamics.
Indeed, we demonstrate explicitly that this is the case for iner-
tialess, viscoplastic filaments. We therefore do not dwell on the
details of pinch-off, but focus on the earlier dynamics which are
more strongly influenced by the yield stress.

2. Theoretical model

2.1. Governing equations

The geometry of our problem is illustrated in Fig. 1: an axisym-
metric thread of incompressible fluid described by the cylindrical
polar coordinates, (r̂, �, ẑ) with ẑ directed vertically upwards,
deforms within a dynamically passive exterior fluid. The filament’s
density is � and its rheology is modelled using the Herschel–Bulkley
constitutive relation (e.g. [10]), with yield stress, �y, consistency, K,
and power-law exponent, n.

The governing equations describing conservation of mass and
momentum take the form

1
r̂

∂

∂r̂
(r̂û) + ∂ŵ

∂ẑ
= 0, (1)

�

(
∂û

∂t̂
+ û

∂û

∂r̂
+ ŵ

∂û

∂ẑ

)
= −∂p̂

∂r̂
+ ∂�̂rr

∂r̂
+ ∂�̂rz

∂ẑ
+ �̂rr − �̂��

r̂
, (2)

�

(
∂ŵ

∂t̂
+ û

∂ŵ

∂r̂
+ ŵ

∂ŵ

∂ẑ

)
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∂ẑ
+ ∂�̂rz

∂r̂
+ ∂�̂zz

∂ẑ
+ �̂rz

r̂
− �g, (3)

where t̂ is time, (û, 0, ŵ) is the velocity field, p̂ is pressure, and g is
gravity. The constitutive relation for the deviatoric stress tensor �̂
is⎧⎪⎨⎪⎩ �̂ =

(
�̂rr 0 �̂rz

0 �̂�� 0
�̂rz 0 �̂zz

)
= (�Y + K ˆ̇�

n
)

ˆ̇�
ˆ̇�

if �̂ > �Y ,

ˆ̇� = 0 otherwise,

(4)

where the shear-rate tensor is given by

ˆ̇� =

⎛⎜⎜⎜⎝
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∂û

∂r̂
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0 2
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∂ẑ
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∂ẑ

⎞⎟⎟⎟⎠ , (5)

and ˆ̇� =
[

ˆ̇� : ˆ̇�/2
]1/2

and �̂ = [�̂ : �̂/2]1/2 are the second invari-

ants.
At the surface of the filament, r̂ = ĥ(ẑ, t̂), we satisfy the kine-

matic condition,

∂ĥ

∂t̂
+ ŵ

∂ĥ

∂ẑ
= û, (6)

together with the expression of force balance,

−p̂n̂ + �̂ · n̂ = −��̂n̂, (7)

where n̂ = (1, 0, −∂ĥ/∂ẑ)/[1 + (∂ĥ/∂ẑ)
2
]
1/2

is the outward normal
to the thread, � is the surface tension coefficient between the thread
and the exterior fluid and the curvature �̂ is given by

�̂ = 1

ĥ[1 + (∂ĥ/∂ẑ)
2
]
1/2

− ∂2ĥ/∂ẑ2

[1 + (∂ĥ/∂ẑ)
2
]
3/2

. (8)

2.2. Scaling

The governing equations reduce to a simpler form when the
thread is long and thin. The reduction is very similar to that for a
Newtonian filament (e.g. [1,11]), and can be cast as a formal asymp-
totic expansion. Here, we mainly emphasize the generalizations
required in the derivation for the Herschel–Bulkley constitutive
relation.

For a slender filament, the geometrical limitation that the char-
acteristic radius, R, is much less than a typical axial length-scale, L,
implies a significant imbalance in the radial and axial derivatives.
More specifically, if ε = R/L � 1 denotes the small aspect ratio of the
filament, the imbalance in derivatives is expected to be ∂/∂ẑ∼ε∂/∂r̂.
Likewise, the geometry constrains the radial flow so that û∼εŵ.
Thus, in (5) the components ( ˆ̇�rr , ˆ̇���, ˆ̇�zz) all scale as U/R where U
is a typical radial velocity.

