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Superposed layers of fluid flowing down an inclined plane are prone to interfacial instability even

in the limit of zero Reynolds number. This situation can be explored by making use of a
lubrication-style approximation of the governing fluid equations. Two versions of the lubrication
theory are presented for superposed layers of non-Newtonian fluid with power-law rheology. First,
the fluids are assumed to have comparable effective viscosities. The approximation then furnishes a
simplified model for which the linear stability problem can be solved analytically and concisely.
Weakly nonlinear analysis and numerical computations indicate that instabilities saturate at low
amplitude beyond onset and form steady wavetrains. Further from onset, secondary instabilities
arise that destroy trains of widely spaced wave trains. Patterns of closely spaced waves, on the other
hand, coarsen due to wave merger events. The two mechanisms select steady wavetrains with a
characteristic spatial scale. The second lubrication theory assumes that the upper layer is far more
viscous than the lower layer. As a result, the upper fluid flows almost rigidly, and extensional
stresses can become promoted into the leading-order balance of forces. Interfacial instability still
arises in Newtonian fluid layers, and the nonlinear dynamics is qualitatively unchanged. Significant
complications arise when the upper fluid is non-Newtonian due to the behavior of the viscosity at
zero strain rate. €2003 American Institute of Physic§DOI: 10.1063/1.1611179

I. INTRODUCTION vidual layer is not so different to a single layer, one expects
instabilities in such films when the Reynolds number is suf-
As vividly illustrated by windows and gutters on rainy ficiently high. However, superposed layers also have the ad-
days and by many water sculptures, thin films of fluid flow- ditional degree of freedom associated with motions of the
ing down inclined planes are unstable to the formation ofinterfaces inside the fluid composite. Such interfacial mo-
wave patterns. In this phenomenon, sometimes referred to aigns have been shown to be a source of instabilityith
the Kapitza problem, the instability operates by drainingdiscontinuities in shear stress being held respon&iblew-
fluid into locally thicker features that move relative to the ever, inertia is essential to the mechanism proposed and does
film and sweep up further fluid from the surrounding film asnot operate in the zero Reynolds number limit. Yet, multiple
they propagate. The instability appears at much lower Reyfilms can be unstable even in the inertia-less regime, as
nolds numbers than those typically required for a transitiorpointed out by Loewenherz and Lawrericé/e explore ex-
to turbulence. Nevertheless, the wave patterns can show dusively the zero-Reynolds number limit in the present pa-
rich variety of behavior both in space and time, and haveper, which allows us to take advantage of a lubrication-style
provided fluid mechanicians and nonlinear dynamicists muckapproximation of the governing fluid equations. We present a
food for thought over the last fifty or so years. coherent picture of the linear stability and extend the theory
The critical Reynolds number for the onset of instability into the nonlinear regime to explore the nonlinear saturation
can be determined by linear stability theory. In falling fluid and dynamics of unstable waves. A related model was de-
films, the analysis is performed analytically using long-waverived previously by Kliakhandler and Sivashinsiy.
expansions because the most unstable waves typically have A further direction that we take in this study is to con-
the largest spatial scales in the plane of the fifiThe  sider non-Newtonian fluid layers. Specifically, we study in-
theory was further generalized to finite-amplitude longterfacial instability in two superposed layers of power-law
waves by Benneyand his nonlinear equatidiogether with ~ fluid. Weinsteiff has previously presented a few results on
variants derived later by a host of other authpigas pro- this stability using long-wave expansions; we offer a more
vided the basis of many studies of spatio-temporal complexeomplete discussion of how shear thinning or thickening af-
ity in the wave patterns of falling liquid film$. fects stability in the inertia-less limit. The non-Newtonian
In this article, we consider instability in multiple, super- problem has applications in chemical engineering, where
posed fluid layers. Such situations were previously considlayered flows arise in many coating processes, such as the
ered by Chen, Weinstein® and others. Because each indi- manufacturing of plates of photographic emulsions and in
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various extrusion and transport processes. Interfacial insta-
bility in two-layer flows of power-law fluid in channels has
been considered earligr!?

The non-Newtonian problem is also relevant to glaciol-
ogy, where ice is thought to act like a power-law flijitie
rheology is more commonly referred to as Glen’s law in the
glaciological literaturg and, in some situations, slides over a
much less viscous mud layer. This scenario is particularly
relevant to ice streams, where localized, relatively fast-
moving flows develop within more extensive, slowly moving
ice sheets, and various observations indicate that the ice <¢
streams slide over an unconsolidated sedini&Rteviously,

Loewenherz and Lawrent& suggested that interfacial in- . .

L . . S FIG. 1. The two layer model. The upper and lower fluids are incompress-
Stapllltle_s may play a role in gIaC|e_r Va”ablllty_' _althoth ible, with constant densities; andp,. The angle¢ fixes the slope of the
their main focus was upon rock glaciers. Our original moti-plane.¢ is the thickness of the lower layef, that of the upper layer, and
vation for the current work was to continue in this vein andh=6+{ is total thickness.
explore whether ice stream formation and variability could
be connected to interfacial waves. However, we deal with a
highly idealized fluid model here, which misses much of theby the velocity field ((x,z,t),w(x,zt)), and pressure
essential physics that plays a role in ice-stream dynaffocs (7 {). Surface tensiofthough easily incorporateds ne-

example, glaciers and ice sheets have a complicated basgkcted both on the free surface and the dividing interface.

structure involving channels of draining meltwater, embed-  The governing equations are given by conservation of
ded rock and sediment eroded from the ground underneath,omentum

which is for responsible for allowing the ice mass to slide at )
its basé®). In our conclusions we remark further on the rel-  Pj(Utt Ul WU,) = — Pyt (dxTxxt d27x2) T pjg Sin g,
evance of our results to ice streams. @
A.key detaillof the glacier pro_blem that requires an in- P (Wi UW, +WW,) = — P+ (Jy T+ 9,75, — pjJ COSh
teresting extension of the theory, is that the upper layer may (2)
have a much larger effective viscosity than the lower layer
The physical ramification of this disparity is that the upper
layer slides almost rigidly over the much more fluid layer uy+w,=0, ©)

beneath; the shear is almost entirely taken up in the loW&f here partial derivatives have been written asz) sub-
layer. However, besides suppressing the shear in the uPpQEripts,gz(g sing,—gcosd) is the gravitational accelera-
layer, the enhancement in viscosity can further promote exs

ional hich i<t di gﬁm, and 7, are the components of the deviatoric stress
tensional stresses which resist divergence or convergence nsor, the total tensor beifig= 7— pl.

