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a b s t r a c t

A model for the dynamics of slender filaments of Herschel–Bulkley fluid is used to explore viscoplastic
dripping under gravity and thinning under controlled extension (liquid bridges). The conditions required
for fluid to yield are delineated, and the subsequent thinning and progression to pinch-off are tracked
numerically. Calculations varying the dimensionless parameters of the problem are presented to illustrate
the effect of surface tension, rheology, inertia (for dripping) and gravity. The theoretical solutions are
compared with laboratory experiments using aqueous solutions of Carbopol and Kaolin suspensions. For
drips and bridges, experiments with Carbopol are well matched by the theory, using a surface tension
equal to that of water, even in situations when the fluid is not slender. Experiments with Kaolin do
not compare well with theory for physically plausible values of the surface tension. Implications for
rheometry and surface-tension inference are discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the first of this duet of papers on the dynamics of viscoplas-
tic filaments, we derived a slender-thread model and applied it
to the classical Rayleigh instability problem. For Newtonian fluids,
the Rayleigh instability provides the simplest theoretical setting in
which to study the competition between surface tension and vis-
cous stress with or without inertia [1]. As discussed in the prequel,
the viscoplastic version of the Rayleigh instability should not be so
regarded: a uniform filament is rigidly held by the yield stress and
cannot be deformed by a linear perturbation; the Rayleigh instabil-
ity is therefore completely removed, and a finite-amplitude initial
disturbance is required to initiate any thinning of the filament.
Unfortunately, the dependence of the resulting dynamics on the
form of the initial perturbation renders the problem more artificial
and unphysical.

By contrast, the two problems we now move on to consider,
viscoplastic dripping and extending bridges (illustrated in Fig. 1),
are more natural since fluid flow does not need to be initiated
by introducing a predefined deformation to an existing cylindri-
cal filament. Moreover, the two problems are simpler to set up and
study in the laboratory. Indeed, extending bridges are the central
flow device used in some rheometers to infer extensional viscosity.
Both problems have been extensively investigated for Newtonian
and viscoelastic fluids; comprehensive reviews and pertinent ref-
erences are provided by Eggers [1] and Eggers and Villermaux [2].
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The ease of setting up analogous laboratory studies enables us
to complement our theoretical discussion of drips and bridges with
experiments that provide a firmer connection with the practical-
ities of rheometry as well as a test of the theoretical predictions.
As proto-typical viscoplastic fluids, we use Carbopol solutions and
Kaolin slurries, which are commonly assumed to possess both a
yield stress and a shear-thinning viscosity. However, neither fluid is
ideal, with a number of previous studies providing evidence for flow
behaviour that cannot be captured by a simple Herschel–Bulkley
rheology [3–5]. In fact, a secondary objective in the current work
is to further quantify such non-ideal behaviour by detecting dis-
agreements between the theory and experiments. As we shall see,
the extensional dynamics of Carbopol filaments appear to be well
modelled by the theory, but Kaolin filaments are more problem-
atic.

The dripping of viscoplastic fluids has recently been addressed
in a number of studies: a numerical simulation for the pinch-
off of a drop of Bingham fluid was presented by Davidson and
Cooper-White [6]; although this simulation avoids any assump-
tion of slenderness, only limited results are reported presumably
because of the increased computational complexity. Al Khatib and
Wilson [7] and Coussot and Gaulard [8] modelled slender drops
of inertialess viscoplastic filaments without surface tension and
presented solutions for a single set of parameters. In this situa-
tion, a drop falls from the end of the extruded filament once the
gravitational pull surpasses the yield stress, but the drop remains
connected by an infinitely drawn-out thread. Surface tension and
inertia are essential to obtain pinch-off at a finite length. Coussot
and Gaulard compared the drop volumes predicted by this theory
with experiments using a number of different viscoplastic mate-
rials, finding reasonable quantitative agreement for a commercial
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Fig. 1. The geometry of the (a) dripping and (b) bridge problems. The profiles shown
are numerical solutions of the reduced model equations.

hair gel and a certain degree of qualitative agreement for other vis-
coplastic fluids. The current article extends these works by adding
surface tension and inertia, examining parameter space and by
making more demanding comparisons between the slender theory
and experiments. The only work that we are aware of directed at
viscoplastic bridges is an unpublished manuscript by A. Alexandrou
(personal communication) that presents numerical computations
using a different extension protocol (i.e., motion of the adjoin-
ing plates) to the one adopted here (we consider a fixed rate of
extension; Alexandrou’s plates are brought to rest after an initial
transient). Some attention has been directed at the limit of very
squat bridges, corresponding to the problem of adhesion. In this
case, the flow is no longer primarily extensional and our descrip-
tion does not apply. However recently Barral et al. [9] applied a
simplified, plastic lubrication model to the problem and obtained
some agreement with experiments.

Although there are a large number of applications of our analy-
sis in engineering, the dynamics of viscoplastic filaments also has a
great deal of interest due to the basic physics and the implications
for rheometry. Notably, the pinch-off problem traverses the full
physical range of deformation rate (in this case, the rate of exten-
sion), beginning from the yielding of a rigid column to the nearly
singular extension rates arising near pinch-off. Thus, one wonders
whether this “sampling” of the full behavioural range can be har-
nessed to provide a relatively complete picture of fluid rheology.
Equally as importantly, however, many standard prescriptions for
determining surface tension are obscured by the presence of a yield
stress (as surface tension is not able to deform the fluid surface
if the curvatures and applied stresses are too small), leaving one
needing alternative methods for the task. In order to address these
questions, we offer several reflections on the implications of the
theoretical results for rheometry and surface-tension inference.

2. Theoretical model

The dimensionless equations of motion determining the radius,
h(z, t), and axial speed, w(z, t), of a slender viscoplastic filament are
(see paper I)

∂h

∂t
+ w
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and the Herschel–Bulkley constitutive relation is written as
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(accommodating the yield condition, |�zz | > 2ˇ/
√

3). In arriving
at this dimensionless system, axial lengths and radii have been
scaled by R, the radius of the thread where it is either extruded
from a pipe (for the dripping problem) or attached to adjoin-
ing plates (for the bridges; see Fig. 1), times are scaled with the
viscous–capillary time-scale, T = (KR/�)1/n (where K is the consis-
tency of the Herschel–Bulkley relation, and � is the surface tension),
speeds with R/T , and stresses and pressure with KT−n (with n the
Herschel–Bulkley power-law index). The dimensionless parame-
ters are

R = �R3

�

(
�
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)2/n

, G = �gR2

�
, ˇ = �Y R

�
.