The magnitude of the shear rate, ˆ̇�rz , requires more care: the
simple estimate ε−1(U/R) is incorrect because the filament does not
develop sufficient shear stress to drive significant internal shear, a
well-known feature of free films and filaments (e.g. [1,11]). Instead,
the axial velocity ŵ is independent of radius to leading order and
the relatively weak shear stresses generate a radially varying O(ε2)
correction. Hence, ∂ŵ/∂r̂∼∂û/∂ẑ∼ε∂ŵ/∂ẑ, and so �̂rz scales as εU/R.
Moreover, since w ≈ w(z, t) the conservation of mass equation (1)
also demands that

∂û

∂r̂
= û

r̂
= −1

2
∂ŵ

∂ẑ
,

to leading order.
In view of the scaling of the deformation rates, it is apparent from

the constitutive model that �̂rz is O(ε) smaller than the normal stress
components, (�̂rr , �̂��, �̂zz), in agreement with the notion that the
filament does not develop substantial shear stress. The three terms
involving the deviatoric stress on the right-hand side of (3) are
therefore equally important; by contrast, the derivative of the shear
stress is negligible on the right of (2). Moreover, �̂rr = �̂�� to leading
order, removing the final term of that equation. For the theoreti-
cal model, we further assume that the remaining terms in (2) also
enter the dominant balance. Physically, this means that the (axial)
extensional dynamics balances fluid stresses, gravity and inertia
(with surface tension appearing later via the pressure boundary
condition). Below, we see that this corresponds to adopting order
one values for a number of dimensionless parameters.

In summary, to leading order

0 = −∂p̂

∂r̂
+ ∂�̂rr

∂r̂
, (9)
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�

(
∂ŵ

∂t̂
+ ŵ

∂ŵ

∂ẑ

)
= −∂p̂

∂ẑ
+ ∂�̂rz

∂r̂
+ ∂�̂zz

∂ẑ
+ �̂rz

r̂
− �g. (10)

A similar reduction of the full surface stress conditions from (7)
furnishes (bearing in mind that ∂ĥ/∂ẑ = O(ε))

p̂ − �̂rr − ��̂ = �̂rz + ∂ĥ

∂ẑ
(p̂ − �̂zz − ��̂) = 0 (11)

on ẑ = ĥ(ẑ, t̂).
Thus far, all the scalings mimic the Newtonian problem. The

main differences arise from further consideration of the consti-
tutive relation, and in particular because the fluid need not be
sufficiently stressed to yield. Indeed the preceding considerations
implicitly assume that the fluid is yielded, since they are based
on how the deformation rates then scale in order to maintain the
slender geometry of the filament. For the yielded state, it then fol-
lowed that �̂zz = −2�̂rr = −2�̂�� , which in turn implies that the yield
condition is �̂ =

√
3|�̂zz |/2 > �Y at leading order.

If �̂ < �Y , the fluid is not yielded and û = ∂ŵ/∂ẑ = 0. We cannot
now use the constitutive relation to argue that the shear stress is
much smaller than the normal stresses, upsetting our balancing of
terms in the momentum equations, and the relation, �̂rr = �̂�� , no
longer follows. Indeed, this difficulty is a necessary consequence of
the fact that the stress state is formally indeterminate in the rigid
state for viscoplastic models that do not incorporate any (viscoelas-
tic) deformation below the yield stress, the force balance equations
being insufficient to determine all the stress components uniquely.

To surmount this difficulty, we offer three arguments. First, one
may appeal to regularizations of the constitutive model that pre-
scribe the stress state even below yield: for a very viscous fluid or
a linear viscoelastic solid, slight incompressible deformations still
demand that the shear stress is much less than the normal stresses
and �̂rr = �̂�� with the geometry of our slender filament (for the
same reasons as given above). Second, if the filament relaxed to a
state at or below yield by deforming, then the temporal continu-
ity of each stress component would preserve their relative scalings
and enforce �̂rr = �̂�� . Third, if there were a significantly different
pre-stress locked into unyielded fluid, the dynamics would partly
reflect the release of that stress, leading to non-generic behaviour
dependent on the specific stress state. In the interest of simplicity
and because the choice seems most natural, we therefore adopt the
same scalings and �̂rr = �̂�� even when the fluid is below the yield
stress.

