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Interfacial instability in non-Newtonian fluid layers
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Superposed layers of fluid flowing down an inclined plane are prone to interfacial instability even
in the limit of zero Reynolds number. This situation can be explored by making use of a
lubrication-style approximation of the governing fluid equations. Two versions of the lubrication
theory are presented for superposed layers of non-Newtonian fluid with power-law rheology. First,
the fluids are assumed to have comparable effective viscosities. The approximation then furnishes a
simplified model for which the linear stability problem can be solved analytically and concisely.
Weakly nonlinear analysis and numerical computations indicate that instabilities saturate at low
amplitude beyond onset and form steady wavetrains. Further from onset, secondary instabilities
arise that destroy trains of widely spaced wave trains. Patterns of closely spaced waves, on the other
hand, coarsen due to wave merger events. The two mechanisms select steady wavetrains with a
characteristic spatial scale. The second lubrication theory assumes that the upper layer is far more
viscous than the lower layer. As a result, the upper fluid flows almost rigidly, and extensional
stresses can become promoted into the leading-order balance of forces. Interfacial instability still
arises in Newtonian fluid layers, and the nonlinear dynamics is qualitatively unchanged. Significant
complications arise when the upper fluid is non-Newtonian due to the behavior of the viscosity at
zero strain rate. ©2003 American Institute of Physics.@DOI: 10.1063/1.1611179#
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I. INTRODUCTION

As vividly illustrated by windows and gutters on rain
days and by many water sculptures, thin films of fluid flo
ing down inclined planes are unstable to the formation
wave patterns. In this phenomenon, sometimes referred
the Kapitza problem, the instability operates by draini
fluid into locally thicker features that move relative to th
film and sweep up further fluid from the surrounding film
they propagate. The instability appears at much lower R
nolds numbers than those typically required for a transit
to turbulence. Nevertheless, the wave patterns can sho
rich variety of behavior both in space and time, and ha
provided fluid mechanicians and nonlinear dynamicists m
food for thought over the last fifty or so years.

The critical Reynolds number for the onset of instabil
can be determined by linear stability theory. In falling flu
films, the analysis is performed analytically using long-wa
expansions because the most unstable waves typically
the largest spatial scales in the plane of the film.1,2 The
theory was further generalized to finite-amplitude lo
waves by Benney,3 and his nonlinear equation~together with
variants derived later by a host of other authors!, has pro-
vided the basis of many studies of spatio-temporal comp
ity in the wave patterns of falling liquid films.4

In this article, we consider instability in multiple, supe
posed fluid layers. Such situations were previously con
ered by Chen,5 Weinstein,6 and others. Because each ind
3371070-6631/2003/15(11)/3370/15/$20.00
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vidual layer is not so different to a single layer, one expe
instabilities in such films when the Reynolds number is s
ficiently high. However, superposed layers also have the
ditional degree of freedom associated with motions of
interfaces inside the fluid composite. Such interfacial m
tions have been shown to be a source of instability,5,7 with
discontinuities in shear stress being held responsible.8 How-
ever, inertia is essential to the mechanism proposed and
not operate in the zero Reynolds number limit. Yet, multip
films can be unstable even in the inertia-less regime,
pointed out by Loewenherz and Lawrence.9 We explore ex-
clusively the zero-Reynolds number limit in the present p
per, which allows us to take advantage of a lubrication-st
approximation of the governing fluid equations. We presen
coherent picture of the linear stability and extend the the
into the nonlinear regime to explore the nonlinear saturat
and dynamics of unstable waves. A related model was
rived previously by Kliakhandler and Sivashinsky.10

A further direction that we take in this study is to co
sider non-Newtonian fluid layers. Specifically, we study
terfacial instability in two superposed layers of power-la
fluid. Weinstein6 has previously presented a few results
this stability using long-wave expansions; we offer a mo
complete discussion of how shear thinning or thickening
fects stability in the inertia-less limit. The non-Newtonia
problem has applications in chemical engineering, wh
layered flows arise in many coating processes, such as
manufacturing of plates of photographic emulsions and
0 © 2003 American Institute of Physics
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various extrusion and transport processes. Interfacial in
bility in two-layer flows of power-law fluid in channels ha
been considered earlier.11,12

The non-Newtonian problem is also relevant to glaci
ogy, where ice is thought to act like a power-law fluid~the
rheology is more commonly referred to as Glen’s law in t
glaciological literature!, and, in some situations, slides over
much less viscous mud layer. This scenario is particula
relevant to ice streams, where localized, relatively fa
moving flows develop within more extensive, slowly movin
ice sheets, and various observations indicate that the
streams slide over an unconsolidated sediment.13 Previously,
Loewenherz and Lawrence9,14 suggested that interfacial in
stabilities may play a role in glacier variability, althoug
their main focus was upon rock glaciers. Our original mo
vation for the current work was to continue in this vein a
explore whether ice stream formation and variability cou
be connected to interfacial waves. However, we deal wit
highly idealized fluid model here, which misses much of t
essential physics that plays a role in ice-stream dynamics~for
example, glaciers and ice sheets have a complicated b
structure involving channels of draining meltwater, embe
ded rock and sediment eroded from the ground underne
which is for responsible for allowing the ice mass to slide
its base15!. In our conclusions we remark further on the re
evance of our results to ice streams.

A key detail of the glacier problem that requires an
teresting extension of the theory, is that the upper layer m
have a much larger effective viscosity than the lower lay
The physical ramification of this disparity is that the upp
layer slides almost rigidly over the much more fluid lay
beneath; the shear is almost entirely taken up in the lo
layer. However, besides suppressing the shear in the u
layer, the enhancement in viscosity can further promote
tensional stresses which resist divergence or convergenc
flow. Such stresses are missing in the usual lubrication an
sis of flow over a plane because they normally lie at hig
order than the vertical viscous stress. In the current situat
when the extensional stresses are of the same order a
vertical viscous stress, we must revise the origi
asymptotic scheme. The modified lubrication theory is som
what analogous to that used to describe free films,16 viscous
threads,17 and ice shelves and streams.18 Using this second
model, we explore the effect of the extensional stresses
interfacial instability.