For the current problems, we also have the dimensionless extrusion
or extension speed,

W = W

R

(
KR

�

)1/n

,

which can be interpreted as the ratio of the time-scale for extrusion
or extension to the time-scale of the viscous–capillary reaction, or
a modified capillary number.

We solve Eqs. (1)–(4) numerically using the scheme described in
Appendix A. The initial configuration and boundary conditions are
specific to each of the problems that we study and are summarized
at the beginning of Sections 3 and 4.

3. Dripping

To explore gravitationally induced dripping, viscoplastic fluid
is extruded at a fixed speed through a vertical, cylindrical pipe
(Fig. 1a). The boundary conditions at the pipe’s orifice are h(0, t) = 1
and w(0, t) = −W. The base of the pendant drop, z = L(t) with
dL/dt = w(L, t), is a free boundary that must be computed as part
of the problem.

A second boundary condition is required at the base of the drop.
Partly for numerical reasons, we consider two different cases: first,
the most natural choice is h(L, t) = 0. Unfortunately, this choice
complicates the initial condition because h(z, 0) must be contin-
uous for our numerical scheme to compute the solution reliably.
To begin, we therefore follow previous researchers (e.g., [10]) and
introduce a rigidly moving spherical cap that protrudes to L(0) =
−0.1, so that h(z, 0) =

√
1 − z2/L(0)2 and w(z, 0) = −W. However,

a further complication with this initial condition is that because
of the shape of the spherical cap surface tension can drive flow
adjustments near the tip that do not affect the dynamics higher up
the filament but which require proper but superfluous resolution
throughout the computation (see Section 3.1). This motivates the
second choice for the lower boundary condition.

Provided curvatures are dominated by the leading-order term,
� � 1/h, the conservative form of (2) is

R
[

∂

∂t
(h2w) + ∂

∂z
(h2w2)

]
= ∂
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(
h + 3

2
h2�zz

)
− Gh2. (5)
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Thus, if

�zz(L, t) = −2/3, h(L, t) = 1, (6)

then the end of the thread freely falls under gravity, maintaining
its thickness and remaining unyielded if ˇ > 1/

√
3. In other words,

the “free-tip” conditions (6) introduce no dynamics near the tip,
leading to a solution that furnishes the correct gravitational stress
on the higher regions of the filament where thinning occurs. Thus,
this second choice allows us to begin with h(z, 0) = 1 (and L(0) =
−0.1) and compute solutions without needing to resolve any tip
dynamics (at least provided the yield stress is not too small, ˇ >
1/

√
3), expediting the computation.

We continue both sets of computations well beyond the
moment that the upper regions of the thread begin to yield under
the weight of the underlying material and up to the moment that
the filament thins to a minimum radius of hmin = 0.05. We end the
computations before the final pinch-off for the technical reasons
that are given presently and because we are chiefly interested in
the larger scale features of drop formation rather than the pinch-off
dynamics which (as elucidated in part I) is dominated by the vis-
cous stresses (Newtonian or power-law) and is therefore captured
by existing theory. In comparisons with experiments we compute
profiles further, to hmin = 10−3.

3.1. Inertialess drips (R = 0,W finite)

We begin with a discussion of the inertialess problem, which
allows some analytical inroads and a faster exploration of param-
eter space. A sample numerical solution using the boundary
condition h(L, t) = 0 is shown in Fig. 2. Although fresh material is
extruded from the orifice in an unyielded state, the high curva-
ture associated with the initial spherical cap generates a stress that
liquefies the tip of the extrusion (as mentioned above). The rela-

Fig. 2. Inertialess drop for W = G = ˇ = 1 and n = 0.4. (a–e) Profiles at different
times; shaded regions are unyielded. In (e), the right-hand-side shows the free-tip
solution. (f) Log–log plot of minimum thread radius against tc − t; dashed curve is
(11). (g) Position of base of drop, unyielded region (shaded) and minimum radius
location (dashed) against time. (N = 200 grid points.)

tively small yielded tip persists throughout the computation and
is attached to an overlying plug that is rigidly pushed out until the
weight of the filament is sufficient to liquefy the thread a second
time near the orifice. Thinning in this upper yielded region is qual-
itatively similar to the inertialess Newtonian case, with an almost
up-down symmetric neck and the minimum radius occurring near
the centre of the region.

Although the detailed adjustment in the vicinity of the tip is
dependent on the particular choice of initial condition, the dynam-
ics further up the thread is insensitive to this choice. This is
illustrated in panel (e) of Fig. 2 which compares the thread pro-
file at the end of the computation shown in the rest of that figure
with an equivalent profile from a computation using the alterna-
tive boundary condition in (6). The unyielded, squared end of the
second computation is clearly revealed in the picture, yet differ-
ences in the upper portions of the thread, including the upper yield
surface, can barely be distinguished. Thus, we conclude that the tip
dynamics does not affect the manner in which the thread thins fur-
ther up. In particular, we anticipate the same behaviour even if we
were to begin the evolution from a previous pinch-off event (as in
the experiments).

In the absence of surface tension and inertia, the limiting length
of a viscous thread is infinite when pinch-off eventually occurs [11].
We also find this result here, even when including surface tension
and viscoplasticity, and below we offer a mathematical explana-
tion (Wilson [11] also recognized that surface tension does not
modify the eventual pinch-off, but gives no detailed reasoning).
An awkward consequence of the infinite extension of the inertia-
less thread is that we are unable to continue computations until
the final moment of pinch-off, motivating the halt of the compu-
tation when the minimum radius hmin = 0.05. An alternative is to
reintroduce inertia, which causes pinch-off at finite length when
there is no yield stress (at least with moderate values of n [12]),
and likely remains true here because viscous stresses dominate the
yield stress at pinch-off. Nevertheless, our main thrust is to explore
the effect of a yield stress, and so we simply stop the computations
at finite, but relatively small radius.