2.3. One-dimensional approximation

We now integrate the governing mass and momentum equa-
tions (1), (9) and (10) across a cross-sectional slice, exploiting the
reduced boundary conditions (6) and (11), to obtain the model
system

∂ĥ

∂t̂
+ ŵ

∂ĥ

∂ẑ
= −1

2
ĥ

∂ŵ

∂ẑ
, (12)

�

(
∂ŵ
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+ ŵ

∂ŵ

∂ẑ

)
= −�

∂�̂

∂ẑ
+ 3

2ĥ2

∂

∂ẑ
(ĥ2�̂zz) − �g, (13)

and

�̂zz = 2

(
�Y

ˆ̇�
+ K ˆ̇�

n−1
)

∂ŵ

∂ẑ
if �̂ > �Y , (14)

∂ŵ

∂ẑ
= 0 otherwise, (15)

where ˆ̇� =
√

3
∣∣∂ŵ/∂ẑ

∣∣.
Note that in (13), we retain the full surface curvature given by

(8). In a formal asymptotic theory, one would keep only the leading-

order contribution, �̂ ≈ 1/ĥ. However, in many previous studies of
the Newtonian problem the full form of the curvature has been
retained to incorporate additional effects of surface tension in a
non-asymptotic fashion. We follow suit here, and do not approxi-
mate the curvature formula (8), except for analytical convenience
where explicitly stated.

2.4. Non-dimensionalization

We remove dimensions from (12) to (15) using the initial radius
of the thread, R, and the viscous-capillary time-scale, T = (KR/�)1/n,
as characteristic scales. We then set

t̂ = Tt, (ẑ, ĥ) = R(z, h), ŵ = RT−1w,

(p̂, �̂zz) = KT−n(p, �zz), ˆ̇� = T−1�̇, �̂ = R−1�,

which furnishes the dimensionless equations,

∂h

∂t
+ w

∂h

∂z
= −1

2
h

∂w

∂z
, (16)

R
(

∂w

∂t
+ w

∂w

∂z

)
= −∂�

∂z
+ 3

2h2

∂

∂z
(h2�zz) − G, (17)

with

� = 1

h[1 + (∂h/∂z)2]
1/2

− ∂2h/∂z2

[1 + (∂h/∂z)2]
3/2

. (18)

We also rewrite the constitutive relation in the alternative form,

∂w

∂z
= 1√

3
sgn(�zz)

[
max

(√
3

2
|�zz | − ˇ, 0

)]1/n

, (19)

incorporating both the yielded and rigid phases.
A number of dimensionless parameters appear (besides the

power-law exponent n):

R = �R3

�

(
�

KR

)2/n

, G = �gR2

�
, ˇ = �Y R

�
.

These parameters are the square of the inverse Ohnesorge num-
ber, which measures the importance of inertia relative to viscosity
(and can be interpreted as the square of the ratio of the inertial
time-scale to the viscous time-scale), the gravitational Bond num-
ber, and a number measuring the importance of the yield stress
relative to surface tension.

3. Rayleigh instability

For Newtonian fluids, linear stability analysis of a uniform
cylindrical thread in the absence of gravity predicts that infinites-
imal perturbations of the profile are unstable if their wavelengths
exceed 2	 (the so-called Rayleigh instability): such perturbations
increase (decrease) the surface tension stress in the slightly thin-
ner (thicker) regions, driving further narrowing (widening) of
the thread. For a viscoplastic fluid, on the other hand, the sit-
uation is different: our initial, uniform thread is held rigid by
the fluid’s yield stress and the additional surface tension stress
generated by an infinitesimal perturbation is never sufficient to
overcome a finite yield stress. Instead, a perturbation of finite
amplitude is required to allow surface tension to stress the col-
umn sufficiently to liquefy it somewhere along its length; and
conventional linear stability theory is no longer relevant (as in
some other viscoplastic stability problems; e.g. [12]). Specifi-
cally, we consider a spatially periodic problem and introduce a
finite-amplitude perturbation by initially deforming the thread
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profile:

h(z, 0) = 1 + h1 cos
(

2	z




)
, (20)

where 
 is the wavelength (or domain length).