II. FORMULATION OF THE MODEL

A. The equations

We consider two superposed layers of incompress
and immiscible materials flowing down an inclined plane,
shown in Fig. 1. A Cartesian coordinate system aligned w
the plane describes the fluid;x points down the slope, andz
is perpendicular to it. The material properties of the tw
layers are different; we use subscripts to distinguish th
For example,r1 andr2 denote the densities in the upper a
lower fluids, respectively. Inz, the lower layer has thickness
z(x,t), and the upper layer has depth,u(x,t); the composite
has thickness,h(x,t)5z(x,t)1u(x,t). The flow is described
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by the velocity field (u(x,z,t),w(x,z,t)), and pressure
p(x,z,t). Surface tension~though easily incorporated! is ne-
glected both on the free surface and the dividing interfac

The governing equations are given by conservation
momentum,

r j~ut1uux1wuz!52px1~]xtxx1]ztxz!1r jg sinf,
~1!

r j~wt1uwx1wwz!52pz1~]xtxz1]ztzz!2r jg cosf
~2!

for j 51 and 2, and continuity,

ux1wz50, ~3!

where partial derivatives have been written as (x,z) sub-
scripts, g5(g sinf,2gcosf) is the gravitational accelera
tion, and t lm are the components of the deviatoric stre
tensor, the total tensor beingT5t2pI.

We impose a no-slip boundary condition on the inclin
plane:

u5w50 on z50. ~4!

At the fluid interface,z5z, we require continuity of veloci-
ties, the kinematic condition of the material surface, and
balance of the normal and tangential stresses:

u~x,z2,t !5u~x,z1,t !5uI~x,t !, ~5!

w~x,z2,t !5w~x,z1,t !5wI~x,t !5z t1uIzx , ~6!

T~x,z2,t !•S 2zx

1 D5T~x,z1,t !•S 2zx

1 D , ~7!

where subscriptI refers to interfacial speeds. At the upp
surface,z5h, we again apply the kinematic condition an
continuity of stress:

ht1u~x,h,t !hx5w~x,h,t !, ~8!

T~x,h,t !•S 2hx

1 D50, ~9!

which ignores any interaction with the overlying air.
For the constitutive relation, we adopt a power-law rh

ology,

FIG. 1. The two layer model. The upper and lower fluids are incompre
ible, with constant densitiesr1 andr2 . The anglef fixes the slope of the
plane.z is the thickness of the lower layer,u that of the upper layer, and
h5u1z is total thickness.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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tkl5K j ġ
nj 21ġkl[m j~ ġ !ġkl , ~10!

where

ġkl[S 2ux uz1wx

ux1wz 2wz
D , ġ5A1

2 ġklġ lk, ~11!

and the rheology is each layer is given by the consiste
K j , and a power-law index,nj @m j (ġ) is an effective viscos-
ity#. If nj51 for j 51 or 2, then that fluid is Newtonian.

B. Nondimensionalization

We remove dimensions from the governing equations
follows: We defineH as a characteristic thickness of th
composite fluid layer and measure downslope lengths w
the unit,L. We scale velocities (u,w) with the characteristic
speeds,U andUH/L, and timet with L/U:

x5Lx̃, z5Hz̃, u5Uũ, w5UHw̃/L, t5Lt̃/U,
~12!

where the tilde indicates dimensionless variables. For p
sure, we takep5r1gHp̃ cosf, and we scale the strain rate
with the unit, U/H. The leading-order balance betwee
downslope pressure gradients and the shear stress selec
velocity scale,U5(r1gH21n2 cosf/K2L)1/n2.

The lubrication theory proceeds by defininge5H/L as
the characteristic aspect ratio of the layers, and requiring
ratio to be small:e!1. We further assume that the princip
force balance arises between pressure gradients and vis
stresses in the downslope direction, and inertial effects
weaker. Thus we insist that Re5r1UL/K2, the Reynolds
number of the flow based on the downslope lengthscale
of order unity or smaller. The dimensionless form of t
momentum equations, dropping the tilde superscript, is t

e2D j Re~ut1uux1wuz!52px1e]xtxx1]ztxz1SDj , ~13!

e4D j Re~wt1uwx1wwz!52pz1e2]xtxz1e]ztzz2D j .
~14!

In the equations aboveD j5r j /r1 is the density ratio, and
S5(L/H)tanf is a slope parameter, assumed order one~so
the plane has a gentle inclination!. The continuity equation
remains unchanged.

The dimensionless strain rates are given by

ġkl[S 2eux uz1e2wx

uz1e2wx 2ewz
D ,

ġ5@~uz1e2wx!
214e2ux#

1/2. ~15!

The deviatoric stress components can then be written in
form,

tkl5H R21ġ~n121!ġkl , z<z<h,

ġ~n221!ġkl , 0<z<z,
~16!

whereR5(K2 /K1)(U/H)n22n1 is a ratio of dimensional, ef-
fective viscosities.

It is straightforward to re-express the boundary con
tions in dimensionless form. Only the stress relations di
from their dimensional counterparts:
Downloaded 15 Feb 2006 to 137.82.49.199. Redistribution subject to AIP
y,

s

th

s-

the

is

ous
re

be

n

e

-
r

@txz2e~txx2p!zx#z5z2
z5z1

5@tzz2p2etxzzx#z5z2
z5z1

50,

~17!
@txz2e~txx2p!hx#z5h5@tzz2p2etxzhx#z5h50.

C. The lubrication model

We now retain only the leading-order terms of the d
mensionless equations. The momentum equations becom

052px1]ztxz1SDj and 052pz2D j , ~18!

which integrate to

p5H h2z, z,z,h,

h2z1D~z2z!, 0,z,z,

and

txz5H ~S2hx!~h2z!, z,z,h,

Dx~z2z!1t I , 0,z,z,
~19!

whereD5D25r2 /r1 and

t I5~S2hx!u, Dx5SD2ux2Dzx . ~20!

Given the stresses, the constitutive relation~16! now
yields

uz5H R1/n1~S2hx!
1/n1~h2z!1/n1, z,z,h,

@Dx~z2z!1t I #
1/n2, 0,z,z.

~21!

A further integral provides the relation,

uI5
n2

n211

1

Dx
@tB

111/n22t I
111/n2#, tB5t I1Dxz. ~22!

Finally, we combine integrals of the continuity equatio
with the kinematic conditions of the surfacesz5z and z
5h

u t1]xF E
z

h

uz~h2z!dz1uIuG5z t1]xF E
0

z

uz~z2z!dzG50.

~23!

On substituting the form of the velocity field, we find

u t1R1/n1]xFn1t I
1/n1u2

2n111
G

1
n2

n211
]xF u

Dx
~tB

111/n22t I
111/n2!G50, ~24!

z t1
n2

n211
]xF ztB

111/n2

Dx
1

n2

2n211

3
1

Dx
2 ~t I

211/n22tB
211/n2!G50. ~25!