3.1.1. Drop volume
An analytical prediction can be made for the volume of the

pinched-off drop if we introduce the asymptotic approximation,
� ≈ 1/h, together with a Lagrangian coordinate system, (z0, t),
where z0 =Wt0 and t0 is the time that a fluid slice leaves the orifice,
or z0 is the initial location of a fluid slice within the supply pipe (cf.,
[11]). Conservation of mass implies ∂z/∂z0 = 1/h2 and the vertical
momentum Eq. (2) integrates to

3
2

h2�zz = Gz0 − h,

on imposing the free-tip condition (6).
Eq. (1) now becomes{

h = 1, z0 ≤ z0Y

∂h

∂t
+ 1

2
√

3
h
(

Gz0 − h√
3h2

− ˇ
)1/n

= 0, z0 > z0Y ,
(7)

where

z0Y = (
√

3ˇ + 1)/G

is the initial location of the first fluid slice to yield in tension. Thus,

t − z0

W =
∫ 1/h

1

2
√

3

y
(

Gz0y2/
√

3 − y/
√

3 − ˇ
)1/n

dy. (8)

To determine the drop volume, we set h = 0 in (8) to give the time
tc(z0) at which a slice initially at z0 achieves zero radius. Searching
for the minimum of this function, ∂tc/∂z0 = 0, then provides the
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initial location of the pinch-point, z0 = z0P . After some algebra we
arrive at the implicit expression,

z0P

W =
√

3

( √
3

G(z0P − z0Y )

)1/n

+
( √

3
Gz0P

)1+1/n

× 2F1

(
1 + 2/n, 1 + 1/n; 2 + 2/n; 2M/(m + M)

)
(2 + n)(m + M)1+2/n

, (9)

where m = 1 − 1/2Gz0P , M =
√

z0Y /z0P − 1 + m2 and 2F1(·, ·; ·; ·) is
the hypergeometric function [13]. The drop volume is then �z0P .
Predictions from (9) are accurate provided inertia and the omitted
curvature term are negligible. Simpler expressions follow in the
limit of small extrusion speed where growth is quasi-static; sur-
face tension then allows pinch-off to occur rapidly once the yield
stress is overcome. In this circumstance, z0P∼z0Y , giving the sim-
plest estimate for the drop volume of (

√
3ˇ + 1)�/G. Substituting

z0P = z0Y into the left-hand side of (9) provides the improvement,

z0P ≈ z0Y +
√

3
G

(√
3W

z0Y

)n

. (10)

3.1.2. Minimum radius near pinch-off
The Lagrangian framework can also be used to predict the

asymptotic approach to pinch-off: for small h, the yield stress and
surface tension terms can be neglected from (7) to furnish

∂h

∂t
∼ − 1

2
√

3

(
Gz0√

3

)1/n

h1−2/n.

We find a limiting solution as t → tc ,

hmin∼
(

1

n
√

3

)n/2(Gz0P√
3

)1/2

(tc − t)n/2, (11)

which is compared to the numerical results in Fig. 2f. This solu-
tion reflects how the dominant balance is between viscous stresses
and gravitational forcing near pinch-off [2,11]. Moreover, the scal-
ings of radius, length and speed implied by (11) indicate that both
curvature terms in (3) are indeed unimportant near pinch-off, not
just the leading-order asymptotic term. Thus, pinch-off leads to an
infinitely extended thread, as suggested numerically. Note that, in
practice, this is not the final scaling prior to pinch-off because iner-
tia eventually becomes important, and it is anticipated that the final
pinch-off dynamics then takes a universal form (see part I).

3.1.3. Parameter variations
Given the final state, we define several terms for descriptive

convenience in the discussion below; see Fig. 2e. The final length
denotes |L(t)| at the time when hmin = 0.05, and the pinch-point is
the location of the minimum radius. The neck is the thinning region,
defined as the length of the contiguous section having h < 0.1 and
containing the pinch-point. The end-cones bracket the neck.

Profiles of threads close to pinch-off for several values of ˇ are
shown in Fig. 3. For small yield stress, surface tension pulls the
drop into a more spherical shape, whereas for large ˇ a substan-
tial rigid tube remains. With increasing ˇ, the neck shortens, the
end-cones become more squat, and the position of the pinch-point
rises, all due to the extra mass accommodated in the pendant drop
for bigger yield stress (the final length has a more complicated
dependence on ˇ). The increase of the drop volume with ˇ roughly
matches the simple approximation, (

√
3ˇ + 1)�/G; the error in this

estimate is shown in Fig. 3g, along with data from the full ana-
lytic prediction (9). At this value of W, the simple approximation
gives a relative error of about 65% at small ˇ and improves to 5%
at large ˇ (where the thinning is rapid compared to extrusion once
the pinching regions yield, see Fig. 3f).

Fig. 3. Inertialess drops with various yield-stress parameters for W = G = 1 and
n = 0.6. (a–e) Final profiles; shaded regions are unyielded, + indicates the location
of the pinch-point and the bold line indicates the neck region; this convention is also
used in later figures. (f) Position of base of drop against time (solid curves). The L(t)
curves overlap along the inclined straight section −0.1 −Wt. (g) Drop volume less
(
√

3ˇ + 1)�/G against ˇ for n = 0.2, 0.4, 0.6 and 0.8. Solid curves with symbols are
the numerical solutions; dashed curves are the analytic predictions derived from
(9). (N = 200.)

Thread profiles with changing power-law exponent are shown
in Fig. 4. Proceeding right to left from weak to strong shear thinning,
the neck shortens substantially, the end-cones become more squat,
the final length decreases and the drop volume increases. These
all result from a decreasing resistance to stretching in the highly
stressed neck prior to pinch-off.
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Fig. 4. Inertialess drops with various power-law exponents forW = 0.1, G = 1 and
ˇ = 0.5. (a–f) Final profiles, decorated as in Fig. 3. (g) Drop volume against power-
law exponent: the solid curve is numerical, the dashed curve is the analytic solution
(9), the dotted line is the approximate solution (

√
3ˇ + 1)�/G and the dash-dotted

curve is (10). (N = 100.)

Drop volumes for varying extrusion speed are shown in Fig. 5.
As W increases, more fluid is extruded before pinch-off occurs,
increasing the drop volume. Simultaneously, since surface tension
plays less of a role during the pinch-off, the end-cones elongate,
the neck lengthens, the pinch-point is lowered and the final length
increases (see the sample pair of profiles also pictured). In Fig. 5 the
analytic approximation (9) to the drop volume compares well with
the numerical computation for the entire range of W shown. This
figure, along with Figs. 3g and 4g, allows us to gauge the usefulness
of the analytical expressions for the drop volume, on which we base
some results regarding rheometry in the conclusions. Overall, the
explicit approximation in (10) is almost as accurate as the implicit

Fig. 5. Inertialess drop volume against extrusion speed for G = 1, ˇ = 0.7 and n =
0.4. The solid curve is the full numerical solution, the dashed curve is the analytic
solution (9), the dotted line is the approximate solution (

√
3ˇ + 1)�/G and the dash-

dotted curve is (10). Profiles are shown atW = 0.1 andW = 5, decorated as in Fig. 3.
(N = 100.)

Fig. 6. Inertial Bingham (n = 1) drop forW = 0.1, G = 1, R = 10 and ˇ = 0.7. (a–e)
Profiles at different times. In (e), the right-hand-side shows the free-tip solution. (f)
Position of base of drop, unyielded region (shaded) and minimum radius location
against time for the free-tip solution. (N = 200 for profiles, N = 400 for the right-
hand-side of (e) and (f).)

expression (9), and in practical situations probably proves more
useful owing to its simplicity.