3.1. Inertialess instability

To simplify our analysis, we neglect inertia, R = 0, and approx-
imate the curvature as

� = 1
h

− ∂2h

∂z2
,

to allow certain results to be obtained in closed form. Then, inte-
grating the right-hand side of (17), we obtain

�zz = f (t)
h2

− 2
3h2

∫ z

0

(
∂h

∂z
+ h2 ∂3h

∂z3

)
dz, (21)

where the “constant” of integration, f(t), is proportional to the
extensional force on the thread at z = 0. If the initial stress pre-
dicted by (21) is everywhere below the yield value, 2ˇ/

√
3, the

thread remains rigid, w(z, t) = 0, and f(t) = f(0) is undetermined.
The unknown stress, f (0)/h(z, 0)2, reflects the indeterminacy of the
stress state of the rigid, uniform filament (which is constrained,
but not eliminated, by the expedient asymptotic scalings that we
adopted in deriving the slender filament model). The magnitude of
this pre-stress is limited by the requirement that the thread does
not yield, but is otherwise arbitrary.

Conversely, if (21) predicts that yielding occurs somewhere,
then f(t) is determined by imposing the periodicity condition,

0 = w(
, t) − w(0, t) =
∫ 


0

∂w

∂z
dz, (22)

with the integrand given by (19) and (21) (cf. [13]).

3.1.1. Criteria for instability and yielding
To conserve mass when liquefied, the thread must yield in

at least two separate regions; one in a state of extension, �zz >
2ˇ/

√
3 (and hence ∂w/∂z > 0), the other under compression, �zz <

−2ˇ/
√

3 (∂w/∂z < 0). Thus, the criterion for the thread to first liq-
uefy is max{�zz} = − min{�zz} = 2ˇ/

√
3. For our initial condition

(20), this occurs when h1 is increased beyond some threshold
depending on the yield-stress parameter, ˇ.

The threshold follows from substituting the initial condition
(20) into (21) to obtain the initial stress

�zz(z, 0) = f (0)
h2

− 2
3h2

(
h − h0 − 4	2

3
2
(h3 − h3

0)

)
,

where h0 = h(0, 0) = 1 + h1. For sufficiently small amplitudes, the
only stress extrema occur at z = 0 and 
/2. Thus, the fluid can only
yield if

ˇ >
1√
3

h1

1 + h2
1

∣∣∣∣4	2

3
2
(3 + h2

1) − 1

∣∣∣∣ . (23)

For longer waves with 
 > 2	, we further find �zz(0, 0) =
−2ˇ/

√
3 and �zz(
/2, 0) = 2ˇ/

√
3. Because w = 0 at the extremal

points, (16) becomes ∂h/∂t = −(h/2)∂w/∂z there, and so h(0, t)
increases and h(
/2, t) decreases from the initial condition. The
thread therefore proceeds unstably towards pinch-off. Conversely
for shorter waves with 
 < 2	, the extrema of the stress are
reversed, �zz(0, 0) = 2ˇ/

√
3 and �zz(
/2, 0) = −2ˇ/

√
3, as are the

senses of ∂h/∂t at z = 0 and 
/2. Hence the shape deformations
become stably smoothed by surface tension.