flow. Such stresses are missing in the usual lubrication analy- We impose a no-slip boundary condition on the inclined
sis of flow over a plane because they normally lie at higher lane:

order than the vertical viscous stress. In the current situation,
when the extensional stresses are of the same order as the U=w=0 on z=0. (4

vertical viscous stress, we must revise the originalat the fluid interface z= ¢, we require continuity of veloci-
asymptotic scheme. The modified lubrication theory is SoMegies, the kinematic condition of the material surface, and the
what analogous to that used to describe free flifngscous balance of the normal and tangential stresses:

threads'’ and ice shelves and streaffisUsing this second
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for j=1 and 2, and continuity,

model, we explore the effect of the extensional stresses on  U(X,{ " ) =u(x,{",t)=u(x,1), 5

interfacial instability. WOGE ) =WOGET ) =Wy (1) = Lt Uy ®)

Il. FORMULATION OF THE MODEL Tl t).(—s’x):T(x g* t)_(—ix) @
) 1 1 1 1 1 1

A. The equations
where subscript refers to interfacial speeds. At the upper

dWe qon_sbllder tWO_ slualerppsez layers _Of I'_nc?jm?ress'bI%urface,z=h, we again apply the kinematic condition and
and immiscible materials flowing down an inclined plane, ascontinuity of stress:

shown in Fig. 1. A Cartesian coordinate system aligned with

the plane describes the fluig:points down the slope, arm he+u(x,h,t)hy=w(x,h,t), (8)
is perpendicular to it. The material properties of the two “h
layers are different; we use subscripts to distinguish them. T(x,h,t)~( 1 X) =0, 9)

For examplep,; andp, denote the densities in the upper and

lower fluids, respectively. Iz, the lower layer has thickness, which ignores any interaction with the overlying air.

{(x,t), and the upper layer has dept{x,t); the composite For the constitutive relation, we adopt a power-law rhe-
has thicknesd)(x,t) = {(x,t) + 6(x,t). The flow is described ology,
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Tkl:KJ.}lnj_l:}lklEMj(:}/):}lkl ! (10 [ Txz— €(Tyx— D)Zx]zgt:[ﬁz—p_Eszfx]thZO,
1
where [ 7x— €(Txx— PN =n=[ T~ P— €T Ny],-n=0. @9

2uX uZ+WX . . .
C Y=V VY (11)  C. The lubrication model

We now retain only the leading-order terms of the di-
nsionless equations. The momentum equations become

:YKIE

U,tw, 2w,

and the rheology is each layer is given by the consistenc;;he
K;, and a power-law index; [,uj(%y) is an effective viscos-
ity]. If nj=1 for j=1 or 2, then that fluid is Newtonian. 0= —py+d,7,+SD; and 0=—p,—Dj, (18)

. . o which integrate to
B. Nondimensionalization

h—z, ¢<z<h,

We remove dimensions from the governing equations as =
h—¢+D({—2), 0<z<{,

follows: We defineH as a characteristic thickness of the
composite fluid layer and measure downslope lengths wityng
the unit,L. We scale velocitiesy,w) with the characteristic

speedsl) andUH/L, and timet with L/U: . :[(S—hx)(h—z), {<z<h, 19
3 = ~ ~ ~ X - <z<
x=LXx, z=Hz, u=Uu, w=UHwW/L, t=Lt/U, Adé=2)+m, 0<z<(,
(12  whereD=D,=p,/p, and
where the tilde indicates dimensionless variables. For pres- 7=(S—hy)6, A,=SD-6,—D¢y. (20

sure, we takep=p,;gHp cos¢, and we scale the strain rates

with the unit, U/H. The leading-order balance between .
. ields

downslope pressure gradients and the shear stress selects ¥he

Given the stresses, the constitutive relatid®) now

velocity scaleU=(p;gH?>""2 cos¢/K,L) "2, B R¥M(S—h,)¥M(h—-2z)¥M,  (<z<h,

The lubrication theory proceeds by definiegs H/L as Uz= [A(L—2)+ 7)Y, 0<z<({. (2D)
the characteristic aspect ratio of the layers, and requiring this ) _ i
ratio to be smalle<1. We further assume that the principal A further integral provides the relation,
force balance arises between pressure gradients and viscous n 1

i X i X X 2 1+1/ny 1+1/hny
stresses in the downslope direction, and inertial effects are u':n2+1 A_[TB -7 1, m=nt+Ad (22
X

weaker. Thus we insist that Re,UL/K,, the Reynolds

number of the flow based on the downslope lengthscale, be Finally, we combine integrals of the continuity equation
of order unity or smaller. The dimensionless form of theWith the kinematic conditions of the surfaces-{ and z
momentum equations, dropping the tilde superscript, is therr h

€’D; Re(Uy+ Uy +WU,) = — Pyt €y Tyy+ I, 74, + SD;, (13)
] ] 0t+&x

h
f u,(h—2z)dz+u, 0| = ¢+ dy f{uz(g—z)dz}=0.
4 0

€4Dj Re(W,+ UW, +WW,) = — p,+ €20, Ty, + €0,7,,— D;j .(14) (23)

In the equations abov®;=p;/p, is the density ratio, and

On substituting the form of the velocity field, we find

. 1nq 42
S=(L/H)tan¢ is a slope_ pa_rameter, assumeq order (mue o+ RUN1g 17 0
the plane has a gentle inclinatiorThe continuity equation "t Xl 2n,+1
remains unchanged. 9
The dimensionless strain rates are given by n - jl aX[A_(Té+1/n2_ T|l+l/n2)} -0, (24)
_ 2euy, U, t€Aw, 2 X
Y= 2 , S,
U,+ €Wy 2ew, Ny B n;
§t+ X +
. > o 2 1 n,+1 Ay 2n,+1
v=[(u,+ e“w,)“+4e“u, ]~ (15
The deviatoric stress components can then be written in the 1 oy 2+1/
form P e Py )| =0. (29
! X
Rfl-(nlfl)' , $Z$h,
=1 - 71 . T € (16) Il. LINEAR STABILITY
Yy, 0=z<{,

e . . _ The system admits a steady flow solution with a flat
— n n
whereR= (K,/K,)(U/H)"™ " s a ratio of dimensional, €f- 0rtace and free surfacg=z, §=0 and h=1=0+Z.