3.2. Inertial drips (R> 0)

A sample numerical solution with inertia is displayed in Fig. 6. At
early times, the profiles are similar to inertialess ones: an unyielded
plug is extruded until sufficient weight hangs below the orifice
to yield the fluid and initiate thinning. However, as the drop falls
away, because of inertia the gravitational stress is not fully balanced
against internal stresses. Thus �zz falls below the yield value and a
new unyielded plug is generated at the orifice. Close to pinch-off,
unyielded plugs also form in the neck around the locations where
the stress switches from tensile (in the narrowest regions) to com-
pressive (in the end-cones). As the evolution proceeds to pinch-off
these plugs become increasingly narrow and inconsequential, as
found in part I for the Rayleigh instability. As expected, pinch-off
now appears to be obtained at finite length (compare Figs. 2g and
6f). We anticipate that the behaviour in the approach to pinch-off
becomes self-similar, dictated by a balance between surface ten-
sion, inertia and viscous forces (see part I), but we did not confirm
this numerically.

A sequence of profiles illustrating the effect of increasing R for
different values of ˇ are shown in Fig. 7. For R = 1, the solutions
are similar to their inertialess counterparts, although the pattern
of interlaced yielded regions and plugs is more complicated. For
larger R, the increased fluid inertia delays the adjustment of the
new fluid emerging from the pipe, leading to more cylindrical upper
sections, and the pinching of the lower sections, to generate drops
with greater volume. The neck also becomes shorter and increas-
ingly asymmetrical, with the pinch-point occurring closer to the
actual drop (as for Newtonian fluids).

At fixedR, increasing the extrusion speed also promotes inertial
effects because of the increase in the dimensionless velocities. In
fact, for sufficiently largeWwithR> 0, the inertia delays thinning
sufficiently that a secondary region of thinning appears above the
primary one; see Fig. 8. At yet higher W, we anticipate that mul-
tiple interlaced plugs and thinning regions can appear, although



Author's personal copy

1152 N.J. Balmforth et al. / J. Non-Newtonian Fluid Mech. 165 (2010) 1147–1160

Fig. 7. Inertial drop profiles at hmin = 0.05 for Bingham fluids (n = 1) with G = 1
and W = 0.1. Rows correspond to (a) R = 1, (b) R = 10 and (c) R = 100. Columns
correspond to (i) ˇ = 0.1, (ii) ˇ = 0.2, (iii) ˇ = 0.3, (iv) ˇ = 0.5 and (v) ˇ = 1. (N =
200.)

we have not been able to show this numerically. The behaviour
appears to be analogous to the “string of sausages” regime observed
experimentally by Coussot and Gaulard [8].

3.3. Experiments

Our dripping experiments were performed by driving either a
Carbopol solution or a Kaolin slurry through vertical pipes of vary-

Fig. 8. Inertial drop profiles with hmin = 0.05 for various extrusion speeds with
R = 1.49 × 10−3, G = 5.85, ˇ = 3.35 and n = 0.43, corresponding to Carbopol exper-
iments with our wider pipe in Section 3.3. Shaded regions are unyielded. (N = 200;
boundary conditions (6).)

ing radii. The fluids were fed from a reservoir in a cylinder fitted
with a piston attached to a computer-controlled linear actuator. The
setup effectively duplicated a standard syringe pump, although the
volume capacity and range of flow rates were much larger. Images
of the pinching threads were taken with a high speed CMOS camera
(Mikrotron EoSens CL); by using various lenses and only a fraction
of the total pixels, we were able to obtain up to 10,000 fps with a
spatial resolution of 0.042 mm/pixel. Extrusion rates ranged from
0.059 to 39.3 mL/s, and were measured with an accuracy of ±0.5%.
Two different pipe radii, 3.3 and 6.6 mm, were used.

Stress versus shear-rate curves for the two fluids in steady shear
were measured using a Bohlin CS rotational rheometer; Appendix
B summarizes the detailed properties of the fluids, together with
fits of the rheometric data to the Herschel–Bulkley model. The
Herschel–Bulkley parameter values are given in Table 1. Table 2
lists the relevant dimensionless parameters for the different exper-
imental configurations considered, assuming both materials had
the same surface tension as water (direct measurements of this
quantity were unavailable).

A sequence of images from a sample Carbopol experiment are
shown in Fig. 9, with overlaid theoretical profiles. Note that the

Table 1
The rheological parameters determined from fitting the stress-shear-rate curves to
the Herschel–Bulkley model or fitting the drop volumes to (10).

�Y /Pa K /Pa sn n

Carbopol – up ramp 37 13.6 0.429
Carbopol – down ramp 28 15.8 0.411
Carbopol – drop volume 42 8.6 0.488
Kaolin – up ramp 228 10.4 0.483
Kaolin – down ramp 246 0.128 1.21
Kaolin – drop volume 157 10.5 0.634
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Table 2
Dimensionless parameter values for the different experimental configurations.

Fluid R/mm R G ˇ n W
Carbopol 3.3 4.69 × 10−3 1.46 1.68 0.43 0.226–5.65
Kaolin 3.3 1.78 × 10−2 2.30 10.3 0.48 0.145–14.5
Carbopol 6.6 1.49 × 10−3 5.85 3.35 0.43 0.142–71.0
Kaolin 6.6 7.97 × 10−3 9.21 20.7 0.48 0.077–30.9

experimental drip continues from a previous pinch-off, whereas
the theory employs the free-tip boundary condition (6), so the
two cannot be compared at the bottom of the drop. Nevertheless,
the theoretical predictions are in reasonable agreement for the
qualitative shape in the overlying thinning region. Other details
compare less favourably, however: a substantially longer neck is
observed experimentally. This discrepancy could indicate that our
Herschel–Bulkley fit provides too low a value for n at large exten-
sional stresses. Indeed, the rheological data is not especially well
fit by a single power law over the entire range of stresses (see
Appendix B).

More dramatically, once the neck became very long and thin,
secondary pinches could form that broke this thinned region into
satellite drops. Satellite formation was irregular and unrepeatable,
reflecting the importance of noisy variations, much as has been
observed for high viscosity Newtonian fluids. For viscous fluids, sur-
face tension subsequently pulls the satellites into spherical shapes.
With our yield-stress fluids, some recoil (due either to surface
tension or fluid elasticity or both) was evident and the droplets
typically contracted into slender ellipsoids rather than spheres.