For larger amplitudes, because of the increasing contribution of
the axial curvature term (which has a locally stabilising effect) to

Fig. 2. Threshold amplitudes (solid curves) for yielding at unstable wavelengths
with 
 = 8, 10, 12, 15. The dashed lines are given by the small-amplitude calculation,
(23), and the larger dots denote where (23) deviates from the true solution (i.e.,
where the global stress extrema cease to occur at z = 0 and 
/2).

the surface tension force, the global stress extrema need not lie
at z = 0 or 
/2. When this occurs the location of the stress extrema,
together with the amplitude thresholds, must be computed numer-
ically. For example, Fig. 2 shows critical amplitudes as a function
of ˇ for various values of the wavelength. Numerically computed
thresholds are given by the solid lines; the dashed lines show the
prediction in (23). The two sets of curves diverge at larger values of
h1, where the stress extrema shift from the profile extrema. Sample
stress profiles illustrating how the stress extrema first shift away
from z = 0, 
/2 are shown in Fig. 3.

3.1.2. Thread evolution
To study the thinning dynamics in more detail, we solve (16),

(19), (21) and (22) numerically by first discretizing in space (using
a uniform grid with 2000 points), and then integrating the resulting
coupled ordinary differential equations with a standard integrator
with an adaptive time step. The one complication is the determi-
nation of f(t) from the nonlinear constraint, (19) and (21), which
requires an iterative procedure. Computations begin with a sta-
tionary perturbed cylinder and are carried out until the minimum
radius reached hmin < 10−3.

An example showing the evolution from an unstably perturbed
thread is shown in Fig. 4 (ˇ = 0.03, 
 = 10, h1 = 0.1, and n = 1; with
these values for ˇ and 
, the threshold amplitude is h1 = 0.087). The
first panel in the figure displays the thread profile at various times;

Fig. 3. The initial stress distribution, �zz(z,0), for (a) h1 = 0.1, ˇ = 0.02 and (b) h1 = 0.5,
ˇ = 0.1 (
 = 8). The dotted lines represent the yield stress. The lower panel is a repro-
duction of the threshold amplitude curve for 
 = 8 from Fig. 2 with the crosses
showing the relative locations of the stress profiles in the parameter space. The
circles show the parameter values of the threads shown in Fig. 5.
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Fig. 4. The evolution of an unstable thread: ˇ = 0.03, 
 = 10, h1 = 0.1, n = 1. (a) The thread profile h(z,t) at times t = 0, 40, 50, 55, 60, 65, 66 (pinch-off occurs for tc ≈ 66.89). (b)
A time series of f(t). (c) The location of the yield surfaces as a function of time. Shaded regions are unyielded. Though the two surfaces appear to merge around time t = 40,
there is still a very narrow unyielded region for t > 40. (d) The minimum radius, hmin(t) ≡ h(
/2, t), as a function of time. The dashed line represents (24).

extrapolation suggests that pinch-off occurs at tc ≈ 66.9. The sec-
ond, third and fourth panels show the time series of f(t), the position
of the yield surfaces and the minimum radius, hmin(t) ≡ h(
/2, t),
respectively. Initially, only small portions of the thread near z = 0
(z = 
) and z = 
/2 are yielded ((23) applies in this example; cf.
Fig. 3a). However, the yielded regions quickly expand to fill the

thread. Note that small unyielded regions always surround the
positions at which the stress (or ∂w/∂z) changes sign. However, as
the thread evolves, the stress increases by several orders of mag-
nitude over the remainder of the thread and the unyielded region
becomes extremely narrow, with the two yield surfaces appearing
to merge together in Fig. 4b. Although the unyielded (plug) regions

Fig. 5. (a) The location of the yield surfaces as a function of time for ˇ = 0.1, 
 = 8, h1 = 0.5, n =1. Shaded regions are unyielded. (The threshold amplitude for yielding is
h1 = 0.396, and pinch-off occurs at tc ≈ 12.6.). (b) The location of the yield surfaces as a function of time for ˇ = 0.5, 
 = 8, h1 = 0.8, n = 1. (The threshold amplitude for yielding
is h1 = 0.781, and pinch-off occurs at tc ≈ 13.2.) (c) and (d) Time series of f(t) corresponding to (a) and (b) respectively, with the insets showing the initial thread profile and
the profile just before pinch-off.
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Fig. 6. (a) The location of the yield surfaces as a function of time for ˇ = 0.1, 
 = 8, h1 = 0.5, n = 0.6. Shaded regions are unyielded. (b) The location of the yield surfaces as
a function of time for ˇ = 0.1, 
 = 8, h1 = 0.5, n = 1.2. (c) and (d) The minimum radii, hmin(t) ≡ h(
/2, t), as functions of time, corresponding to (a) and (b) respectively. The
expected slope near pinch-off, (tc − t)n , is indicated by the dashed lines. The insets show the initial thread profile and the profile just before pinch-off.