III. LINEAR STABILITY

The system admits a steady flow solution with a fl
interface and free surface:z5Z, u5Q and h515Q1Z.
We explore the linear stability of this solution by introducin
the normal-mode form,

~z,u!5~Z,Q!1@~ ẑ,û !eikx1lt1c.c.#, ~26!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Shown are growth rates, Re(ll), and wavespeeds,c52Im(ll)/k, of the two eigenmodes,l 51 and 2, as functions of wavenumber,k, and viscosity
ratio, R, for D51.1 andQ50.5. The darker line in the first surface shows the curve of neutral stability.
-

bi
e

t

io

o

w

-
r,
s
b

als
we
ta
er
w

th

-
e

xi-

-

s
sta-

n
ak-

e-

e
er

ow
into the model equations~24! and ~25!, and then linearizing
in the perturbation amplitudes, (ẑ,û). The result is an alge
braic eigenvalue problem for the~complex! growth ratel,
solved as a function of the wavenumberk. If Re~l!.0 the
equilibrium flow is unstable.

To minimize the number of free parameters in the sta
ity problem, we fixS51 by suitably selecting the downslop
lengthscale:L5H/tanf. In addition to the wavenumberk,
this leaves five dimensionless parameters determining
stability properties: The effective viscosity ratio,R, the rela-
tive thickness of the upper layer,Q, the density ratio,D
5r2 /r1 , and the two ‘‘power-law’’ exponents,n1 and n2 .
We restrict attention to cases of stable density stratificat
D.1, filtering out Rayleigh–Taylor instabilities.

A. The Newtonian case

A useful first step in exploring the linear stability is t
consider the case of two viscous fluids (n15n251); we fix
D51.1 and vary the other parameters. Figure 2 sho
growth rates, Re(li), and wavespeeds,2Im(li)/k, against
wavenumber andR for Q50.5. The flows with lower viscos
ity ratios are unstable over certain ranges of wavenumbe
found by Yih;1 that is, when the bottom fluid is the les
viscous. Of the two eigenvalues, only one becomes unsta
and the instability takes the form of long waves. Kao19–21

presented similar results to those shown in Fig. 2, and
investigated the role of the density stratification, which
largely ignore here. In Fig. 3 we plot curves of neutral s
bility on the (k,R)—plane for several values of the upp
layer thicknessQ. Below these curves, the equilibrium flo
is unstable. The unstable region is largely contained inR
,1. Surprisingly, an instability region also appears above
line of equal viscositiesR51 ~a feature also noted by Kao!.
In the limiting cases,Q50 andQ51, representing the ab
sence of one of the layers, one of the eigenvalues disapp
and we are left with a single stable Newtonian layer.
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Figure 4 displays the maximal growth rate over allk on
the (R,Q)-plane. Also shown is the wavenumber that ma
mizes the growth rate. Instability appears for all 0,Q,1 and
R,1, as well as inside the narrow window withR just
greater than unity and smallQ. We conclude that the slight
est viscosity contrast between the layers~in the sense that the
upper layer is more viscous! can be destabilizing; the variou
parameters of the problem change the detailed linear in
bility, but not this qualitative conclusion.

B. Effects of a power law rheology

With power-law rheology, the effective viscosity ca
vary substantially across each of the superposed layers, m
ing ambiguous the definition of the viscosity contrast b
tween the two fluids~which controls the instability for New-
tonian layers!. We offer a rough guide to the effect of th
rheology as follows. First consider a non-Newtonian lay

FIG. 3. Curves of neutral stability on the (k,R)—plane for D51.1 and
Q50.1, 0.25, 0.5, 0.75, and 0.9. The equilibrium flow is unstable bel
these curves.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. ~a! Maximum growth rate over
all k and ~b! the associated wavenum
ber on the (R,Q)-parameter plane, for
D51.1, n151, n251. The dark area
to the right locates the stable region
where the growth rate is negative fo
all k.
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atop a Newtonian fluid. The dimensionless effective visc
ity of the equilibrium flow follows from~21!:

n1~z!5R21/n1~h2z!121/n1. ~27!

Given that the instability is an interfacial one, we assu
that the important value of this viscosity is that at the int
face. Thus we comparen1(Z)5R21/n1Q121/n1 with the vis-
cosity of the lower layer~unity!. Based on the results fo
Newtonian fluids, we then predict instability if the ratio o
these two values exceeds unity:

Q121/n1

R1/n1
.1 or R,Qn121. ~28!

In Fig. 5 we compare this simple prediction with numeric
computation of the stability boundary~over all k! on the
(R,Q)-plane, and find qualitative agreement.27 SinceQ,1,
when the upper fluid is shear-thinning (n1,1), the viscosity

FIG. 5. Marginal stability curves forD51.1, a lower Newtonian layer
(n251) and an upper non-Newtonian layer. Five cases are shown c
sponding to upper layers that are shear-thickening (n154/3 and 2!, New-
tonian (n151), or shear-thinning (n151/5 and 3/4!. The dots show the
prediction ~28!, and the dotted line is the prediction of the sma
Q-expansion. Forn152 the three curves are hard to distinguish.
Downloaded 15 Feb 2006 to 137.82.49.199. Redistribution subject to AIP
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is raised at the interface, promoting instability. Converse
the interfacial viscosity is lowered for a shear-thickening u
per layer, and the interface is more stable.

Similar considerations lead to an analogous predict
for a flow with a Newtonian layer above a non-Newtoni
fluid. In this case, the mean effective viscosity in the low
layer is

n2~z!5@Q1D~Z2z!#121/n2. ~29!

At the interface,n2(Z)5Q121/n2, whereas the upper laye
now has a viscosity ofR21. Thus we anticipate instability
when

R,Q1/n221. ~30!

Figure 6 compares this prediction with more numerical
sults; again there is qualitative agreement. Some more
fined analytical predictions will be given momentarily.

e-
FIG. 6. Marginal stability curves forD51.1, an upper Newtonian laye
(n151) and a lower non-Newtonian layer. The five curves show results
a lower layer that is shear-thickening (n254/3 and 2!, Newtonian (n251)
or shear-thinning (n251/5 and 3/4!. The dots show the prediction~30!.
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C. Thin basal fluid layer: Small Z

When Z!1, we may reduce the lubrication model fu
ther and extract a simple stability criterion. In this lim
interfacial perturbations have amplitude of the order of
lower-layer thickness and develop slowly: (u2Q,z)
→O(Z) and (u t ,z t)→O(Z2). The slow evolution demand
that, to orderZ in the u-equation~24!,

0;]xFn1~Rt I !
1/n1u

2n111
1uIuG;]xFR1/n1u1z2

R1/n1hx

112n1
G .
~31!