Images of a Kaolin drip are shown in Fig. 10, again with over-
laid theoretical profiles. For this material, the experiment compares
poorly with theory. One possible source of the disagreement could
be our adoption of the surface tension of water for the Kaolin sus-
pension. However, if we try and “calibrate” the surface tension of
the suspension by matching numerical profiles to the experiments,
the comparison is only improved if the surface tension is made 10
or 20 times larger than that of water. More likely is that the consti-

Fig. 10. Experimental and numerical profiles for Kaolin with a 6.6 mm radius pipe
and W = 0.0802. (Frames 1, 1413, 1473, 1484 and 1510 at 1663 fps.) (N = 100;
boundary conditions (6); pinch-off time matched.)

tutive behaviour of Kaolin is poorly fit with the Herschel–Bulkley
model, as suggested by other attempts to match theory with
unsteady experimental flows [5] and apparent thixotropy in our
rheometry (see Appendix B and Fig. 21). For example, the experi-
mental behaviour evident in Fig. 10 suggests deformation may be
occurring below the measured yield stress.

A comparison of observed and predicted drop volumes for both
materials is shown in Fig. 11. Also included in the figure are Cous-
sot and Gaulard’s data from their experiments with a commercial
hair gel, as well as their theoretical result (which is identical to

Fig. 9. Experimental profiles for Carbopol with a 3.3 mm radius pipe andW = 2.35. (Frames 0, 300, 450, 520, 540, 550, 560, 570, 571 and 588 at 1970 fps.) The superimposed
black and white (for contrast) curves are corresponding numerical profiles. The dashed curves are the pinched-off drop profile translated to coincide with the top of the
experimental drop. (N = 200; boundary conditions (6); pinch-off time matched.) The inset shows the formation of ellipsoidal satellites atW = 5.88 at same scale.
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Fig. 11. Dimensionless drop volumes as a function of W. Symbols correspond to
experiments (open are direct measurements of drop mass, solid are taken from the
time interval between pinch-off events). The solid curves (with points) correspond
to numerical solutions with inertia, the dashed curves to the analytic prediction in
(9), the dash-dotted to Coussot and Gaulard’s theoretical result (no surface tension)
and the dotted lines to the leading-order estimate (

√
3ˇ + 1)�/G. Symbols: (a) ♦

correspond to Carbopol with a 3.3 mm radius pipe; (b) 	 to Coussot and Gaulard’s gel
(R = 1.34 × 10−5, G = 1.20, ˇ = 2.18, n = 0.355); (c) ◦ to Kaolin with a 3.3 mm radius
pipe; (d) � to Kaolin with a 6.6 mm radius pipe. (N = 100; boundary conditions (6).)

(10) with the surface tension term removed [8]). For the Carbopol
solutions, the numerical results compare favourably with exper-
iment, although they slightly over-predict the true volumes. The
comparison is even tolerable for Kaolin at smallW. When ˇ � 1 the
drop volume is predominantly determined by the yield stress and
the simple approximation z0P = (

√
3ˇ + 1)�/G proves quite accu-

rate; surface tension and the extrusion speed have little effect (e.g.,
the Kaolin with a 6.6 mm radius pipe). However, when ˇ∼O(1) all
the physical parameters provide a distinct contribution to the drop
volume. (The effect of surface tension can be seen by comparing
our analytical prediction with the theoretical result of Coussot and
Gaulard in Fig. 11.)

We were also able to observe Coussot and Gaulard’s “sausage-
on-a-string” regime in the experiments. Images of Carbopol threads
with different numbers of “sausages” are shown in Fig. 12. The
number of distinct, connected thinning regions varied with the
extrusion speed, as shown in Fig. 12e. The extrusion speed for which
the second thinning region appears (W ≈ 18) compares well with
the theoretical results displayed in Fig. 8.

4. Viscoplastic bridges

We next consider the extension of a filament attached to plates
that are pulled outwards with a controlled displacement (see

Fig. 12. Images of the fluid thread showing an increasing number of distinct thin-
ning regions. The images are from experiments using Carbopol with the 6.6 mm
radius pipe (a)W = 17.7, (b)W = 28.4, (c)W = 39.0, (d)W = 53.2. (e) The number
of distinct thinning regions observed in experiments as a function ofW for the same
fluid and pipe.

Fig. 1b), assuming the fluid to be pinned to the outer edge of the
plates by surface tension. This protocol specifies the rate of exten-
sion rather than the extensional force (as in the drip problem).
Specifically, we consider the case where the lower plate is held fixed
but the top plate is pulled upwards at constant velocity, imply-
ing the boundary conditions, h(0, t) = h(L, t) = 1, w(0, t) = 0 and
w(L, t) =W, where L(t) = L0 +Wt is the (prescribed) position of the
top plate, and L0 is its initial location. Computations begin with a
stationary cylinder, h(z, 0) = 1 and w(z, 0) = 0 for 0 ≤ z ≤ L0, and
we integrate (1) and (2) numerically until the minimum radius
hmin = 10−3.

The initial aspect ratio L0 adds a new parameter, which makes
explorations of the parameter space somewhat unwieldy. To expe-
dite the study, we therefore consider purely inertialess filaments,
although we did perform computations including inertia to verify
that its effect was not overly significant for values of R that were
not large.
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Fig. 13. Inertialess bridge problem withW = 5, G = 1, ˇ = 5, n = 0.8 and L0 = 2. (a–g) Profiles at various times; shaded regions are unyielded and the bold line indicates the
neck region (a convention we again adopt in subsequent figures). (h) Location of the top plate, unyielded regions and location of minimum radius against time. (i) Minimum
radius against time. The expected slope near pinch-off (tc − t)n is indicated by the dashed line. (N = 100.)

4.1. Inertialess bridges (R = 0,W finite)

A sample numerical solution is shown in Fig. 13. Initially the
stress induced by the sudden extension is sufficient to liquefy and
thin the entire column, with gravity causing material to slump
downwards slightly. As the thread thins, the extensional force
required to maintain the velocity of the upper plate decreases and
the stress eventually drops below the yield stress in the thickest
regions, forming plugs adjacent to the end-plates which expand
as the thread continues to thin. A more complicated flow pattern
develops near the final pinch-off event: once the upward elonga-
tional force is sufficiently small, some regions yield again under
the action of gravity and surface tension. Importantly, pinch-off
appears to occur at a finite length (Fig. 13i). Just prior to pinch-off,
the minimum radius converges to the self-similar scaling, hmin ∝
(tc − t)n, expected for a power-law fluid [12]. In other words, as
observed with the Rayleigh instability, the yield stress plays a minor
role in the final pinch-off dynamics.

4.1.1. The initial yield
The initial stress state is a useful indicator of whether gravita-

tional collapse will occur. In the sample evolution described above,
the entire column initially yielded in extension. However, if G is
large or the column is tall, gravity can counterbalance the exten-
sional force near the base of the column, rendering that part of the
filament rigid, or even force the fluid there to yield in compression
as the material slumps under its own weight.