fect|ve_ V'SCO.S't'eS' . We explore the linear stability of this solution by introducing

It is straightforward to re-express the boundary condi-
. T . i ... the normal-mode form,
tions in dimensionless form. Only the stress relations differ

from their dimensional counterparts: (£,0)=(Z,0)+[(Z,0)e Mic.c], (26)
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FIG. 2. Shown are growth rates, Rg( and wavespeeds= —Im(\)/k, of the two eigenmode$=1 and 2, as functions of wavenumbkyr,and viscosity
ratio, R, for D=1.1 and®=0.5. The darker line in the first surface shows the curve of neutral stability.

into the model equation&4) and (25), and then linearizing
in the perturbation amplitudes{,(#). The result is an alge-
braic eigenvalue problem for theompleX growth rate\,
solved as a function of the wavenumberlf Re(A\)>0 the
equilibrium flow is unstable.

Figure 4 displays the maximal growth rate overlathn
the (R,0)-plane. Also shown is the wavenumber that maxi-
mizes the growth rate. Instability appears for al®<1 and
R<1, as well as inside the narrow window witR just
greater than unity and smail. We conclude that the slight-

To minimize the number of free parameters in the stabil-est viscosity contrast between the layémsthe sense that the

ity problem, we fixS=1 by suitably selecting the downslope
lengthscaleL =H/tan¢. In addition to the wavenumbdy,

upper layer is more viscousan be destabilizing; the various
parameters of the problem change the detailed linear insta-

this leaves five dimensionless parameters determining thiility, but not this qualitative conclusion.

stability properties: The effective viscosity ratig, the rela-
tive thickness of the upper laye®, the density ratioD
=p,/pq, and the two “power-law” exponents); andn,.

B. Effects of a power law rheology

With power-law rheology, the effective viscosity can

We restrict attention to cases of stable density stratificatior\yary substantially across each of the superposed layers, mak-

D>1, filtering out Rayleigh—Taylor instabilities.

A. The Newtonian case

A useful first step in exploring the linear stability is to
consider the case of two viscous fluids;En,=1); we fix

D=1.1 and vary the other parameters. Figure 2 shows

growth rates, Re(), and wavespeeds; Im(\;)/k, against
wavenumber an® for ®=0.5. The flows with lower viscos-

ity ratios are unstable over certain ranges of wavenumber, a

found by Yih! that is, when the bottom fluid is the less

viscous. Of the two eigenvalues, only one becomes unstable

and the instability takes the form of long waves. Kag*

presented similar results to those shown in Fig. 2, and alsc®
investigated the role of the density stratification, which we
largely ignore here. In Fig. 3 we plot curves of neutral sta-
bility on the (k,R)—plane for several values of the upper

layer thicknes®). Below these curves, the equilibrium flow
is unstable. The unstable region is largely containedRin

< 1. Surprisingly, an instability region also appears above the o :

line of equal viscositieR=1 (a feature also noted by Kao
In the limiting cases®=0 and®=1, representing the ab-
sence of one of the layers, one of the eigenvalues disappe
and we are left with a single stable Newtonian layer.

ing ambiguous the definition of the viscosity contrast be-
tween the two fluidgwhich controls the instability for New-
tonian layers We offer a rough guide to the effect of the
rheology as follows. First consider a non-Newtonian layer

B

0=09
08

©=0.75

6=0.5

02}

FIG. 3. Curves of neutral stability on th&,R)—plane forD=1.1 and

ah3-0.1, 0.25, 0.5, 0.75, and 0.9. The equilibrium flow is unstable below

these curves.
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(a) (b)

FIG. 4. (a) Maximum growth rate over
all k and (b) the associated wavenum-
ber on the R,0®)-parameter plane, for
D=1.1,n;=1, n,=1. The dark area
to the right locates the stable region,
where the growth rate is negative for
all k.

atop a Newtonian fluid. The dimensionless effective viscosis raised at the interface, promoting instability. Conversely,
ity of the equilibrium flow follows from(21): the interfacial viscosity is lowered for a shear-thickening up-
-1 1—1n per layer, and the interface is more stable.

n(=R"(h=2) B @7) Similar considerations lead to an analogous prediction

Given that the instability is an interfacial one, we assumefor a flow with a Newtonian layer above a non-Newtonian

that the important value of this viscosity is that at the inter-fluid. In this case, the mean effective viscosity in the lower

face. Thus we compare,(Z) =R~ Y@~ with the vis-  layer is

cosity of the lower layer(unity). Based on the results for

Newtonian fluids, we then predict instability if the ratio of vy(2)=[@+D(Z—2z)]* 2. (29

these two values exceeds unity: ]
At the interface,v,(Z)=01"'"2, whereas the upper layer

el i now has a viscosity oR™1. Thus we anticipate instability
- ni—1 .
T >1 or R<O" -, (28) when
In Fig. 5 we compare this simple prediction with numerical R<@n2—1 (30

computation of the stability boundarfover all k) on the

(R,0)-plane, and find qualitative agreeméhtSince®<1,  Figure 6 compares this prediction with more numerical re-

when the upper fluid is shear-thinning,< 1), the viscosity ~ sults; again there is qualitative agreement. Some more re-
fined analytical predictions will be given momentarily.