That is, the flux of fluid through the upper layer remai
constant in each vertical section to leading order; the up
flow adjusts instantaneously to deformations in the interfa
Any disturbance in the interfacial speed must, therefore,
accompanied by changes in the thickness of the upper l
to maintain constant upper-layer flux. We now use the in
gral of ~31!

u;Q1
hx

112n1
2

z2Z

R1/n1
, ~32!

to write thez-equation~25! as

z t;
1

2
]xF2z22

~12R1/n1!

n2R1/n1
Zz21

322DR1/n1

3n2R1/n1
z3

1
2n1z2hx

n2~112n1!G1O~Z4!, ~33!

which constitutes the reduced system.
On linearizing, we read off the amplitude relation,

û;
ikR1/n12~112n1!

R1/n1~112n12 ik !
ẑ, ~34!

and eigenvalue,

l;2 ikZ1
ikZ2@122R1/n1~D21!#

2n2R1/n1

1
n1k2Z2~12R1/n1!~112n11 ik !

n2R1/n1@~112n1!21k2#
. ~35!

Thus the system is unstable ifR,1, independently of the
values ofn1 andn2 , as seen in Figs. 5 and 6. From~33!, we
identify the term involving slope of the free surface,hx , as
that responsible for instability atO(Z2). Becauseĥ5 û1 ẑ
;(12R21/n1) ẑ for small Z and long waves~the most dan-
gerous disturbances to stability!, the free surface moves ou
of phase with an interface perturbation ifR,1. Physically,
wherever an initial perturbation raises~depresses! the inter-
face, the constancy of the upper-layer flux forces the f
surface to become lowered~elevated!. The resulting inclina-
tion of the free surface then changes the interfacial sh
stress, which forces a flux in the lower layer that remov
fluid from below the depressions of the interface, and a
fluid below interfacial elevations, thus strengthening the i
tial perturbation, and leading to instability.
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From the nonlinear perspective, the leading-order te
in ~33! is the nonlinear wave-steepening termzzx , whereas
the linear instability appears at higher order. Thus, we ant
pate that weak instability nucleates waves that steepen
idly into shock-like structures. Indeed, in the numerical co
putations reported later, we observe this kind of dynamic
small Z.

D. Thin upper surface layer: Small Q

The behavior of the system whenQ!1 depends sharply
on the exponentsn1 or n2 ; we explore the configuration with
a Newtonian lower layer: Whenn251, the key non-
Newtonian term in the equations is

n1R1/n1

2n111
t I

1/n1u25
n1R1/n1

2n111
~12ux2zx!

1/n1u211/n1. ~36!

This term introduces nonintegral powers ofQ in a power
series solution for smallQ. To avoid this complication, it is
convenient to rescale the linearized system by definin
modified viscosity parameterR̃:R5R̃n1Qn121. This proce-
dure eliminates nonintegral powers ofQ, and the solution
then takes the form of a regular power series:l5l01l1Q
1l2Q21l3Q31¯ . We find

Re~l!;2
k4Q2~D21!

D~914k2!

1F3D222DR̃

3D2
2

~D21!R̃

D~112n1!Gk2Q3. ~37!

The first-order correction in~37! is negative and, therefore
stabilizing, but it is also of orderk4 for long waves. The
second-order correction, on the other hand, is orderk2 and
can be either positive or negative, depending on the valu
R̃. Thus, for smallQ, there is a narrow window of wave
numbers withk;Q1/2 that can be unstable provided we sa
isfy a condition onR̃, which translates to

R,F ~3D22!~2n111!

3D21~2n122!D
G n1

Qn121. ~38!

The dependence onQ mirrors our cruder prediction~28!.
Note that whenn151, the condition becomesR,(3D
22)/D2, which indicates when unstable values ofR exceed
unity. The marginal curves of Fig. 5 are in agreement w
the more accurate results of~38! at smallQ, as shown by the
finer dotted lines in the picture.

IV. NONLINEAR DYNAMICS

Linear stability theory conveys some idea of wheth
small perturbations superposed on the interface of an e
librium two-layer flow begin to amplify. Yet it says nothin
about what happens subsequently to the growing modes
unimpeded growth of the mode could lead to the breaking
interfacial waves or one of the layers collapsing and pinch
off ~cf. Ref. 22!. We now analyze the lubrication model fu
ther to decide whether such destructive phenomena aris
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. A numerical solution of~24! and~25! for Q50.5, D51.1, R50.5, andn15n251, in a domain of sizel 52. This flow lies just beyond the onset o
interfacial instability. Shown are snapshots of~a! z, ~b! u, and~c! h, every 40 time units. The snapshots are shown in a frame moving with a velocity,V, close
to the nonlinear wave speed to eliminate rapid propagation effects and bring out the slower growth and saturation of the mode; the snapsho
successively offset to emphasize this pattern of evolution. Note that the offset forh is much smaller than that forz andu, and the disturbance of the fre
surface is relatively small.
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We use two computational schemes~a pseudospectra
method and one based on finite differences! to numerically
solve the partial differential equations of the model as initi
value problems in periodic domains inx; we state the initial
conditions below. We also look for steadily propagating no
linear waves by posing the dependences,z(x2ct) and u(x
2ct), and solving the resulting ordinary differential, pe
odic boundary-value problem, in which the wavespeedc ap-
pears as an eigenvalue.

We illustrate the dynamics for two Newtonian laye
(n15n251). In Fig. 7, we show a sample numerical sol
tion in which the system is initialized with an equilibrium
flow plus a low-amplitude disturbance taking the form of t
unstable mode~the initial amplitude is 1024, as measured by
the maximum ofuz2Zu). The picture illustrates how the un
stable mode grows and then saturates at finite amplitude
perturbation to the free surface remains small through
reflecting the interfacial character of the instability. The fin
saturated state agrees with a direct computation of
steadily propagating nonlinear wave. Moreover, when
vary parameters~such asR! to trace the nonlinear solutio
back to the point of neutral stability, we find its peak-to-pe
amplitude decreases smoothly to zero, indicating a su
critical bifurcation ~see Fig. 8!. Near onset, the nonlinea
wave branch can be constructed analytically using wea
nonlinear theory; this furnishes a Landau equation,At5gA
2GuAu2A, determining the amplitude,A(T), of the nonlin-
ear wave, whereg is the modal growth rate andG is a con-
stant given by the system parameters~e.g., Ref. 23!. The
weakly nonlinear result,uAu5@R(g/G)#1/2, is also shown in
Fig. 8.