To determine the conditions under which the different situa-
tions occur, we first integrate the vertical momentum Eq. (2) to
find

3
2

h2�zz = −h −
∫ L

z

Gh2 dz + f0, (12)

where the constant of integration, f0 = 3�zz(L, 0)/2 + 1 > 0, repre-
sents the force exerted on the top of the fluid column in order to
move the upper plate. That force becomes known on imposing the
velocity boundary condition, W = w(L, 0) =

∫ L

0
(∂w/∂z) dz, leading

to the implicit relation,

W =
∫

|�zz |>2ˇ/
√

3

1√
3

(√
3

2
|�zz | − ˇ

)1/n

sgn(�zz) dz, (13)

where the integral is only over the yielded regions. By substituting
the initial condition into (12), and then using (13), we may elim-
inate f0 to furnish �zz(z, 0), and then calculate the yield surfaces.
The uppermost of these, z = zY (with �zz(zY , 0) = 2ˇ/

√
3), is given

implicitly by

(L0 − zY )1+1/n−
[
max

(
0, zY − 2

√
3ˇ/G

)]1+1/n−[max (0, −zY )]1+1/n

= 3(1+n)/2n
(

1 + 1
n

)
G−1/nW. (14)

The switches on the left of this formula have the following inter-
pretations: if zY < 0, the entire column is initially liquefied by the
extensional stress; that is, the force exerted by the upper plate over-
comes both the yield stress and gravity to extend the fluid bridge
everywhere (as in Fig. 13). For 0 < zY < 2

√
3ˇ/G, on the other hand,

the gravitational stress is sufficient to counter the extensional stress
at the bottom of the column, forming a rigid plug underneath the
yielded upper regions. Finally, when zY > 2

√
3ˇ/G, gravitational

compression liquefies the base of the column, and a rigid plug
divides that yielded zone from the upper region of extension.

4.1.2. Parameter variations
Again we define a number of helpful characteristic properties to

assist the discussion: neck length, end-cone profiles, final length,
pinch-point location (now measured relative to the bottom plate),
and maximum radius (a measure of the degree of gravitational
slumping). These quantities are illustrated in Fig. 13g.

Sample solutions with varying yield stress are shown in Fig. 14.
The effect of ˇ on the shape of the end-cones is particularly dis-
tinctive: for small ˇ, surface tension rounds the cones in the final
stages before pinch-off, creating more spherical shapes. Truly coni-
cal end-cones result at moderate ˇ when the yield stress first arrests
this behaviour. For large ˇ, the bottom of the column never yields
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Fig. 14. Inertialess bridge problem withW = 0.1, G = 1, n = 0.9 and L0 = 2. (a–f) Profiles at pinch-off for various yield-stress parameter values. (Bottom panels) Locations of
the top plate, unyielded regions and minimum radius against time for (g) ˇ = 0.1, (h) ˇ = 1 and (i) ˇ = 10. The shaded regions are unyielded. (N = 100.)

and the remainder “freezes” quickly to produce prominent changes
in surface gradient and end-cones shaped like “Hershey’s kisses”.
Although it is not visible in the figure, there is an initial rigid mid-
section for the computation with ˇ = 0.1, whereas for those with
ˇ = 1 and 10 the yield stress is sufficient to support a rigid lower
plug. In other words, the three computations illustrate the other
two scenarios for the initial yield mentioned above.

Effects of further parameter variations are shown in Figs. 15–17.
The most distinctive trends observed with these parameter varia-
tions are as follows: the main effect of increasing n is to lengthen
the neck (Fig. 15), as also found earlier for the drips and for bridges
of power-law fluids [14,15] (at higher magnification than shown in
the figure the filaments do not remain slender at the pinch-point for
n = 0.2 and 0.4, as expected from the inertialess power-law sim-
ilarity solution [12]). With increasing extension speed (Fig. 16), a
greater force acts at the top plate to drive the extension, and more of
the column becomes and remains liquefied. As G increases (Fig. 17),
gravitational slumping widens the base of the bridge and aids its

Fig. 16. Final profiles for various extension speeds for the inertialess bridge problem
with G = 1, ˇ = 10, n = 1 and L0 = 2. (N = 100.)

Fig. 15. Final profiles for various power-law exponents for the inertialess bridge problem with (top row)W = G = ˇ = 1 and L0 = 2 and (bottom row)W = 0.1, G = 1, ˇ = 0.2
and L0 = 2. (N = 100.)
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Fig. 17. Final profiles for various Bond numbers and aspect ratios for the inertialess
bridge problem withW = 0.1, ˇ = 1, n = 1.2, (rows) G = 0 and G = 1, and (columns)
L0 = 1, L0 = 2 and L0 = 5. (N = 100.)

thinning, leading to a shorter limiting length and a higher pinch-
point. Varying the aspect ratio has a relatively minor effect (Fig. 17),
suggesting L0 is not a useful parameter.

Overall, we find that the final time (or equivalently final length)
is a convenient diagnostic for the rheological parameters. Contour
plots of this quantity for W = 0.1 and 5 are shown in Fig. 18a
and b. For small W, a dominant and discernible trend is with ˇ,
while for largeW, the trend with the power-law exponent is more
notable. This results because the yield stress is less important when
the extensional force is large, and suggests that slow extension
experiments may be useful for inferring the yield stress, whereas
subsequent faster extensions could be used to infer the power-law

Fig. 18. Final time (top row) and maximum radius (bottom row) for inertialess
bridges at pinch-off as densities on the (ˇ, n) plane with G = 1 and (left column)
W = 0.1 or (right column)W = 5. Contours at equal intervals of (a) 2 from 8, (b) 0.5
from 0 and (c,d) 0.025 from 1. (N = 100.)

exponent. A useful secondary diagnostic is the thread’s maximum
radius (Fig. 18c and d), which shows clear trends with both ˇ and
n (once the thread slumps under gravity).

4.2. Experiments

The liquid bridge experiments were conducted using a HAAKE
CaBER 1 extensional rheometer. Rather than using the rheometer’s
built-in laser measurement system (which only takes measure-
ments at one fixed height), the extending bridges were again
imaged using the CMOS camera. The rheometer plates were 3.0 mm
in radius and were covered with a layer of waterproof sandpaper
to prevent slip and dewetting. The top plate was moved upwards
at speeds of 0.6–26 mm/s. Table 3 lists the relevant dimensionless
parameters for the different experimental configurations.

Fig. 19 shows sequences of Carbopol threads with overlaid the-
oretical profiles at various times for two different aspect ratios and
plate speeds. The theoretical profiles are for R = 0, but there is no

Fig. 19. Experimental and numerical bridge profiles at various times for Carbopol with (top row)W = 0.99 and L0 = 0.33 and (bottom row)W = 0.16 and L0 = 1.33. (N = 100.)
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Table 3
Non-dimensional parameter values for the different experimental bridge configurations. End-plates had a radius of 3 mm.

