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bstract

We investigate surface-tension-driven fingering of a thin layer of viscoplastic fluid. Using standard lubrication theory we derive an equation
or the flow of the film which includes effects of surface tension and yield stress. We obtain traveling-wave solutions to model the advance of a
teadily propagating front and then apply a linear stability analysis to model finger growth and to determine the effect of the yield stress. Qualitative

greement is demonstrated between the numerical results and experiments.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The moving contact line of a thin fluid film usually breaks
nto fingers. This behaviour can be troublesome in industrial ap-
lications as it may lead to the formation of dry spots or affect
he quality of surface coatings. Hence, understanding and con-
rolling the behaviour is of great importance. The fingering of a
ewtonian fluid has been studied in detail, both experimentally

nd theoretically, by numerous researchers (e.g. [1]). The most
ommonly accepted explanation of the origin of these fingers
s in terms of the instability of a steadily moving front: For a
ravity-driven film advancing over a dry surface, surface ten-
ion holds up fluid in the vicinity of the contact line, leading to
distinctive capillary “ridge”. If this ridge is sufficiently thick,

hen the front becomes gravitationally unstable to perturbations
ith structure parallel to the contact line, causing the advancing

ront to break up into fingers [2–4]. A useful summary of fin-
ering in gravity-driven Newtonian films is provided by Kondic
5].

The majority of previous work on fingering deals with Newto-
ian fluids. However, many fluids of industrial and geophysical

mportance are non-Newtonian. In this paper we focus on fin-
ering in viscoplastic fluid films. For viscoplastic fluids, it has
een observed that the yield strength in the fluid reduces the
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umber of fingers on the contact line, and that the contact line
ecomes stable at a critical yield stress [6]. This trend is corrob-
rated by a suite of our own experiments which are illustrated in
ig. 1. The topmost picture shows a film of silicon oil, which is a
ewtonian fluid, propagating down a slope. The following pic-

ures show flow under identical conditions but with increasing
mounts of kaolin added to the oil. As the kaolin concentration
ncreases there is an obvious reduction in the number and am-
litude of the fingers. Kaolin plausibly adds a yield strength to
he fluid whilst leaving its surface tension roughly the same (al-
hough the detailed properties of kaolin suspended in oil are not
nown). However, the main conclusion we wish to draw from
hese experiments is that they suggest the fingering instability
ould be avoided by making a fluid viscoplastic. This would
learly be advantageous in many industrial applications.

In the rest of this paper we adopt a more theoretical approach
o the problem and examine the stability of the moving front via
linear stability analysis. We take advantage of the lubrication

pproximation to simplify the governing fluid equations. The
esulting equation for the depth of the thin film offers a compact
etting to construct steadily propagating planar fronts and test
heir linear stability. We conclude with a brief comparison with
xperiments.
. Mathematical model

Consider a thin film of incompressible fluid flowing down a
lane inclined at an angle φ to the horizontal. We choose the

mailto:shilpa@math.ubc.ca
dx.doi.org/10.1016/j.jnnfm.2006.07.011
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Fig. 1. Fingering patterns obtained on a plane inclined at an angle φ = 25◦.
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he topmost picture is of silicon oil with viscosity 500 cSt. The lower pictures
how kaolin suspensions in the oil with concentrations of 15, 17 and 20 wt.%,
espectively.

oordinate system such that the fluid sheet flows over the x–y
lane with x taken along the down-slope direction, and z normal
o the slope, as shown in Fig. 2. The film depth is denoted by
(x, y, t) and the flow is described by the velocity field u(x, t) =
u, v, w); ρ denotes the density, p(x, t) is the pressure field and
is the gravitational acceleration.
The flow is described by the usual equations expressing con-

ervation of mass and momentum, coupled with a suitable con-
titutive law. We do not use these equations in their full glory,
ut, following the usual path of lubrication theory (see the arti-
les by Ancey [7] and Balmforth et al. [8]), we immediately skip
o a simplified, dimensionless version. In dimensionless form,
he abridged conservation of mass and momentum are