To determine whether instabilities always satur
quickly beyond onset@i.e., supercritically, withR~G!.0#, we
have surveyed the sign of the cubic coefficient,G, of the
Landau equation over the four-dimensional parameter sp
(D.1, R, 0,Q,1 and the domain sizel!. We have found no
instances in which the coefficient indicates a sharper@i.e.,
sub-critical, withR~G!,0# transition, although a simple ana
lytical proof of supercriticality has eluded us. Thus, low
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amplitude nonlinear waves form beyond onset, and the la
structure remains intact.

Further from onset, one side of the nonlinear wav
steepens to become a sharp, shock-like feature, while
other side flattens and develops a broad plateau~see Fig. 9!.
This latter feature becomes extensive in large domains
begins to resemble an uniform equilibrium profile with
different Q. Because such states are unstable, we antici
that the nonlinear waves of Fig. 9 eventually become
stable to waves growing on the plateau oncel is sufficiently
large. The prediction is verified by numerically solvin
initial-value problems that begin from states close to
steady nonlinear wave, and by computations of the lin
stability of steadily propagating solutions like those in Fig.

FIG. 8. Saturation amplitudes, expressed as the maximum ofu2Q, against
R for solutions of the periodic boundary-value problem for steadily pro
gating waves~solid!, and from the end-state of initial-value computatio
that begin from low-amplitude random perturbations superposed on
equilibrium flow ~stars!. The dotted line shows the saturation amplitu
expected from weakly nonlinear theory.Q51/2, l 52p, and D51.1. The
inset shows the steady profiles ofu andz at R50.95.
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A sample numerical solution showing disturbances
veloping on a steady nonlinear interfacial wave is display
in Fig. 10. In this example, although the system begins fr
a numerical solution of the boundary-value problem, sm
errors in the initial profile excite unstable modes. The
modes take the form of secondary waves propagating ac
the flat plateau of the original wave; the disturbance grow
disrupt the original structure. Eventually, another peak

FIG. 9. Nonlinear waves in different domain lengths,l, for Q50.5, R
51/2, D51.1, andn15n251. The solid lines showz, and the dotted lines
showu. The inset compares the interfacial disturbance with the free-sur
distortion for the wave in the widest domain.
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pears, and a steady wavetrain ultimately emerges. In no c
have we found the saturation of the secondary instability
low amplitude; it invariably grows to disrupt the origina
nonlinear waves and spawns new peaks. We, therefore,
jecture that this instability is subcritical, and ‘‘pulse’’ gener
tion occurs when the peaks of the original nonlinear wave
too far apart; i.e., when the domain size,l, exceeds a critical
value. The critical domain size~the onset of the secondar
instability! is plotted on the (d,R)-plane in Fig. 11, whered
is the peak separation~which equals the domain size for
periodic wavetrain with a single peak in each period!.

At first sight, it is surprising that steadily propagatin
multi-peak solutions are spawned in the pulse-genera
events because these solutions appear by bifurcating f
the uniform equilibrium flow asl varies. Yet those bifurca-
tions are always preceded by the onset of instability
modes with fewer peaks, and so the nonlinear solutions
born unstable. In fact, by computing the linear stability of t
solutions, we find that secondary instabilities also occur
these ‘‘higher-order’’ branches. The bifurcations, howev
stabilize the multipeaked nonlinear waves on increasingl
~the curves along which this stabilizing bifurcation occu
for nonlinear waves with two to four peaks are shown in F
11!. As the domain becomes even longer, the higher-or
nonlinear waves also eventually develop wide plateaus,
so again suffer secondary instability oncel becomes too
large. But, over an intermediate range of domain sizes,
conclude that the multi-peaked solutions can be stable

e

ve
ize the
FIG. 10. A numerical solution of the initial-value problem withQ50.5,R50.5,D51.1, andn15n251. The initial state consists of a steady nonlinear wa
in a domain of lengthl 514. The picture shows snapshots ofz every 50 time units in a moving frame; the snapshots are successively offset to emphas
temporal evolution. Two spatial periods are shown.
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FIG. 11. A picture of the (d,R)-plane,
whered is the peak separation, show
ing the onset of secondary instabilit
in the primary nonlinear wave create
from the uniform flow ~marked ‘‘de-
stabilizing Hopf’’! with Q50.5, D
51.1, andn15n251. Also shown is
the curve along which this solution
first appears~the line of linear instabil-
ity of the uniform flow!, and
the curves where the nonlinear wave
with two, three and four peaks becom
stabilized by a secondary bifurcatio
~the ‘‘restabilization curves’’!. The
crosses mark data from the final state
of the initial-value computations also
shown in Fig. 13, and the circles
and squares represent the pea
nucleation and coarsening simulation
of Figs. 10 and 12.
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accord with the final states seen after pulse-genera
events.

The restabilization of the higher-order nonlinear wa
branches leads to a wide range of multiple equilibria for
system in longer domains. Thus, initial-value problems
ginning from low-amplitude disturbances superposed on
uniform equilibrium flow have many available end-states.
practice, we observe a selection mechanism that dict
which of the possibilities are most common: The lo
amplitude noise seeds unstable modes, and that with the
est growth rate outruns the rest to create a first nonlin
structure in the domain. Typically, however, the most u
stable modes have a large number of peaks, and the c
sponding nonlinear solution is not stable. Consequently,
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emerging nonlinear wave does not saturate, but suffers a
ondary instability in which two of the peaks merge. Su
pulse-merger events continue to coarsen the pattern unti
number of peaks declines to the point that the relevant n
linear wave is stable. The pattern of unstable modal grow
followed by coarsening, and then ultimate stabilization in
steady wavetrain is illustrated in Fig. 12.