Fluid R G ˇ n W L0

Carbopol 5.49 × 10−3 1.21 1.52 0.429 0.0993–1.58 0.333–1.33
Kaolin 1.99 × 10−2 1.90 9.40 0.483 0.0480–0.960 0.333–1.33

Fig. 20. Experimental bridge profile close to pinch-off for Kaolin with W = 0.96
and L0 = 0.66. Curves show numerical profiles with minimum radii 0.8j for positive
integer j. (N = 100.)

difference discernible on adding the actual small amount of inertia.
The comparison is satisfactory for both sets, although thinning is a
little too fast at early times and a little too slow closer to pinch-off.
This is consistent with comparisons for the drips, and again suggests
that our single power-law fit may not be a good representation over
the range of stresses sampled by the flow.

The comparison of theory and experiment in Fig. 19 is especially
remarkable given that the filaments are not particularly slender,
which is the essential approximation underlying our theoretical
model. Part of the reason behind this success may be the retention
of the full curvature in (3), rather than the leading-order estimate,
�∼1/h, which is a standard trick for Newtonian filaments [1].

A similar sequence is shown for Kaolin in Fig. 20, with numerical
calculations using the “up-ramp” rheological parameters (there is
no appreciable difference if the “down-ramp” parameters are used,
despite quite different numerical values and a much larger inertial
parameter). The comparison is poorer, possibly because the thread
is not slender, but again more likely because the Herschel–Bulkley
model does not adequately describe the rheology.

5. Conclusions

In the two parts of the current work we have considered three
canonical problems for the extensional dynamics of viscoplastic
filaments. We began with the Rayleigh instability in paper I. We
continued here with an investigation of the progression towards
pinch-off of a pendant drop and the extension of an inertialess
liquid bridge between two plates, comparing model predictions
with experiments. For Carbopol, we found satisfactory agreement
between observed and predicted drop volumes and bridge profiles,
and reasonable agreement for drop profiles. Some minor differ-

ences can be attributed to the inadequacy of a single power-law
to describe the fluid rheology over the full range of stresses. For
Kaolin, theory and experiment do not agree; we suspect that this
results from the Herschel–Bulkley model being a poor description
for Kaolin rheology. In particular, we suspect that some deforma-
tion may be occurring at stresses below the yield value measured
rheometrically and that the material is thixotropic.

Of particular interest are diagnostics that can be used to infer
rheological properties. For drips, we found that the pinched-off
drop volume is a useful diagnostic, in part because analytical esti-
mates are available. The simplest available expression for the drop
volume, V, is that obtained from (10), the dimensional version of
which is

V = �R2z0Y + �
√

3R2K

�g

(√
3W

z0Y

)n

, (15)

where z0Y = (
√

3�Y + �/R)/�g. For experimental arrangements like
that used in the present study, Eq. (15) can be used to infer rheo-
logical properties. The dimensional version of the implicit analytic
prediction in (9) or full numerical solutions could also be used,
although it is not clear whether the implied improvement would
be worth the extra effort.

For example, with a fixed geometry, and assuming that the sur-
face tension is known, one may measure drop volumes over a range
of extrusion speeds, W, and then perform a least-squares fit of the
data to (15) to obtain estimates of K, n and �Y . To judge how well
such a procedure might work, we performed such a fit using the
data shown in Fig. 11 and again assuming that the surface tension
was equal to that for water. The fitted rheological parameters are
listed in Table 1 along with the values independently measured
with a rheometer. For the Carbopol, while the fitted values seem to
differ, the resulting stress-strain-rate curve is practically indistin-
guishable from the marker points shown in Fig. 21a. With Kaolin,

Fig. 21. The up (×) and down (+) stress ramp curves for the Carbopol solution, (a)
linear scale, (b) logarithmic scale; and the Kaolin suspension, (c) linear scale, (d) log-
arithmic scale (the same data is shown on both sets of axes). The Herschel–Bulkley
fits corresponding to the parameters in Table 1 are given by the solid lines.
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the new fit leads to computed drip and bridge profiles that compare
better with experiments, but the overall agreement is still poor.

A problem with (15) is that the surface tension and yield stress
only appear via the combination z0Y . Thus, if neither are known, the
radius of the pipe, R, must be varied in order to fit both constants.
Alternatively, if the rheological data is available independently, the
least-squares fit can be used to infer the surface tension. To gauge
this procedure we use the data in Fig. 11 in conjunction with the
up-ramp measurements listed in Table 1 to arrive at a surface ten-
sion of 0.060 N/m for Carbopol, in comparison to the previously
adopted value of 0.073 N/m, suitable for water at room tempera-
ture. Although we are currently unable to confirm this reduction in
surface tension, it is not unreasonable. Using this value of � does
not perceptibly change, for example, the predicted profiles in Fig. 9.

To infer rheology using the bridge, we found that the time for
pinch-off for a liquid bridge is a useful diagnostic. In the quasi-static
limit, this diagnostic could provide estimates for yield stress, while
for faster flows it can be used to infer the power-law exponent.
A disadvantage is that pinch-off time is not given analytically in
the model, and requires extraction from suites of numerical com-
putations. Nevertheless, in the inertialess limit, computations are
relatively fast (for N = 100, each run takes a few minutes), which
opens the door to using a real-time parameter search to optimally
match a numerical profile to experiments. Because the bridge sam-
ples a large range of extension rates, a few experiments may be
sufficient to provide estimates of the three rheological parameters
K, n and �Y , as well as the surface tension coefficient � .

We emphasize that this approach to using the bridge as a
rheometer is more practical for viscoplastic fluids than conven-
tional usage. For the latter, the initial column of fluid is stretched
a specified distance. Once this distance is reached, the thickness of
the thread at a fixed point is measured and its radius over time is
recorded. Rheological parameters can then be calculated from the
rate at which the thread thins. For a viscoplastic fluid, however, it
is difficult to set the displacement of the plates so that the material
does not pinch-off while the plates are still moving or to prevent
the yield stress from “freezing” all the material into place once the
plates come to rest. Moreover, we found that long, thin threads
generally do not occur for viscoplastic fluids (see Section 4.2), as a
result of both their generally shear-thinning nature and the yield
stress.

Finally, although we adopted the Herschel–Bulkley model, there
is plenty of scope to attempt rheometry using different constitutive
laws. The slender filament approximation potentially offers useful
simplification of more complicated models, and fitting procedures
of the kind described here ought to furnish convenient callibrations.
Admittedly, however, we rely on an explicit form for the constitu-
tive law and offer no direct inference of extensional rheology.