· u = 0, (1)

∂p + ∂
τxz + 1 = 0, (2)
∂x ∂z

∂p

∂y
+ ∂

∂z
τyz = 0, (3)

Fig. 2. A schematic illustration of the fluid geometry.
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∂p

∂z
− 1 = 0. (4)

qs. (2)–(4) indicate that the dominant force balance involves
he two shear stresses, τxz and τyz, and the fluid pressure. The
onstant terms represent the effect of gravity in the x and z di-
ections. To non-dimensionalize the equations in this way, we
ave scaled z with a characteristic depth, H, and used an in-plane
ength scale, L = H/ tan φ, for x and y. We assume φ � 1, so
hat H � L and therefore model flow down a shallow slope,
lthough it is a simple matter to re-scale and deal with a steeper
ncline. The scales for pressure and shear stresses are chosen to
e ρgH cos φ and ρgH sin φ, respectively.

We model the rheology of the viscoplastic fluid using the
erschel–Bulkley law [7,8]. This constitutive relation contains
yield stress, τp, and a nonlinear viscosity, Kγ̇n−1, where K is

he consistency, n a power-law index, and γ̇ measures the defor-
ation rate (it is the second invariant of the rate of strain tensor).

n the thin layer limit, the full three-dimensional form of the law
an be reduced to the simpler, dimensionless prescription:

τxz, τyz) =
(

γ̇n−1 + Bn

γ̇

)
(uz, vz), τ > Bn, (5)

˙ = 0, τ < Bn, (6)

˙ ≡
√

u2
z + v2

z, τ ≡
√

τ2
xz + τ2

yz, (7)

here Bn = τpHn/KUn is the Bingham number, U =
H3 cos φ/νL a characteristic speed, and ν = K(U/H)n−1/ρ

s an effective kinematic viscosity.
The no-slip boundary condition, u = w = 0, is applied on

he plane z = 0. At the front of the fluid, one would ideally
ike to impose h → 0. However, this leads to a singularity in
he stresses and a conflict between the no-slip condition and the
eed for the fluid edge to advance. We avoid this ‘contact line
aradox’ by pre-wetting the inclined plane, h = δ for x → ∞,
here δ � 1 is thickness of the precursor film. An unfortunate

spect of the problem is that there are technical mathematical
ifficulties in the limit δ → 0 which have the consequence that
ne simply cannot ignore this parameter even when small (see
ater discussion and [9]).

The free surface, z = h(x, y, t), is assumed to be stress free.
or our thin film, this translates to the two conditions:

xz = τyz = 0. (8)

he pressure jump across the free surface is proportional to the
urvature and, in the lubrication limit, gives

= C∇2h, (9)

here C = σH3/ρνUL3 is the inverse capillary number, σ being
he surface tension. We also impose the kinematic condition:
= ht + uhx + vhy. (10)

ntegrating Eq. (4), subject to (9), determines the pressure:

= h − z − C∇2h. (11)
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The thin-layer equation (18) takes the form of a nonlinear dif-
fusion equation. For simplicity, in what follows we consider the
case n = 1, i.e. the Bingham fluid. In this case, (18) reduces to

∂h

∂t
+ ∂

∂x

[
Y2

6
(3h − Y )(1 − px)

]
− ∂

∂y

[
Y2

6
(3h − Y )py

]
= 0.

(19)

It further reduces to the standard Newtonian equation ex-
plored in the past if we set Bn = 0, which gives Y = h (imply-
ing the film has no stagnant regions) and (3h − Y )Y2/6 = h3/3.
For the Newtonian problem, the mathematical troubles associ-
ated with the limit, h → 0 (mentioned above and described later
in more detail), come about because the diffusivity, h3/3, van-
ishes if we put h = δ = 0 ahead of the fluid front. Perhaps the
most common practice to avoid such troubles is to impose a
precursor film and fix δ > 0. For the viscoplastic problem, we
follow suit and also consider a finite precursor film. Unfortu-
nately, because our effective diffusivity is now (3h − Y )Y2/6,
this trick is not sufficient: the diffusivity may still vanish for
Y = 0 even if h is kept finite. In other words, the mathematical
troubles that plague the Newtonian problem at the contact line,
return to haunt us at the yield point, Y = 0; the precursor film
does not help. We must, therefore, find another way to prevent
the diffusivity from vanishing. A convenient cure is to regularize
the Bingham model.