The character of the selection mechanism for the p
number is illustrated further in Fig. 13, which shows resu
from many initial-value problems withQ5R51/2, D51.1
andn15n251. In these computations, the domain lengthl,
varies, as does the initial condition~six low amplitude per-
turbations off the uniform flow with different shapes, fo
each value ofl!. The dots show the number of peaks fir
ts

FIG. 12. A numerical solution of the initial-value problem withQ50.5,R50.5,D51.1, andn15n251. The initial state consists of the uniform equilibrium
flow with a low-amplitude disturbance in a domain of lengthl 520. The picture shows snapshots ofz every 40 time units in a moving frame; the snapsho
are successively offset to emphasize the temporal evolution.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



t

-

e

e
f
e
e
n,
-

3379Phys. Fluids, Vol. 15, No. 11, November 2003 Interfacial instability in non-Newtonian fluid layers
FIG. 13. A picture of the (j ,l )-plane
showing number of peaks,j, in solu-
tions of initial-value problems agains
domain size forQ5R50.5, D51.1,
and n15n251. The dots show the
number appearing initially, once non
linear effects first set in; the circles
show the final number~or at least that
number after about 2000 time units!.
The initial conditions were low-
amplitude perturbations about th
equilibrium flow, most with rapid spa-
tial variation, but one taking the form
of the longest wave. The dotted lin
shows the onset of linear instability o
the uniform flow, and the dashed lin
represents the linear mode with th
largest growth rate. The shaded regio
2.1j , l ,12.3j , shows where the argu
ment given in the main text predicts
stable nonlinear waves.
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appearing, and the circles show the final number~or at least
that number after about 2000 time units!. The figure also
displays a rough criterion for stability of the final nonline
solution, obtained as follows: The single peaked solut
loses stability forl'12.3 ~see Fig. 11!. We assume that this
condition provides a rough criterion for when the separat
between peaks becomes too large to stably support the
intermediate plateau. Hence, the maximum domain size f
wave withj peaks is 12.33 j . Next, as also shown in Fig. 11
the bifurcation that restabilizes the nonlinear waves witj
peaks,j 52 – 4, occurs at peak separations that are roug
independent of the peak number,j. Hence, we assume that a
multi-peak solutions becomes restabilized when the p
separation is roughly 2.1~for the current parameter settings!,
and so the minimum stable domain length is 2.13 j . The
stability window predicted by this argument is shown as
shaded region in Fig. 12, and encompasses all the final s
observed, with some margin above and below.

We have performed a variety of computations like tho
presented in this section over much wider regions of
parameter space~that is, varyingQ, D, R, n1 , andn2). Ex-
cept in cases where the lower layer was very thin~Z small! or
for small R, pulse generation and coarsening dynamics
invariably found. ForZ!1 and R!1, we observed rapid
steepening into structures with very sharp shocks, as an
pated in Sec. III C. This steepening leads to resolution er
that plague detailed numerical computations in this para
eter regime, and we are unable to offer a reliable descrip
of the dynamics for these parameter settings. Neverthe
we observed no tendency for a different kind of dynamics
small Z andR.

Kliakhandler and Sivashinsky have suggested that t
porally complex interfacial dynamics can occur in mul
layer flows, deriving coupled Kuramoto–Sivashinky equ
tions in some special limits. However, in no cases have
uncovered solutions that converge to unsteady states. O
all, the behavior seems much more similar to the pulse
namics seen in the dispersion-modified Kuramot
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Sivashinsky equation ~Benney’s equation! when the
dispersive term is significant.24 However, we have not sys
tematically explored all of the parameter space to determ
whether there are windows in which there is unsteady
namics. Our conclusion is that this simply seems unlikely

V. VERY VISCOUS UPPER LAYERS: THE ROLE OF
EXTENSIONAL STRESSES

The asymptotic theory contained in preceding sectio
holds when the two layers have comparable effective visc
ties, or at least when their ratio,R, is no larger thane21, or
smaller thane. A large ratio is of little interest: The lowe
layer is so viscous that it cannot move, and the interface
like a rigid base on the upper layer. However, the limit
small R does have physical interest, particularly in the g
ciological context, where it is relevant to consider a ve
viscous power-law fluid, sliding over a much more flu
Newtonian layer beneath. In this situation, vertical shear
the upper layer is suppressed and the extensional stresse
become promoted into the leading-order balance of forc
These stresses are absent in the lubrication model desc
above, but could affect stability forR→0. Here, we will thus
try to extend the theory to include extensional stresses,
stricting attention to Newtonian lower layers.

A. A second lubrication model

To formulate the thin layer theory, we begin with a di
ferent asymptotic sequence for the downslope velocity in
upper layer:

u5u0~x,t !1e2u2~x,z,t !1¯, ~39!

which corresponds to near-rigid sliding. Then,

ġ i j 5eS 2u0x e~u2z1w0x!

e~u2z1w0x! 22u0x
D ,

ġ5eA4u0x
2 1O~e2!. ~40!
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To reflect the dominance of the upper-layer viscos
while taking a distinguished limit that adds extension
stresses to the lubrication model, we setR5e11nRn11 , giv-
ing, in the upper layer,

tkl5
2uu0xun21

eRn11
S 2u0x e~u2z1w0x!

e~u2z1w0x! 22u0x
D , ~41!

where we lighten the notation by definingn15n. The diag-
onal components become ordere21, motivating us to define
t̃xx5etxx and t̃zz5etzz.

To leading order, the dimensionless governing equati
may now be written in the form:

052px1S1]ztxz1]xt̃xx , ~42!

052pz211]zt̃zz, ~43!

and the conditions at the free surface and interface as

hx~ t̃xx2p!2txz5p2 t̃zz50, on z5h ~44!

and

txz~x,z1,t !22zxt̃xx~x,z1,t !5txz~x,z2,t !,
~45!

p~x,z1,t !2 t̃zz~x,z1,t !5p~x,z2,t !.

We integrate to find the pressure distribution and shear st

p5 t̃zz1~h2z!

and ~46!

txz5~S2hx!~h2z!12]xE
z

h

t̃xxdz,

which imply thatp(x,z2,t)5u and

t~x,z2,t ![t I5~S2hx!u14Rn11
21 ]x@~2uu0xu!n21uu0x#,

~47!

where the last term on right-hand side is the contribution
the extensional stresses. In the equations for the evolutio
the layer thicknesses~23!, thez-equation is written much a
before~but with n251), whereas theu-equation is evaluated
immediately given thatu05uI(x,t) is uniform in z

z t1
1
2 ]x@

1
6 z3~D2Dzx2ux!1uIz#50

and ~48!

u t1]x~uIu!50.

Finally, the interfacial velocity can be determined from t
solution in the lower layer, given the interfacial shear stre

uI5~S2hx!uz14Rn11
21 z]x@~2uuIxu!n21uuIx#

1 1
2z

2~D2Dzx2ux!. ~49!