Appendix A. Numerical scheme

We solve the model equations by discretizing in space using
the staggered-mesh finite-difference approximation suggested by
Eggers and Dupont [16], introducing a moving spatial grid to deal
with the evolving domain and to resolve the regions with high cur-
vature. We integrate the resulting ODEs in time using DASPK [17].
The variables h and �zz are defined on an evolving principal mesh
of N + 1 grid points zi(t) for i = 1, . . ., N + 1, and w is defined on
the half-node mesh of N grid points at zi+1/2(t) = [zi(t) + zi+1(t)]/2.
A 3-point stencil is used to find � on principal grid points, except
at the first eight grid points for the drops with a spherical-cap ini-
tial condition. There we evaluate the curvature using an even 4th
order polynomial interpolation through z(h) [16]. We also eval-
uate � ≡ ∂w/∂z at the principal nodes from �zz via (4). To deal
with the non-smooth switches in the constitutive relation, we
either approximate the implied Heaviside function H(x) by H(x) =

(1 + x/
√

x2 + 	2)/2, with 	 = 10−5, or use the root-finding capa-
bility of DASPK (DASKR) to find the transition between yielded
and unyielded states. Sample solutions computed using the two
methods are visually indistinguishable, as are regularized solutions
computed with 	 = 10−4.

Eq. (1) is applied at the interior principal grid points using a
3-point stencil, with � substituting for ∂w/∂z. For inertialess prob-
lems, we impose (2) at the half-node grid points using a 2-point
stencil. For problems with inertia, we found it better to use � as the
dependent variable, applying

R
(

∂�

∂t
+ w

∂�

∂z
+ �2

)
= −∂2�

∂z2
+ ∂

∂z

[
3

2h2

∂

∂z
(h2�zz)

]
at the interior principal grid points using a 3-point stencil. At the top
point, zN+1, ∂w/∂t = 0 and w is given, thus we impose (2) directly.
We recover w at interior principal grid points using a 2-point sten-
cil. For drips with the spherical-cap initial condition, the value of
�zz at z1(t) is irrelevant provided it is finite and we set it to zero.

For the drips we use the dynamically moving mesh
method of Blom and Zegeling [18]; the scaled grid points
zi(t)/z1(t) are redistributed according to the monitor function

M(z) = (1 + (∂h/∂z)2/ max (∂h/∂z)2 + 0.5�/ max(�))
1/2

. The algo-
rithm parameters used were �BZ = 2 and �ZB = 0.002. The first
2 grid points are moved with the local fluid velocity. For the
bridge we use Lagrangian coordinates, moving all grid points
with the local fluid velocity. After N time steps, we invoke a
static remeshing, evenly distributing the monitor function M(z) =
(0.1 + (∂h/∂z)2/ max (∂h/∂z)2 + min(h)/h)

1/2
between grid points

and interpolating onto the new grid using a quintic spline for h and
a cubic for �zz (and w for the inertial case). Both choices of monitor
function concentrate grid points in regions of high curvature and
large gradients in h.

The numerical computations are considerably more expen-
sive than for the corresponding Newtonian problems, limiting the
achievable number of grid points. The profiles presented in the
main text change imperceptibly on increasing N. For the drips with
the spherical cap initial condition, round-off errors accumulate near
the base of very long plug regions leading to oscillations in the stress
after many time steps. Fortunately this is not a severe problem for
the profiles presented: the location of the plug and details of the
solution above the plug are identical to the corresponding solution
using (6), which suffers no such problems.

Appendix B. Experimental fluid properties

The Carbopol solution was a 0.18 wt% Carbopol Ultrez
21 solution neutralized with sodium hydroxide to a pH of
7.0. The Kaolin suspension was a 40.8/59.0/0.2 wt% mixture
of water/Kaolin/sodium hydroxide. The Kaolin clay used was
Mcnamee Clay provided by R.T. Vanderbilt Co. Inc. The pH of the
suspension was 12.5; (the pH was increased to reduce the amount
of separation that occurs when the suspension is left to sit for long
periods of time). The densities of the Carbopol solution and Kaolin
suspension were 1000 and 1570 kg/m3, respectively. In the absence
of existing reliable measurements, we assume a surface tension
equal to that of water, 0.0728 N/m, for both the Carbopol solution
(cf., [19]) and the Kaolin suspension.

The rheology of the two fluids was measured using a Bohlin
CS rotational rheometer with a plate-plate geometry. Both plates
were serrated in order to avoid possible slip at the surface. Increas-
ing and decreasing controlled-stress rheometry tests were done
(the “up” and “down” ramps respectively). For each of the ramps
the stress was increased/decreased continuously over the desired
range at a rate of 1 Pa/s for the Carbopol and 0.5 Pa/s for the Kaolin.
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The fluid parameters were determined by fitting the stress-strain-
rate curves obtained to the Herschel–Bulkley constitutive model.
Typical stress-strain-rate curves for the two fluids are shown in
Fig. 21 and the values of the rheological parameters are given in
Table 1. Our goal was to obtain the best fit to the stress curve over
the widest range of stresses possible. (The operating range for the
Bholin CS rheometer is �̇ < 900 s−1 and � < 400 Pa.) Normally the
yield stress is better determined using a direct method such as
creep tests, however, while this would give a better single esti-
mate of the yield stress, it often results in a poor fit at high stresses.
Hence, we instead chose to fit all three parameters (�Y , K, n) using
just the stress-strain-rate curve. (Note that the yield stress as mea-
sured from a creep test is still too high to explain the discrepancy
between theory and experiments discussed in the main text.)

The rheological data for the Carbopol solution is typical of that
seen by others [20,21]. Though there is some slight hysteresis,
the data can be fit quite well to the Herschel–Bulkley constitutive
model. The rheology of the Kaolin suspension, however, was more
complicated. Considerable hysteresis, as well as some dependence
of the measured yield stress on the sample history was observed.
Also, at certain stresses the suspension would yield, but only after
the stress had been applied for a fixed period of time. A depen-
dence of the yield stress on the shear history of the suspension
could explain some of our experimental observations. In the drip-
ping experiments the fluid near the tube wall is sheared until it
exits the tube. Thus, if recent shearing reduces the apparent yield
stress, upon exiting the tube the Kaolin suspension may yield below
the measured yield stress value. Furthermore, if the shear-history
dependence is severe, it could even account for the trend of decreas-
ing volume withW observed in Fig. 11c. Such complex rheological
behaviour was consistent and reproducible for our Kaolin suspen-
sion. However, we emphasize that substantially different rheology
and non-Newtonian effects can be observed with different “brands”
of Kaolin.
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