are hard to resolve at times close to pinch-off, there is no evidence
that they play a dynamical role.

Further examples, for larger values of ˇ, are shown in Fig. 5.
In these cases, the stress extrema do not both lie at the stagnation
points (the minimum stresses occur near z ≈ 2.5, cf. Fig. 3b), and the
region around z = 0 is initially rigid. For the case shown in Fig. 5a
and c the plug around z = 0 quickly liquefies to leave a pinching
state much like that shown earlier, as highlighted by the thread
profiles inset into Fig. 5c. However, at large values of ˇ this plug
remains intact for the entire evolution of the thread (Fig. 5b and
d). At even higher values of ˇ the behaviour is qualitatively similar
to that shown in Fig. 5b and d, though by this point the threshold
amplitudes necessary to yield the fluid thread are very large (e.g.,
for ˇ ≈ 1 the critical amplitudes are around h1 ≈ 0.9).

Finally, the evolution for threads with different power-law
indices are shown in Fig. 6. Qualitatively the overall behaviour is
similar to the case of n = 1; however, there is a distinct difference
in the thread profiles for differing values of the power-law index.
For n < 1 the central neck region near hmin(t) ≡ h(
/2, t) is shorter,
and the plug regions persist for longer periods of time. These are a
result of the decreasing resistance to stress due to the shear thin-
ning nature of the fluid. For n > 1 we have the opposite behaviour:
the central neck region becomes longer and the plug regions liquefy
more quickly.

3.1.3. Approach to pinch-off
As illustrated by the narrowing of the plugs in Figs. 4 and 5,

the extensional stresses dominate the yield stress over the thin-
ning regions as the thread progresses towards pinch-off. Indeed, as
illustrated by the minimum radius, hmin(t), displayed in Fig. 4d, the
solution appears to converge to the self-similar form expected for
a Newtonian filament, with [1,14]

hmin(t) ≈ 0.0709(tc − t), (24)

where tc is the time of pinch-off. (The same curve, shown on a
logarithmic scale, is given later in Fig. 8c). Similarly for n /= 1 the

solutions appear to converge to the inertialess self-similar form for
power-law fluids (the large extension limit for all generalized New-
tonian models), with the minimum radius then scaling like (tc − t)n;
see Fig. 6c and d [15–17].

Fig. 7. Collapse towards the self-similar solution for (a) the thread profiles and (b)
the velocity. (ˇ = 0.03, 
 = 10, h1 = 0.1, n = 1, a ≈ 0.175).
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Fig. 8. The different similarity solutions obtained for ˇ = 0, 0.01, 0.02, 0.03, (
 = 10,
h1 = 0.1, n = 1, a ≈ 0.175). (a) The thread profile; (b) the velocity; (c) the minimum
radius as a function of time for ˇ = 0, 0.01, 0.02, 0.03; the dashed line represents (24),
the inset shows the same data on a logarithmic scale.

Further details of the self-similar solutions (for n = 1) are shown
in Figs. 7 and 8. Fig. 7 shows the collapse of numerical solutions
under the Newtonian similarity scalings,

� = (tc − t)−a(z − 1
2


), H(�) = h(z, t)
tc − t

, (25)

W(�) = (tc − t)1−aw(z, t), T(�) = (tc − t)�zz(z, t) (26)