2.1. Regularization of the constitutive relation

To avoid the problem with Y → 0 in the thin-layer equation,
we turn to a regularized version of the Bingham constitutive
relation, which allows a fluid to deform very slightly below the
yield stress. Instead of (5) and (6), we now set

(τxz, τyz) =
(

1 + Bn

γ̇ + ε

)
(uz, vz), (20)

where ε � 1 is a regularization parameter. In the limit γ̇ 	 ε,
this model reduces to the Bingham model and in the limit γ̇ � ε,
it gives a highly viscous Newtonian behaviour as shown in Fig. 3.
Other models have been suggested to regularize the Bingham
constitutive relation (see [11]); we use (20) because it leads to
an analytical thin fluid equation generalizing (19).
N. Balmforth et al. / J. Non-Newto

qs. (2) and (3) may also be integrated immediately and in con-
unction with the constitutive law, we find

xz =
(

γ̇n−1 + Bn

γ̇

)
uz = (1 − px)(h − z), (12)

yz =
(

γ̇n−1 + Bn

γ̇

)
vz = −py(h − z). (13)

sing the definition of τ from (7) together with Eqs. (12) and
13), we obtain the relation:

= Γ (h − z) = γ̇n + Bn, Γ =
√

(1 − px)2 + p2
y. (14)

hese expressions are based on the assumption that the fluid is
eforming, i.e. the yield stress is exceeded τ = Γ (h − z) > Bn;
therwise we should set uz = vz = 0. This leads to the definition
f a ‘yield surface’ z = Y (x, y, t) which partitions a plug-like
egion from a fully yielded flow, defined by

= max

{
h − Bn

Γ
, 0

}
. (15)

This prediction leads to a paradox since the fluid is spreading
n the inclined plane, and the plug region cannot be rigid. Higher
rders of the lubrication model resolve this paradox by showing
hat the stresses above the surface Y are slightly greater than the
ield stress Bn, see [10], and hence there is no true plug region.
n other words, the region above Y appears to be solid to leading
rder but is actually weakly yielding; hence it is called a ‘pseudo
lug’ and the dividing surface a ‘fake yield surface’.

Note that, if h < Bn/Γ , the pseudo plug occupies the entire
uid layer. In fact, in this situation the gravitational force act-

ng on the fluid is insufficient to cause it to yield at all, and the
seudo plug is actually a real motionless plug. This is of partic-
lar relevance at the precursor film where we have h = δ � 1.
e therefore expect stagnant regions to exist ahead of the ad-

ancing fluid front. We automatically incorporate this true yield
ondition by requiring Y = 0 if h < Bn/Γ , as indicated in (15).

Integrating the continuity equation in z from z = 0 to h and
pplying the kinematic condition at z = h, we obtain the mass
alance relation:

∂h

∂t
+ ∇ · Q = 0, (16)

here the flux Q is given by

=
∫ h

0

(
u

v

)
dz =

∫ h

0
(h − z)

(
uz

vz

)
dz

=
(

1 − px

−py

)∫ h

0
(h − z)

γ̇

Γ
dz. (17)

hus, we arrive at our thin-layer equation:
∂h

∂t
+ ∂

∂x

[
nΓ (1/n)−1Y1+(1/n)

(n + 1)(2n + 1)
(2nh + h − nY )(1 − px)

]

− ∂

∂y

[
nΓ (1/n)−1Y1+(1/n)

(n + 1)(2n + 1)
(2nh + h − nY )py

]
= 0. (18) Fig. 3. The regularized constitutive law (20). The dotted line shows the Bingham

model.
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Fig. 4. Fluid depth, h0 is represented by a thick line, and yield surface, Ȳ (ξ) is
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Using (20), we obtain a quadratic relation between τ and γ̇:

=
(

1 + Bn

γ̇ + ε

)
γ̇ (21)

r

γ̇ = τ − Bn − ε +
√

(τ − Bn − ε)2 + 4ετ. (22)

olving the equations much as before, we eventually find

∂h

∂t
+ ∂

∂x
[(1 − px)F ] + ∂

∂y
[−pyF ] = 0, (23)

here

(h, Γ ) = 1

6

(
[(h − Z)2 + T ]3/2 − (Z2 + T )3/2

)

+ h2

12
(3Ȳ − h) + TZ

8
[S2 − S1 + 2(θ2 − θ1)],

Ȳ = h − Bn + ε

Γ
, Z = Bn − ε

Γ
, T = 4ε Bn

Γ 2 ,

S1 = sinh 2θ1, S2 = sinh 2θ2, sinh θ1 = − Z√
T

,

sinh θ2 = h − Z√
T

. (24)

n the limit, Ȳ 	 ε → 0, F → (3h − Y )Y2/6, and we recover
he Bingham model (19). Conversely, for h < Bn/Γ and ε � 1,
e recover a viscous problem with F → εh3/3Bn.

. Planar fronts

We now look for steadily propagating planar front solutions
i.e. constant in the y-direction) to (23). To find them, we trans-
orm into a moving coordinate system which is traveling at a
onstant velocity, V, in the x-direction and introduce a new co-
rdinate, ξ = x − Vt. The solution, h = h0(ξ), is steady in this
eference frame and satisfies

+ Vh0 = F (h0, Γ0)Γ0 sgn(1 − h0ξ + Ch0ξξξ),

0 = |1 − h0ξ + Ch0ξξξ|, (25)

here d is a constant of integration. We obtain V and d by match-
ng the solution onto a constant film height behind the front and
he precursor layer in front, h0 → 1 as ξ → −∞ and h0 → δ

s ξ → ∞:

1 − δ)V = F (1, 1) − F (δ, 1),

1 − δ)d = F (δ, 1) − δF (1, 1). (26)

Given V and d and the functional form of F in (24), the first
elation in (25) determines Γ0 algebraically in terms of the depth
rofile, h0(ξ). The second relation in (25) then provides an or-
inary differential equation for h0(ξ). In other words, (25) is a
oupled, algebraic-differential system to be solved for the steady

ront profile. For the boundary conditions, we patch the solution
nto exponentially decaying tails on either side of the front, and
reak the translational invariance by imposing h0 = 1 at the left
nd.

T
c
t
t

epresented by a thin solid line, for a front with δ = 0.1, Bn = 0.1, C = 1 and
= 10−3.

In Fig. 4 we show a solution of (25), together with the “yield
urface”, Ȳ (ξ) = h − (Bn + ε)/Γ . Note that with the regular-
zed model, the fluid yields everywhere, i.e. there is no fully
tagnant region even in the precursor film. Thus, where Ȳ < 0,
e have a sluggish domain in the fluid rather than a rigid one.
ll of the precursor film is in such a sluggish domain, in keeping
ith the idea that gravity is insufficient to cause significant flow

here. The oscillations in Ȳ near the front are due to the corre-
ponding variations in h and its derivatives there, which are in
urn generated by the surface tension (as in the Newtonian prob-
em). The oscillations in Ȳ are more marked than in h, which
ives a curious looking structure to the flow front. However, one
hould bear in mind that, in the regularized model, Ȳ appears as
n auxiliary mathematical variable with no immediate physical
ignificance; by analogy with the Bingham model, we see that
¯ can be interpreted as a guide for where one expects the fluid
o be weakly shearing. Nevertheless, the precise location of Ȳ

s not of special significance, and the oscillations at the flow
ront mainly indicate that the precursor film and the transitional
egion adjacent to it have little shear.

From Fig. 5, we see that as we increase the Bingham number,
he size of the ridge near the contact line becomes smaller. Be-
ause the capillary ridge is crucial to fingering instability, this
uggests that yield strength is stabilizing. However, we must
wait proper stability analysis before we can draw this conclu-
ion with certainty.