08 b
0.7 4

06} VAV 4

0A4AF n‘=2

03

02}

FIG. 5. Marginal stability curves foD=1.1, a lower Newtonian layer
(n,=1) and an upper non-Newtonian layer. Five cases are shown corre-
sponding to upper layers that are shear-thickenimg=@4/3 and 2, New- FIG. 6. Marginal stability curves fob=1.1, an upper Newtonian layer
tonian (,=1), or shear-thinningr(;=1/5 and 3/4. The dots show the (n;=1) and a lower non-Newtonian layer. The five curves show results for
prediction (28), and the dotted line is the prediction of the small a lower layer that is shear-thickening,=4/3 and 2, Newtonian (,=1)
®-expansion. Fon, =2 the three curves are hard to distinguish. or shear-thinningrf,=1/5 and 3/4. The dots show the predictiai30).
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C. Thin basal fluid layer: Small Z

When Z<1, we may reduce the lubrication model fur-
ther and extract a simple stability criterion. In this limit,
interfacial perturbations have amplitude of the order of the®

lower-layer thickness and develop slowly:6<0,¢)

—0(2) and (;,{)—0O(Z?). The slow evolution demands

that, to ordeiZ in the #-equation(24),

Rl/nlhx
1+2n,]

ny(R7) M6

0~ —Zn+1

+u6

~ax{ RYMg+ ¢ —

Interfacial instability in non-Newtonian fluid layers 3375

From the nonlinear perspective, the leading-order term
in (33 is the nonlinear wave-steepening tefifi,, whereas
the linear instability appears at higher order. Thus, we antici-
ate that weak instability nucleates waves that steepen rap-
idly into shock-like structures. Indeed, in the numerical com-
putations reported later, we observe this kind of dynamics at
small Z.

D. Thin upper surface layer: Small @

The behavior of the system whéh<1 depends sharply
on the exponents; or n,; we explore the configuration with

That is, the flux of fluid through the upper layer remains@ Newtonian lower layer: Whem,=1, the key non-
constant in each vertical section to leading order; the uppeNewtonian term in the equations is

flow adjusts instantaneously to deformations in the interface.
Any disturbance in the interfacial speed must, therefore, be
accompanied by changes in the thickness of the upper layer

1in 1/in
n;R*" 1, 2_an 1

_ _ 1iny p2+1/ny
2n,+1 ! T R U A

(36)

to maintain constant upper-layer flux. We now use the inteThis term introduces nonintegral powers ©fin a power

gral of (31)
hy (-Z
to write the Z-equation(25) as
1 , (1-RYM)_ 3-2DR"™ _
gt E o')x g anllnl 3n2Rl/n1
2n %y +0(z* 33
ny(1+2ny) (Z%), (33

which constitutes the reduced system.
On linearizing, we read off the amplitude relation,

9 ikRYM1—(1+2n,)
RYM1(1+2n,—ik)

Z, (34)

and eigenvalue,

ikZ[1-2RY(D—-1)]

A~ —ikZ+
2n2R1/n1

. n;k?z?(1—RY")(1+2n,+ik)

35
n,RYM[(1+2n;)2+k?] %9

Thus the system is unstable K<1, independently of the
values ofnh; andn,, as seen in Figs. 5 and 6. Frd38), we
identify the term involving slope of the free surfadg,, as
that responsible for instability aD(Z?). Becauseh= 6+ ¢
~(1-R™ Y1) for small Z and long wavesthe most dan-

series solution for smalb. To avoid this complication, it is
convenient to rescale the linearized system by defining a
modified viscosity parametéR:R=R™®"", This proce-
dure eliminates nonintegral powers & and the solution
then takes the form of a regular power series: Ao+ X0
+A,02+ 7303+ We find

Re _k4®2(D—1)
«*) D(9+4k?)
3D-2-DR (D-1)R
T 3p2 b(irzny KO- G7

The first-order correction i37) is negative and, therefore,
stabilizing, but it is also of ordek* for long waves. The
second-order correction, on the other hand, is okdeand

can be either positive or negative, depending on the value of
R. Thus, for small®, there is a narrow window of wave-
numbers WitH(~®i/2 that can be unstable provided we sat-
isfy a condition onR, which translates to

(3D-2)(2n + 1"
3D%+(2n;—2)D '

The dependence of mirrors our cruder predictiori28).
Note that whenn;=1, the condition become&< (3D
—2)/D?, which indicates when unstable valuesPéxceed
unity. The marginal curves of Fig. 5 are in agreement with
the more accurate results (@8) at small®, as shown by the
finer dotted lines in the picture.

(39

gerous disturbances to stabilitthe free surface moves out |\, NONLINEAR DYNAMICS

of phase with an interface perturbationR 1. Physically,
wherever an initial perturbation raisédepressesthe inter-

Linear stability theory conveys some idea of whether

face, the constancy of the upper-layer flux forces the fresmall perturbations superposed on the interface of an equi-
surface to become lowerddlevated. The resulting inclina- librium two-layer flow begin to amplify. Yet it says nothing
tion of the free surface then changes the interfacial sheaabout what happens subsequently to the growing modes. An
stress, which forces a flux in the lower layer that removesinimpeded growth of the mode could lead to the breaking of
fluid from below the depressions of the interface, and additerfacial waves or one of the layers collapsing and pinching
fluid below interfacial elevations, thus strengthening the ini-off (cf. Ref. 2. We now analyze the lubrication model fur-
tial perturbation, and leading to instability. ther to decide whether such destructive phenomena arise.
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FIG. 7. A numerical solution 0f24) and(25) for ®=0.5,D=1.1,R=0.5, andn,=n,=1, in a domain of sizé= 2. This flow lies just beyond the onset of

interfacial instability. Shown are snapshots@f ¢, (b) 6, and(c) h, every 40 time units. The snapshots are shown in a frame moving with a veMcitipse

to the nonlinear wave speed to eliminate rapid propagation effects and bring out the slower growth and saturation of the mode; the snapshots are also
successively offset to emphasize this pattern of evolution. Note that the offsetisanuch smaller than that faf and 6, and the disturbance of the free

surface is relatively small.

We use two computational schemés pseudospectral amplitude nonlinear waves form beyond onset, and the layer
method and one based on finite differencesnumerically  structure remains intact.
solve the partial differential equations of the model as initial- Further from onset, one side of the nonlinear waves
value problems in periodic domains ¥y we state the initial steepens to become a sharp, shock-like feature, while the
conditions below. We also look for steadily propagating non-other side flattens and develops a broad platsage Fig. 9.
linear waves by posing the dependena&x—ct) and §(x  This latter feature becomes extensive in large domains and
—ct), and solving the resulting ordinary differential, peri- begins to resemble an uniform equilibrium profile with a
odic boundary-value problem, in which the wavespeegh-  different ®. Because such states are unstable, we anticipate
pears as an eigenvalue. that the nonlinear waves of Fig. 9 eventually become un-