(see [14]), where a is a suitable eigenvalue arising because the
similarity solution is of the second kind. Note that, although
Figs. 4d and 7 suggest that our numerical solutions converge to the
Newtonian similarity solution (where a ≈ 0.175), the yield stress
is not irrelevant. In fact, because the similarity solution is of the
second kind, the detailed form contains a constant (in addition to
the eigenvalue a), which must be matched to the filament profile
and velocity outside the pinching region. In the Newtonian case, the
value of this constant (the effect of which is to scale the similarity
solution H(�) in �), depends on the initial perturbation amplitude
[14]. With a yield stress both the spatial structure of the similar-
ity solution and the additional constant depend on ˇ, as illustrated

in Fig. 8. The scaling constant in the similarity solutions is calcu-
lated by matching the scaled thread profile,H(�), at tc − t = 0.01 to
the analytic similarity solution at a fixed value of H (here we used
H = 2, though the result is unaffected by the specific value).

The scalings in (25) and (26) also confirm our numerical obser-
vation that the shrinking plugs in Figs. 4 and 5 do not affect
the pinching dynamics: the yield stress is order (tc − t) less than
the local stress everywhere except in narrow regions surround-
ing the stress-free points, � = �∗, where T(�∗) = 0. Indeed, since
T(�) = ±2ˇ(tc − t)/

√
3 at the edges of the plugs, those rigid sections

have the borders,

�∼�∗ ± 2ˇ(tc − t)

T′(�∗)
√

3
, (27)

or

z∼
/2 + �∗(tc − t)a ± 2ˇ(tc − t)a+1

T′(�∗)
√

3
. (28)

In other words, the plugs move towards the pinch points, z =

/2 at the rate (tc − t)a, but their width shrinks faster still, like
(tc − t)a+1. Moreover, the similarity scalings, together with the inte-
gral of the momentum equation in (21), can be used to show that
there is no significant change in the thread profile across the plugs.
Thus, although the plugs enter the self-similar regions as the thread
progresses towards pinch-off, their effect disappears.

For Newtonian filaments, inertia cannot remain negligible as the
thread pinches off and must eventually enter the main balance of
forces together with surface tension and viscous forces. This leads
to another self-similar solution in which the minimum radius again
decreases linearly with time, but the pre-factor on the right-hand
side of (24) is adjusted to 0.0304 (e.g. [18,19]). This solution is of
the first kind and independent of the dynamics outside the pinch-
ing region. Although we have not taken steps to confirm this, we
anticipate that the yield stress does not change this picture, and so
the self-similar scaling seen in Fig. 4d is only a transient precursor
to the final behaviour [20,21,22].

4. Conclusions

In this article we have developed a slender filament model for
Herschel–Bulkley fluids that incorporates the effects of surface ten-
sion, inertia, gravity and rheology. We have applied this model to
explore the viscoplastic analogue of the Rayleigh instability and, in
part II, will use it to study viscoplastic dripping and bridges.

For the Rayleigh problem, a filament with a yield stress is lin-
early stable and finite-amplitude perturbations are required to kick
the column into action. We calculated the conditions for yield-
ing and instability of a sinusoidally perturbed thread based on
the initial amplitude and wavelength. We also numerically stud-
ied the inertialess growth of the instability and the progression
towards pinch-off. Because the pinching dynamics now depends
on the detailed fashion in which the column is initially liquefied,
the Rayleigh instability for a viscoplastic fluid becomes rather arti-
ficial and cannot be considered to be the fundamental problem that
it is for Newtonian (and power-law) fluids. Instead, it is more nat-
ural to consider situations in which the thread is forced to yield
by external forces or properly controlled perturbations, as in the
drip and bridge problems of part II; these scenarios are relatively
simple to set up as laboratory experiments, and have many direct
applications.

The Rayleigh problem does highlight the key result that the
yield stress does not play a major role in the self-similar dynam-
ics near pinch-off: we have argued that sufficiently close to the
moment that the thread breaks, the behaviour is similar to that
expected for Newtonian and power-law fluids, reflecting the domi-
nance of the viscous forces over yield stress. Thus, the final pinch-off
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reflects only the balance of surface tension, viscosity and inertia (at
least for power-law indices that are neither too small nor too large
[8,17]).
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