The mathematical formulation of the problem contains three
ther parameters besides the Bingham number, C, δ and ε. The
apillary number controls the effect of surface tension; to avoid
oo large a search through parameter space, and because we are
nterested in fronts for which surface tension is always present,
e fix C = 1. For Newtonian fluids, the effect of the precursor
lm thickness has been studied in [9]. They show that, as we take

he limit δ → 0, the maximum height of the profile diverges. We
lso see this effect in the current model with finite Bn: in Fig. 6 we
lot the maximum height of the profile against δ for Bn = 0.1.
hus, following [9] we also conclude that the solution does not

onverge as δ → 0. The remedy for this problem is to introduce
he detailed physics of the contact line; here, we simply admit
his drawback of the model and fix the parameter δ to 0.1.
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Fig. 5. In the top panel, depth profiles corresponding to different values of the
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ingham number are plotted. The Newtonian profile is shown by the bold solid
urve. Curves on the left correspond to Bn = 0.2, 0.4, 0.6 and 0.8, moving from
ight to left, respectively. In the bottom panel, the maximum height of h0 is
lotted as a function of the Bingham number Bn.

We plot the maximum profile height against ε for two values
f the Bingham number in Fig. 7. As ε → 0, the maximum

eight of the profile converges to a certain value (unlike the
orresponding limit of δ). From Fig. 7, we draw the important
onclusion that the effect of the parameter ε is not significant on
he solution provided it is sufficiently small.

ig. 6. Maximum height of the front profile against δ. The Bingham number is
n = 0.1, ε = 10−3 and C = 1.

ig. 7. Maximum height of the front profile against ε. For the upper plot the
ingham number is Bn = 0.01, and for lower plot Bn = 0.05.
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ig. 8. Growth rate, λ, against wavenumber, l, for two fronts with Bn = 0.05
diamonds) and Bn = 0.25 (circles) (δ = 0.1, C = 1 and ε = 10−3). The dashed
urves show the expected growth rates from long-wave theory.

. Linear stability analysis

To explore the linear stability of the steadily moving front,
e set h = h0(ξ) + η(ξ) eily+λt , where η � h0, λ is the growth

ate, and the y-dependence of the solution is decomposed into
ourier modes with l as wavenumber. After linearizing about the
ront, η is found to satisfy the equation:

η − Vη′ + Q′ + l2F [(1 + Cl2)η − Cη′′] = 0, (27)

here

= [F + Γ0FΓ ][Cη′′′ − (1 + Cl2)η′] + Vh0 + d

F
Fhη.

ere primes denotes differentiation with respect to ξ, and F and
ts derivatives are evaluated at the known front profile h0(ξ).
gain we patch the solution onto exponentially decaying tails

o furnish boundary conditions.
Results obtained by numerically solving (27) are presented

n Figs. 8 and 9. Fig. 8 shows the growth rate versus wavenum-
er for particular front solutions with Bn = 0.05 and Bn = 0.25
δ = 0.1, C = 1 and ε = 10−3). The growth rate corresponding
o the fastest growing wavenumber decreases as we increase
he Bingham number. This is shown in more detail in Fig. 9,
here the fastest growing wavenumber and the growth rate cor-

esponding to that wavenumber are plotted against the Bingham

umber. The maximum growth rate decreases as the Bingham
umber increases and becomes zero at some critical value of the
ingham number, whereafter all of the modes are stable.

ig. 9. Wavenumber and growth rate corresponding to the fastest growing mode
s a function of Bingham number Bn, with ε = 10−3, C = 1 and δ = 0.1. The
ine with circles corresponds to wavenumber and the line with squares corre-
ponds to growth rate.
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Table 1
Number of fingers, experimentally obtained for different consistencies and in-
clination angles

Consistency (%) 15◦ 20◦ 25◦ 30◦ 35◦ 40◦

0 5 9 14 15 19

p
t
t
t
f
r
m
f
t
i
h
ε

s

a
c
w
a
b
o
c
o
t
a
t

A
i
I
e
i
t
a
w
o
p
A
p

R

ig. 10. λ2 as a density on the (Bn, ε)-plane. The black solid line is the zero
ontour.