This last equation is a second-order differential equation
the interfacial velocity. For reasons cited presently, we do
explore this model in detail, but construct a more gene
system that incorporates both versions of lubrication the
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B. A Newtonian combined model

The explicit forms of the two versions of lubricatio
theory suggest a convenient combined model that capt
both in different limits ofR

u t1]x@uIu1 1
3R~S2hx!u

3#50,
~50!

z t1
1
2]x@uIz1 1

6z
3~D2Dzx2ux!#50

and

uI5~S2hx!uz14
e2

R
z]x~uuIx!1

1

2
z2~D2Dzx2ux!.

~51!

The combined system can be crudely justified by conside
a nonasymptotic extension of the lubrication model of S
II: One retains the higher-order extensional stresses a
with the leading-order shear stresses, then evaluates the
arguing that these terms only become important forR@1, in
which case the velocity field is plug-like in the upper lay
andu'uI there. A non-Newtonian version of this theory
given presently, so we offer no further details.

With the combined model, we once more explore t
linear stability of the equilibrium flow withz5Z, u5Q and
Z1Q51, using a decomposition into normal modes. Aga
there are two eigenvalues, one of which corresponds to
unstable mode for certain wavenumbers and parameter
tings. As shown in Fig. 14, as we raise the extensional v
cosity, hex5e2/R, the associated stresses stabilize
shorter waves and reduce the range of unstable waven
bers. However, the additional stabilization does not rem
instability, but merely pushes it to longer wavelengths.

Extensional stresses also do not appear to change q
tatively the nonlinear interfacial dynamics: instabilities a
invariably supercritical and saturate in steady nonlin
wavetrains beyond onset. On lengthening the domain,
wavetrains again develop wide flat plateaus, which prec
tates secondary instability; coarsening and peak genera
occur in larger domains to select wavetrains with peak sp
ings over a certain range. Figure 15 shows a selection
numerical results.

C. The non-Newtonian case

Although the Newtonian lubrication theory in~48! and
~49! can be explored without difficulty@and it is not strictly
necessary to proceed to the combined model in~50! and~51!
in order to gauge the effect of extensional stresses#, the non-
Newtonian counterpart runs into some serious difficulti
The basic equilibrium state is uniform downslope, and
uIx50. Thus, for n.1, the extensional viscosity
4Rn11

21 u2uIxun21, vanishes identically. By contrast, this vis
cosity is finite atn51, and diverges forn,1. Extensional
stresses therefore appear to have no effect on sh
thickening upper layers, but completely stabilize she
thinning layers. Evidently, the system is not robust to var
tions in n throughn51.

To understand how the problem arises, we return to
governing equations, and perform a nonasymptotic exp
sion. We begin with the upper-layer velocity
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 14. Linear stability in the com-
bined Newtonian model. The top pane
shows the maximum growth rate as
density on the (loghex ,k)-plane,
wherehex5e2/R, for Q51/2, D51.1
and R51023. The solid line is the
curve of neutral stability. The lower
panel shows more curves of neutra
stability on the same plane for differ
ent values ofQ ~and the sameR and
D!.
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u5uI~x,t !1ua~x,z,t !1¯, ~52!

where we fixuI(x,t);O(1), but tune the order of magni
tude ofua : ua;O(1) gives the ‘‘standard’’ model of Sec
IV, whereasua;O(e2) leads to the model with a very vis
cous upper layer, as in Sec. V A.

We recall the dimensionless momentum equations to
der e

052px1S1]ztxz1e]xtxx , ~53!

052pz211e]ztzz, ~54!

which retains the most important contributions of the sh
stress and the extensional stresses. To the same orde
boundary and interfacial conditions are

hx~etxx2p!2txz5etzz2p50, on z5h ~55!

and

txz~x,z1,t !22ezxtxx~x,z1,t !5txz~x,z2,t !,

p~x,z1,t !2etzz~x,z1,t !5p~x,z2,t !. ~56!

Thence,

p5etzz1h2z

and ~57!

txz5~S2hx!~h2z!12e]xE
z

h

txxdz.

The interfacial shear stress is, therefore,
Downloaded 15 Feb 2006 to 137.82.49.199. Redistribution subject to AIP
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t I5~S2hx!u12e]xE
z

h

txxdz, ~58!

which is needed to compute the lower-layer solution, w
the familiar result,uI5t Iz1Dxz

2/2, andz-evolution equa-
tion in ~48!.

The u-evolution equation follows from

05u t1]xE
z

h

udz[u t1]xS uIu1E
z

h

uadzD . ~59!

The integral ofua in this formula is only important where
uuazu@e2uIx

2 . From the constitutive law and~58!, truncated
to ordere, we find an approximation

R21ġn21uaz'R21uazuuazun21;~S2hx!~h2z!. ~60!

Hence,

ua'R1/n~S2hx!
1/nF ~h2z!111/n

111/n
2

u111/n

111/nG , ~61!

and then

u t1]xFuIu1
nR1/n

2n11
~S2hx!

1/nu211/nG'0, ~62!

which is an obvious generalization of the first relation
~50!.

By contrast, the extensional stress is important wh
uaz is relatively small. We introduce

txx'2ġn21uIx , ġ5Ae214e2uIx
2 1uaz

2 , ~63!
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FIG. 15. Nonlinear solutions of the Newtonian combined model forhex51, R50.01,Q51/2 andD51.1. The top panel shows the steady nonlinear wa
solutions that bifurcate supercritically from the uniform flow state on increasing the domain size. The lower pictures show two initial-value problems for l
525: In the first, the system is initialized with a steady wave with a single peak, and pulse generation occurs to yield a nonlinear wave with threen
the second, the system is initialized with a low amplitude disturbance with five peaks superposed on the equilibrium flow; the disturbance growslly to
finite amplitude, but then coarsens to a steady nonlinear wave, which again has three peaks. Plotted is the interfacial speeduI as a surface above the
(x,t)-plane.
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where the constante is an artificial mathematical device t
regularize the viscosity should it eventually prove necess
We then use the approximation~60! for uaz , to compute

t I5~S2hx!u14e]x~ h̄uIx!, ~64!

where the depth-averaged extensional viscosity is

h̄5
1

R E
z

h

ġn21dz'
1

R E
z

h

@e214e2uIx
2 1R2/n~S2hx!