We illustrate the dynamics for two Newtonian layers stable to waves growing on the plateau ohég sufficiently
(ny=n,=1). In Fig. 7, we show a sample numerical solu-large. The prediction is verified by numerically solving
tion in which the system is initialized with an equilibrium initial-value problems that begin from states close to the
flow plus a low-amplitude disturbance taking the form of thesteady nonlinear wave, and by computations of the linear
unstable modéthe initial amplitude is 10*, as measured by stability of steadily propagating solutions like those in Fig. 9.
the maximum of {—Z|). The picture illustrates how the un-
stable mode grows and then saturates at finite amplitude; the
perturbation to the free surface remains small throughout,
reflecting the interfacial character of the instability. The final 7p-
saturated state agrees with a direct computation of the
steadily propagating nonlinear wave. Moreover, when we s
vary parametergsuch asR) to trace the nonlinear solution
back to the point of neutral stability, we find its peak-to-peak
amplitude decreases smoothly to zero, indicating a super-
critical bifurcation (see Fig. 8 Near onset, the nonlinear
wave branch can be constructed analytically using weakly
nonlinear theory; this furnishes a Landau equatidyys yA
—T'|A|?A, determining the amplitude)(T), of the nonlin-
ear wave, wherey is the modal growth rate anld is a con-
stant given by the system parametéesg., Ref. 23 The

13
L

max_e)
o

»

saturation amplitude - (0
W

profiles

weakly nonlinear resulfA|=[R(y/T')]Y?, is also shown in b o X |
Fig. 8. 0

To determine whether instabilities always saturate ;b oo oo 0w oy o oo
quickly beyond onsdi.e., supercritically, witfR(I")>0], we R

have Surveyeq the sign of the QUbiC _CoefﬁCieﬁL of the  Fie. 8. saturation amplitudes, expressed as the maximuén-6f, against
Landau equation over the four-dimensional parameter spagefor solutions of the periodic boundary-value problem for steadily propa-
(D>1, R, 0<0®<1 and the domain sizg. We have found no gating waveg(solid), and from the end-state of initial-value computations

. o . . . . . that begin from low-amplitude random perturbations superposed on the
mStam_:_eS In WhICh the CoeﬁIQIQHI indicates a ;hal[p)er, equilibrium flow (star3. The dotted line shows the saturation amplitude
sub-critical, with9R(I") <0] transition, although a simple ana- eypected from weakly nonlinear theo®=1/2, | =27, andD=1.1. The

lytical proof of supercriticality has eluded us. Thus, low- inset shows the steady profiles @faind { at R=0.95.
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06 ‘ ' ' ' ' ‘ pears, and a steady wavetrain ultimately emerges. In no cases
m have we found the saturation of the secondary instability at
low amplitude; it invariably grows to disrupt the original
nonlinear waves and spawns new peaks. We, therefore, con-
jecture that this instability is subcritical, and “pulse” genera-
tion occurs when the peaks of the original nonlinear wave are
too far apart; i.e., when the domain siteexceeds a critical
value. The critical domain siz&he onset of the secondary
instability) is plotted on the ¢,R)-plane in Fig. 11, wherd
] is the peak separatiofwhich equals the domain size for a
periodic wavetrain with a single peak in each pejiod
At first sight, it is surprising that steadily propagating
multi-peak solutions are spawned in the pulse-generation
events because these solutions appear by bifurcating from
x-ot the uniform equilibrium flow a$ varies. Yet those bifurca-
FIG. 9. Nonlinear waves in different domain lengths,for ®=0.5, R tions are always preceded by the onset of instability to
=1/2,D=1.1, andn,=n,=1. The solid lines show, and the dotted lines mModes with fewer peaks, and so the nonlinear solutions are
showo_. The inset compares the_ interfacial _disturbance with the free-surfacebom unstable. In fact, by computing the linear stability of the
distortion for the wave in the widest domain. . . - s
solutions, we find that secondary instabilities also occur on
these “higher-order” branches. The bifurcations, however,
A sample numerical solution showing disturbances deStabilize the multipeaked nonlinear waves on increasing
veloping on a steady nonlinear interfacial wave is displaye&the curves along which this stabilizing bifurcation occurs
in Fig. 10. In this example, although the system begins fronfor nonlinear waves with two to four peaks are shown in Fig.
a numerical solution of the boundary-value problem, smalfll). As the domain becomes even longer, the higher-order
errors in the initial profile excite unstable modes. Thesehonlinear waves also eventually develop wide plateaus, and
modes take the form of secondary waves propagating acros® again suffer secondary instability ontebecomes too
the flat plateau of the original wave; the disturbance grows tdarge. But, over an intermediate range of domain sizes, we
disrupt the original structure. Eventually, another peak ape€onclude that the multi-peaked solutions can be stable, in

{ and time

FIG. 10. A numerical solution of the initial-value problem with=0.5,R=0.5,D=1.1, andn,=n,=1. The initial state consists of a steady nonlinear wave
in a domain of length=14. The picture shows snapshotsiadvery 50 time units in a moving frame; the snapshots are successively offset to emphasize the
temporal evolution. Two spatial periods are shown.
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18 T T T T T T T T T T FIG. 11. A picture of the q,R)-plane,
whered is the peak separation, show-
16 ing the onset of secondary instability
Destabilizing Hopf in the primary nonlinear wave created

14 from the uniform flow(marked “de-

stabilizing Hopf”) with ©=0.5, D
=1.1, andn;=n,=1. Also shown is

-
N

e T T S

.é ; the curve along which this solution

5 10 o i i first appearsthe line of linear instabil-

g Peak nucleation figure 10 l :' ity of the uniform flow, and

§ 8 Linear instability — | the curves where the nonlinear waves

o ! with two, three and four peaks become
6F Initial-value problems /7 stabilized by a secondary bifurcation

Coarsening figure 12 | ~ (the ‘“restabilization curves]. The

4r T / 7 crosses mark data from the final states
Restabilization curves ! _/4 of the initial-value computations also

2 O e 7 shown in Fig. 13, and the circles

---------------------------------------------- = and squares represent the peak-

% of1 of2 03 oz o5 0|6 0'7 08 o0 ” nucleation and coarsening simulations
' ’ of Figs. 10 and 12.