.1. Long transverse waves

The long-wave (in l) character of the instability found numer-
cally above prompts us to analyze the linear stability problem
27) asymptotically in the limit of small transverse wavenumber.

e expand η and λ in even powers of wavenumber l:

= η0 + l2η2 + · · · , λ = l2λ2 + · · · (28)

e then substitute (28) in (27). To the leading order, we obtain

η0 ≡ −Vη′
0 + [(F + FΓ Γ0)(η′

0 + Cη′′′
0 )

+ Fhη0(1 − h′
0 + Ch′′′

0 )]′ = 0. (29)

his equation has the solution η0 = h′
0, which corresponds to

he translational invariance of the planar front. At the next order,
e obtain

η2 + λ2η0 − C(F + FΓ Γ0)η0 + F (η0 − Cη′′
0) = 0. (30)

e impose a solvability condition on this equation by integrating
he equation in ξ to obtain

2 = 1

1 − δ

∫
[F − (Vh − d)]dx. (31)

n Fig. 8, we compare the prediction (31) with the results of
umerical computations; the two agree at small l, as expected.

Because the long-wave result (31) involves only the equilib-
ium front profile, it offers a powerful and convenient tool to
etect instability without solving the full linear stability equa-
ions with a spectrum of wavenumbers. In particular, we can
se (31) to construct the neutral stability boundary. In Fig. 10,
e plot the neutral stability curve on the (Bn, ε) plane. Extrap-
lating that curve, we find a numerical value for the critical
ingham number as ε → 0: Bn = 0.67. In other words, finger-

ng will not occur for Bn ≥ 0.67 (according to linear theory at
east).
. Discussion

In this paper, we have formulated a thin-layer model of a
iscoplastic fluid film. We used this model to construct steadily
15 3 5 10 13 13
17 0 7 8 11 15
20 0 0 3 7 9 12

ropagating planar fronts for the case of Bingham fluids and
est their linear stability. The linear stability analysis shows that
he effect of yield strength in the fluid is stabilizing, confirming
he qualitative predictions of de Bruyn et al. [6]. In order to per-
orm the computations leading to this result, we were forced into
egularizing the Bingham constitutive relation to avoid mathe-
atical difficulties near the contact line. Those difficulties are

amiliar from the Newtonian version of the problem, although
he viscoplastic theory has its own peculiarities. The regular-
zation adds an extra parameter, ε, to the model. However, we
ave been able to show that the solutions converge to a limit as
→ 0, indicating that this parameter is not significant if chosen

mall enough.
We have also conducted some preliminary experiments with

kaolin suspension in 500 cSt silicon oil released over an in-
lined plane; examples are shown on Fig. 1. The experiments
ere performed by varying the angle of inclination of the plane

nd the concentration of the kaolin in the silicon oil. The num-
er of fingers observed are tabulated in Table 1 as a function
f angle and concentration. This data clearly shows that for a
onstant angle of inclination there is a reduction in the number
f fingers as the kaolin concentration increases. In other words,
he wavenumber decreases as the concentration increases, which
grees qualitatively with our analytical results if that concentra-
ion corresponds to yield stress.

Most fluids with yield stress also show shear thinning effects.
n important generalization of the current theory for the future

s therefore to move to the Herschel–Bulkley constitutive model.
t is also necessary to advance beyond linear stability theory and
xplore the ramifications of yield stress on the nonlinear finger-
ng dynamics. For example, although we see a certain charac-
eristic finger wavelength emerging first on the inclined plane,
s the film evolves further, the fingers merge and adjust that
avelength to create finite-amplitude patterns which linear the-
ry is inadequate to predict. Finally, it would be worthwhile to
erform more quantitative experiments to compare with theory.

key problem, however, is how to set δ and parameterize the
hysics of the contact line.
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