2/n

3~h2z!2/n#~n21!/2dz

5
~e214e2uIx

2 !n21/2

R2~S2hx!
G~Y!, ~65!

with

G~Y!5E
0

Y

~11y2/n!~n21!/2dy ~66!

and

Y5
R~S2hx!u

~e214e2uIx
2 !n/2

. ~67!
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Hence,

uI'~S2hx!uz1
1

2
Dxz

2

1
4e2

R2
z]xF ~e214e2uIx

2 !n21/2

~S2hx!
G~Y!uIxG , ~68!

which completes the system. Ase→0, the extensional stres
disappears, leaving the original lubrication model of Sec.
On the other hand, ifR→0 with e2/R fixed, the model re-
duces to the second lubrication theory of Sec. V A, but w
a modified extensional viscosity.

The functionG(Y) can be written as a hypergeometr
function, and has the limits

G~Y!;Y, for Y!1 ~69!

and
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FIG. 16. Linear stability of the combined non-Newtonian model. The picture shows the maximum growth rate as a density on the (n,k)-plane, forQ51/2,
D51.1, e50.1, andR51022. The solid line is the curve of neutral stability.
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G~Y!;H nY221/n/~2n21!, n.1/2,

G` , n,1/2,
for Y@1, ~70!

whereG`(n) is a constant. The first limit implies that

uI→~S2hx!uz1
1

2
Dxz

2

1
4e2

R
z]x@~e214e2uIx

2 !~n21!/2uuIx#, ~71!

for RuS2hxuu!(e214e2uIx
2 )n/2, which is equivalent to~49!,

but for the artificial regularization,e. This limit is inacces-
sible if e!1 anduIx→0 ~the equilibrium flow!.

For the second limit, we distinguish the two cases: In
.1/2

uI→~S2hx!uz1
1

2
Dxz

2

1
4e2n

2n21
R21/nz]x@~S2hx!

121/nuIxu221/n#. ~72!

But if n,1/2

uI→~S2hx!uz1
1

2
Dxz

2

14e2R2G`z]xF ~e214e2uIx
2 !~n21!/2

uIx

S2hx
G . ~73!

These limits are appropriate for RuS2hxuu@(e2

14e2uIx
2 )n/2, and therefore, characterize small perturbatio

about the equilibrium flow. In fact, they also arise if on
performs the lubrication-style asymptotic expansion on
linearization of the governing equations~2! and ~3! ~rather
than linearizing the lubrication theory, as done here!. Pro-
videdn.1/2, the extensional viscosity remains finite, and
actually given by the equilibrium vertical shear stress, wh
disappeared to higher order in the expansion of Sec.
~and is contained in the termuaz in ġ). Thus, the regularity
of the problem is restored and we may sete50. However, if
Downloaded 15 Feb 2006 to 137.82.49.199. Redistribution subject to AIP
s

e

h
A

n,1/2, asuIx→0, the extensional stress within~73! is given
solely by the artificial regularizor,e, signifying that there are
still problems in the expansion.

In summary, ifn.1/2, our model successfully regula
izes the extensional viscosity in the limit of uniform flow
the structural instability of the model of Sec. V A arise
through neglecting the equilibrium vertical shear stress.
illustrate the result with solutions of the linear stability pro
lem: In Fig. 16, we show growth rates on the (n,k)-plane.
There are no sudden changes on varying the power-law
ponent through unity, and shear thinning is seen to pla
stabilizing role on the unstable eigenmode~the range of un-
stable wavenumbers narrows asn declines!. A sharp change
does occur along a curved path on the (n,k)-plane, where the
two eigenvalues exchange roles in regard to the size of t
real parts. Note that the growth rates approach small nega
values for smalln, which corresponds to large extension
viscosity. The associated, nearly neutral modes describe
formations of the upper layer which are locked into place
the strong extensional stress; these modes are adve
downslope with the speed,U, of the equilibrium interface,
and consequently,l→2 ikU ~a similar effect is apparent in
Fig. 14!.28

VI. CONCLUSIONS

In this article, we have explored interfacial instability
two superposed layers of power-law fluid flowing down
inclined plane. We specialized to the limit of zero Reynol
number and exploited lubrication theory to build two r
duced models of the dynamics. One model is appropriate
layers with comparable effective viscosities, and we ha
presented a detailed discussion of the linear stability
nonlinear dynamics within the framework of this model. T
second model is relevant to layers in which the upper fluid
much more viscous than the lower one. For the sec
model, we have verified that instability persists when t
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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fluids are Newtonian; extensional stresses act to stab
shorter wavelength perturbations of the interface, but can
remove instability entirely.

One surprise of the second theory is that it proves d
cult to offer a self-consistent stability theory for a no
Newtonian upper layer. This arises because the equilibr
state about which we perform the stability analysis has z
strain rate to leading order. A shear-thinning fluid then p
sesses an infinite extensional viscosity, and a sh
thickening fluid has zero extensional viscosity. Hence,
slightest variations in the rheological law near the Newton
limit completely changes the extensional viscosity and
model is not robust. Part of the problem lies in the fact t
the vertical shear rate in the second model appears on
higher order, and in practice this can regularize the viscos
We have presented a version of the asymptotic theory
brings out this special feature of the problem and allow
physically plausible stability analysis for a range of no
Newtonian materials. However, even this theory bre
down for very shear-thinning materials, and we have no
tion other than regularizing the viscosity of the no
Newtonian fluid model so that it never truly diverges~a
popular approach in non-Newtonian fluid mechanics wher
is often argued that the power-law rheological model is
physically correct at zero strain-rate!. From the mathematica
perspective, it remains to be seen whether we have expos
flaw in thin-layer theory, or found a basic problem in th
linear stability analysis.

Finally, we return to the ice-flow problem, and discu
the relevance of our results to ice streams. There are
major problems in attempting to rationalize such structu
in terms of finger-like interfacial instabilities. First, althoug
we are able to generalize the lubrication model to thr
dimensional superposed layers, the linear stability the
predicts that instabilities with the correct spatial structure
atypical ~that is, unstable modes with dependence exp@ikx
1ily1lt# andk@ l ); patterns with comparable variations inx
andy ~the direction across the plane! are usually preferred.25

Thus interfacial instabilities seem more relevant to ‘‘wav
ice formations rather than streams, which probably hav
partly thermal origin.26 Second, ice rheology is commonl
modelled as a power-law fluid withn,1/2. Thus all the
problems in the thin-layer model likely apply to the glac
application unless the lower layer over which the ice slid
has comparable viscosity, which seems unlikely. Even
our results suggest that strong extensional viscosities
well stabilize interfacial instability in these configurations
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