accord with the final states seen after pulse-generatioeamerging nonlinear wave does not saturate, but suffers a sec-
events. ondary instability in which two of the peaks merge. Such
The restabilization of the higher-order nonlinear wavepulse-merger events continue to coarsen the pattern until the
branches leads to a wide range of multiple equilibria for thenumber of peaks declines to the point that the relevant non-
system in longer domains. Thus, initial-value problems belinear wave is stable. The pattern of unstable modal growth,
ginning from low-amplitude disturbances superposed on théollowed by coarsening, and then ultimate stabilization in a
uniform equilibrium flow have many available end-states. Insteady wavetrain is illustrated in Fig. 12.
practice, we observe a selection mechanism that dictates The character of the selection mechanism for the peak
which of the possibilities are most common: The low- number is illustrated further in Fig. 13, which shows results
amplitude noise seeds unstable modes, and that with the larffom many initial-value problems witld=R=1/2, D=1.1
est growth rate outruns the rest to create a first nonlineaandn;=n,=1. In these computations, the domain lengdth,
structure in the domain. Typically, however, the most un-varies, as does the initial conditidsix low amplitude per-
stable modes have a large number of peaks, and the correwbations off the uniform flow with different shapes, for
sponding nonlinear solution is not stable. Consequently, theach value ofl). The dots show the number of peaks first

{ and time

0.9

0.8

0.7

0.6

0.5 L 1 t : 1 1 T F I T
-2 0 2 4 6 8 10 12 14 16
X
FIG. 12. A numerical solution of the initial-value problem with=0.5,R=0.5,D=1.1, andn,=n,=1. The initial state consists of the uniform equilibrium
flow with a low-amplitude disturbance in a domain of length20. The picture shows snapshotsiodvery 40 time units in a moving frame; the snapshots

are successively offset to emphasize the temporal evolution.
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T I =

2 & :_Pi'r:':l' ;‘r'l:‘gl“‘r': T FIG. 13. A picture of the {,!)-plane
--- Maximum growth rate . . showing number of peak$, in solu-
....... Stability border tions of initial-value problems against

domain size for® =R=0.5,D=1.1,
and n;=n,=1. The dots show the
number appearing initially, once non-
linear effects first set in; the circles
show the final numbefor at least that
number after about 2000 time units
The initial conditions were low-
amplitude perturbations about the
equilibrium flow, most with rapid spa-
tial variation, but one taking the form
of the longest wave. The dotted line
shows the onset of linear instability of
the uniform flow, and the dashed line
represents the linear mode with the
largest growth rate. The shaded region,
2.1j<1<12.3, shows where the argu-
¥ ment given in the main text predicts
0 2 4 6 8 10 12 14 16 18 20 20 stable nonlinear waves.

Domain size, |

Peak number

appearing, and the circles show the final numleerat least  Sivashinsky equation (Benney’s equation when the
that number after about 2000 time upmit¥he figure also dispersive term is significaif. However, we have not sys-
displays a rough criterion for stability of the final nonlinear tematically explored all of the parameter space to determine
solution, obtained as follows: The single peaked solutionwhether there are windows in which there is unsteady dy-
loses stability fol ~12.3 (see Fig. 11 We assume that this namics. Our conclusion is that this simply seems unlikely.
condition provides a rough criterion for when the separation
petween_peaks becomes too large to.stably support _the W|d\<;_ VERY VISCOUS UPPER LAYERS: THE ROLE OF
mterme@gte plategu. Henpe, the maximum dom{;un size for BXTENSIONAL STRESSES
wave withj peaks is 12.3j. Next, as also shown in Fig. 11,
the bifurcation that restabilizes the nonlinear waves Vyith The asymptotic theory contained in preceding sections
peaks,j=2-4, occurs at peak separations that are roughhjiolds when the two layers have comparable effective viscosi-
independent of the peak numbrHence, we assume that all ties, or at least when their rati®, is no larger thare %, or
multi-peak solutions becomes restabilized when the peakmaller thane. A large ratio is of little interest: The lower
separation is roughly 2.(for the current parameter settings layer is so viscous that it cannot move, and the interface acts
and so the minimum stable domain length is>2j1 The like a rigid base on the upper layer. However, the limit of
stability window predicted by this argument is shown as thesmall R does have physical interest, particularly in the gla-
shaded region in Fig. 12, and encompasses all the final stateiplogical context, where it is relevant to consider a very
observed, with some margin above and below. viscous power-law fluid, sliding over a much more fluid
We have performed a variety of computations like thoseNewtonian layer beneath. In this situation, vertical shear in
presented in this section over much wider regions of théhe upper layer is suppressed and the extensional stresses can
parameter spacghat is, varying®, D, R, n,, andn,). Ex-  become promoted into the leading-order balance of forces.
cept in cases where the lower layer was very t@ismal) or ~ These stresses are absent in the lubrication model described
for small R, pulse generation and coarsening dynamics ar@bove, but could affect stability fd&— 0. Here, we will thus
invariably found. ForZ<1 and R<1, we observed rapid try to extend the theory to include extensional stresses, re-
steepening into structures with very sharp shocks, as anticstricting attention to Newtonian lower layers.
pated in Sec. Il C. This steepening leads to resolution errors
that plague detailed numerical computations in this paramA. A second lubrication model

eter regime, and we are unable to offer a reliable description 14 tormulate the thin layer theory, we begin with a dif-

of the dynamics for these parameter settings. Neverthelesgyrent asymptotic sequence for the downslope velocity in the
we observed no tendency for a different kind of dynamics ahpper layer:

smallZ andR.
Kliakhandler and Sivashinsky have suggested that tem-  U=Uo(X,t)+ €’Up(X,Z,t) ++ ", (39
porally complex interfacial dynamics can occur in multi- \yhich corresponds to near-rigid sliding. Then,
layer flows, deriving coupled Kuramoto—Sivashinky equa-
tions in some special limits. However, in no cases have we - 2Uox €(Up,+Woyx)

uncovered solutions that converge to unsteady states. Over- YiTe €(Ug,+Woy) —2Ugy
all, the behavior seems much more similar to the pulse dy- . > >
namics seen in the dispersion-modified Kuramoto— Y~ €\4ug,t+ O(€7). (40)
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To reflect the dominance of the upper-layer viscosity,B. A Newtonian combined model
while taking a distinguished limit that adds extensional
stresses to the lubrication model, we Bet ¢! ""R,,, ;, giv-
ing, in the upper layer,

The explicit forms of the two versions of lubrication
theory suggest a convenient combined model that captures
both in different limits ofR

2|UO><|n_1 2uOx 5(“22+W0x) 0+ gx[u|0+ %R(S— hx) 03]:0,

o . (a1
M7 eRya1 | e(Ugytwoy) — 2Uqyx “)

(50

1 1¢3 —
where we lighten the notation by definimg=n. The diag- bt 2 5D =D 0,)1=0
onal components become order!, motivating us to define and
Tux= €Tyx ANAT,,= €7,. 2 1
To leading order, the dimensionless governing equations  u,=(S—h,) 0§+4Egax( Ou,) + Egz(D— D{—0,).

may now be written in the form: (51)

0= —py+ S+ 9,7y, F Iy Txxs (42 The combined system can be crudely justified by considering
0= —p,— 1+, 43) a nonasymptotic extension of the lubrication model of Sec.
z ziez Il: One retains the higher-order extensional stresses along
and the conditions at the free surface and interface as with the Ieading-order shear stresses, then evaluates them by
_ 5 arguing that these terms only become importantRerl, in
hy(Tux—=P) = 7xz=P—17,,=0, on z=h (44 which case the velocity field is plug-like in the upper layer
andu~u, there. A non-Newtonian version of this theory is

and . X
given presently, so we offer no further details.
Tl X, &) = 20X, L D) = Tl X, E ), With the combined model, we once more explore the
B (45) linear stability of the equilibrium flow witii=2, =0 and
P(X, LT 0) =T X, LT ) =p(x, {7, 1). Z+0®=1, using a decomposition into normal modes. Again

) , o there are two eigenvalues, one of which corresponds to an
We integrate to find the pressure distribution and shear stre$i stable mode for certain wavenumbers and parameter set-
p=7,,+(h—2) ting_s. As shovgn in Fig. 14, as we raise the extensi_qnal Vis-
cosity, .= €“/R, the associated stresses stabilize the
and (46) shorter waves and reduce the range of unstable wavenum-
bers. However, the additional stabilization does not remove
h_ instability, but merely pushes it to longer wavelengths.
Txz= (S= hx)(h_z)+2(9XJZ Txxd2, Extensional stresses also do not appear to change quali-
tatively the nonlinear interfacial dynamics: instabilities are
which imply thatp(x,{™,t) = 6 and invariably supercritical and saturate in steady nonlinear
wavetrains beyond onset. On lengthening the domain, the
wavetrains again develop wide flat plateaus, which precipi-
(47) tates secondary instability; coarsening and peak generation
where the last term on right-hand side is the contribution ofoccur in larger domains to select wavetrains with peak spac-
the extensional stresses. In the equations for the evolution #fgs over a certain range. Figure 15 shows a selection of
the layer thicknesse®3), the {-equation is written much as numerical results.
before(but withn,=1), whereas th@-equation is evaluated
immediately given thatio=u,(x,t) is uniform inz C. The non-Newtonian case

Although the Newtonian lubrication theory i@8) and
(49) can be explored without difficultjand it is not strictly
and (48) necessary to proceed to the combineq modéb and(51)
in order to gauge the effect of extensional stregsbg non-
B+ 0, (U, 0)=0 Newtonian counterpart runs into some serious difficulties:
t x\H| . . A . .
The basic equilibrium state is uniform downslope, and so
Finally, the interfacial velocity can be determined from theu,,=0. Thus, for n>1, the extensional viscosity,
solution in the lower layer, given the interfacial shear stres#iR. 1 |2u,,|"~*, vanishes identically. By contrast, this vis-
_1 I cosity is finite atn=1, and diverges fon<1. Extensional
U =(S—hy) 67 +4R, 1 20, (2| ui )"~ 26Uy, ] stresses therefore appear to have no effect on shear-
+12(D-D¢,— 6,). (49) th?ck(.aning upper .Iayers, but complgtely stabilize shegr-
thinning layers. Evidently, the system is not robust to varia-
This last equation is a second-order differential equation fotions inn throughn=1.
the interfacial velocity. For reasons cited presently, we donot  To understand how the problem arises, we return to the
explore this model in detail, but construct a more generafjoverning equations, and perform a nonasymptotic expan-
system that incorporates both versions of lubrication theorysion. We begin with the upper-layer velocity

(X, )=7=(S—h) 0+ 4R, 11 9,[ (2|ugx))"Ougy],

Lt %ax[%é’g(D_Dgx_ 0,)+u {]=0
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1 1 1

4 FIG. 14. Linear stability in the com-
bined Newtonian model. The top panel
shows the maximum growth rate as a
. density on the (logy.Kk)-plane,
where 7.,= €%/R, for ©=1/2,D=1.1

o -

2 : and R=10"3. The solid line is the
curve of neutral stability. The lower
panel shows more curves of neutral

stability on the same plane for differ-
ent values of® (and the saméR and
D).

-4 -3 -2 -1 1
log Mgy = log (¢“/R)
20 T T T T
15 -
©=0.7
=101 0=05 .
5 ©0=0.3 n
0=0.1
O 1 1 1 1 e
=8 -2 = 1 2

, 0
logn , =log (¢7/R)

u=u;(x,t)+uy(x,z,t)+---, (52

where we fixu,(x,t)~0O(1), buttune the order of magni-

tude ofu,: u,~0O(1) gives the “standard” model of Sec.
IV, whereasu,~O(€?) leads to the model with a very vis-

cous upper layer, as in Sec. VA.

We recall the dimensionless momentum equations to or-

dere
0= —pyt+ S+ 9,7+ €y Tyys (53
0=—p,— 1+ €d,r,,, (54

h
71=(S—h,) 6+ ZE&XJ TuxdZ, (58)
¢

which is needed to compute the lower-layer solution, with
the familiar resultu, =7+ A,Z%/2, and {-evolution equa-
tion in (48).

The 6-evolution equation follows from

h
u,0+j uadz).
s

The integral ofu, in this formula is only important where

h
O=0t+(9XJ’ udz= 6,+ dy (59
{

which retains the most important contributions of the sheatuaz|>ezulzx. From the constitutive law an(8), truncated
stress and the extensional stresses. To the same order, tieeordere, we find an approximation

boundary and interfacial conditions are

hy(eTy—P) — 7x;= €7,,— P=0, on z=h (55
and

Tl X%, {0 = 2€, (%, { T D) =1 X, {71,

P& D)= e (X0 ) =p(x,{ 7 1). (56)
Thence,

p=er,,th—z
and (57

h

o= (S—hy)(h—2)+2€d, f rodz.

z

The interfacial shear stress is, therefore,

Ril:yniluazmRiluazluaz|nil~(s_hx)(h_z)' (60)

Hence,
(h_z)l+l/n 01+1/n
~RInc_ 1/n _

Ue~RE(S ) { 1+1n  1+1n) (61)

and then
1/n
O+ dy U 0+ 5= (S—hy g2 N ~0, (62)

which is an obvious generalization of the first relation in
(50).

By contrast, the extensional stress is important where
u,, is relatively small. We introduce

7'xxmzlynilulxv ‘.)’: 52+462ulx+uazv (63)
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0.6F T T T T 3

(a) Steady waves

FIG. 15. Nonlinear solutions of the Newtonian combined modelfge=1, R=0.01,0=1/2 andD=1.1. The top panel shows the steady nonlinear wave
solutions that bifurcate supercritically from the uniform flow state on increasing the domain size. The lower pictures show two initial-valus fooble

=25: In the first, the system is initialized with a steady wave with a single peak, and pulse generation occurs to yield a nonlinear wave with three peaks. |
the second, the system is initialized with a low amplitude disturbance with five peaks superposed on the equilibrium flow; the disturbance gyotos initia
finite amplitude, but then coarsens to a steady nonlinear wave, which again has three peaks. Plotted is the interfaciabspeeenirface above the
(x,t)-plane.

where the constart is an artificial mathematical device to Hence,
regularize the viscosity should it eventually prove necessary.
We then use the approximati@60) for u,,, to compute

_ 1
71=(S—hy) 0+4€ed(nuy), (64 u~(S—h,) 0+ EAxgz
where the depth-averaged extensional viscosity is
1 1 (n A o HASu TR (69)
_ . +—{7 Uy |4
== L Y iz~ o L [€2+4€ul +R¥N(S—h,)2" e M T sy ()

< (h— 2/n7(n—1)/2 . .
(h=2)"1] dz which completes the system. A&s-0, the extensional stress

(e?+4e%ud)n 12 disappears, leaving the original lubrication model of Sec. II.
= T Res—h G(Y), (65  On the other hand, iR—0 with €%R fixed, the model re-
( x) duces to the second lubrication theory of Sec. V A, but with
with a modified extensional viscosity.
v The functionG(Y) can be written as a hypergeometric
G(Y):J (1+y?m(n=Dizgy (66)  function, and has the limits
0
and G(Y)~Y, for Y<1 (69)
R(S—hy) 6
Y=—7FT—:. (67
(e?+4€%u?)™? and
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0.6

FIG. 16. Linear stability of the combined non-Newtonian model. The picture shows the maximum growth rate as a density ¢)-tiene, for@=1/2,

D=1.1,e=0.1, andR=10"2. The solid line is the curve of neutral stability.

nY?~*/(2n-1), n>1/2,
G(Y)~ G.. n<i/2, for Y>1, (70

whereG,,(n) is a constant. The first limit implies that

1
U|—>(S_ hx) 0§+ zAxgz

2
€
+ Fg&x[(ez—i_‘]'ezulzx (nil)lzaulx]r (71)

for R|S—h,| 6<(e?+4€?u?)™?, which is equivalent t¢49),
but for the artificial regularizatione. This limit is inacces-
sible if e<1 andu,,—0 (the equilibrium flow.

For the second limit, we distinguish the two cases If
>1/2

1
U|—>(S— hx)9£+ EAxgz
4€en
2n—1
But if n<1/2

J’_

Rfl/ngax[(s_ hx)lfllnulxe2fl/n]' (72)

1
u—(S—hyel+ EAxgz

Ujx

S—h,)

These limits are appropriate for R|S—h,|6>(€?

+46°R%°G..Ld,| (e2+4€%u?) V2 (73

n<1/2, asu,,— 0, the extensional stress withid3) is given
solely by the artificial regularizog, signifying that there are
still problems in the expansion.

In summary, ifn>1/2, our model successfully regular-
izes the extensional viscosity in the limit of uniform flow;
the structural instability of the model of Sec. VA arises
through neglecting the equilibrium vertical shear stress. We
illustrate the result with solutions of the linear stability prob-
lem: In Fig. 16, we show growth rates on the,K)-plane.
There are no sudden changes on varying the power-law ex-
ponent through unity, and shear thinning is seen to play a
stabilizing role on the unstable eigenmadee range of un-
stable wavenumbers narrows msleclines. A sharp change
does occur along a curved path on tihek)-plane, where the
two eigenvalues exchange roles in regard to the size of their
real parts. Note that the growth rates approach small negative
values for smalln, which corresponds to large extensional
viscosity. The associated, nearly neutral modes describe de-
formations of the upper layer which are locked into place by
the strong extensional stress; these modes are advected
downslope with the speedl, of the equilibrium interface,
and consequentlyy— —ikU (a similar effect is apparent in
Fig. 14.28

VI. CONCLUSIONS

In this article, we have explored interfacial instability in

+4ezu|2X)”’2, and therefore, characterize small perturbationdwo superposed layers of power-law fluid flowing down an
about the equilibrium flow. In fact, they also arise if one inclined plane. We specialized to the limit of zero Reynolds
performs the lubrication-style asymptotic expansion on thenumber and exploited lubrication theory to build two re-

linearization of the governing equatio®) and (3) (rather
than linearizing the lubrication theory, as done hefero-

duced models of the dynamics. One model is appropriate for
layers with comparable effective viscosities, and we have

videdn>1/2, the extensional viscosity remains finite, and ispresented a detailed discussion of the linear stability and
actually given by the equilibrium vertical shear stress, whichnonlinear dynamics within the framework of this model. The
disappeared to higher order in the expansion of Sec. V Aecond model is relevant to layers in which the upper fluid is

(and is contained in the termn,, in ). Thus, the regularity
of the problem is restored and we may set0. However, if

much more viscous than the lower one. For the second
model, we have verified that instability persists when the
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fluids are Newtonian; extensional stresses act to stabilizéc. S. Yih, “Instability due to viscosity stratification,” J. Fluid MecB7,
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