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Dam breaking by wave-induced erosional incision
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[1] We present an experimental and theoretical study of whether a large displacement
wave can lead to catastrophic erosional incision of a moraine damming a glacial lake. The
laboratory experiments consist of reservoirs held by barriers of granular materials in a
glass tank; the theoretical model combines the Saint-Venant equations of hydraulic
engineering with an empirical prescription for erosion. The results of both the laboratory
experiments and the numerical simulations indicate that a single wave is generally unable
to break the dam, but a sufficiently large disturbance in an almost-filled reservoir creates a
seiche that can repeatedly overtop the dam. In such a case, the combined effect of the

multiple erosion events ultimately breaks the dam.
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1. Introduction

[2] As a result of recent climate warming, many moraine-
dammed lakes have been left behind by retreating glaciers in
mountainous regions worldwide. These lakes are typically
hundreds of meters wide and tens of meters deep, and pose a
significant flood hazard if the dam can be breached relatively
swiftly. Geological observations suggest that several cata-
strophic dam failures have indeed occurred in recent years
and released destructive flood waves [Clague and Evans,
2000]. For example, the moraine that dammed Queen Bess
Lake (British Columbia) was breached in a sudden event in
1997 that lasted a few hours and emptied six million cubic
meters of water [Kershaw et al., 2005]. The current article
focuses on a particular mechanism by which dam breaks of
this kind could have occurred.

[3] Natural dams are known to fail in a variety of ways [e.g.,
Costa and Schuster, 1988] and the style of the dam break
depends on the geological setting. The breach of earthen dams,
of either natural or man-made origin, is often associated with
severe flooding events, and it has been subject to intense
investigation. Most studies focused on the breach of con-
structed earthen dams by overfilling of the dammed reser-
voir [e.g., McDonald and Langridge-Monopolis, 1984;
Wurbs, 1987; Singh and Scarlators, 1988; Froehlich, 1995;
Singh, 1996; Walder and O Connor, 1997, Tingsanchali and
Chinnarasri, 2001; Coleman et al., 2002; Cao et al., 2004;
Wang and Bowles, 2006a, 2006b]. Under such conditions, the
constant water flow atop the dam can lead to rapid erosion and
to the formation of an incipient outflow channel. Water flow
through this conduit leads to further erosion that deepens it,
elevating the rate of erosion and deepening the channel still
further. A runaway ensues that only declines when the lake
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level falls low enough to reduce the water flux through the
incised channel and turn off erosion.

[4] As evidenced by several sites where incised outflow
channels are found on broken moraine dams [see Clague
and Evans, 2000], runaway erosional incision can also
breach moraines damming glacial lakes. In a few of these
examples, the incipient channel that triggers the runaway is
thought to have been created by the gradual overfilling of
the lake (because of extreme climate conditions or intense
glacier melting). However, several other dam-break events
appear to have been triggered by a different mechanism,
specifically overtopping by a large displacement wave.
Large displacement waves can be generated by avalanches
or rockfalls in the mountainous environments of glaciers, or
by icefalls from a retreating glacial toe. The evidence at
Queen Bess lake points to an ice fall as the trigger of the
dam break [Kershaw et al., 2005], while a landslide at
Laguna Safuna Alta (Peru) apparently generated a dis-
placement wave over one hundred meters high which
significantly eroded the moraine dam, but left it intact
[Hubbard et al., 2005].

[5] Despite the intuitive simplicity of the idea behind
catastrophic erosional incision by a large wave, there are a
number of possible difficulties with this explanation. Many
moraine-dammed lakes are stable structures since they have
survived for centuries, and there are examples of waves that
did not breach the dam, as in the case of Laguna Safuna Alta.
Thus it is not that easy to break a moraine. Indeed, over-
topping waves may carry enough water over the dam to drain
the lake sufficiently to avoid any subsequent outflow.
Finally, erosion is normally a slow process on the hydrody-
namic timescale that characterizes the passage of a displace-
ment wave; it is not clear whether sufficient erosion could
take place during the relatively fast traversal of the dam.

[6] To explore some of these issues, we devised a
laboratory experiment to assess whether a wave could
trigger runaway erosional incision, finding a positive an-
swer to this question. A detailed description of the labora-
tory experiments is given in section 2. Encouraged by the
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Figure 1.

[lustration of the experimental setup. The left-hand picture shows the view from the side,

through the glass wall of the tank. The right-hand panel shows a view up the channel from the open end
of the tank; here the dam has already broken due to the formation of an outflow channel adjacent to the
left wall. H is the water depth in the undisturbed, moraine dammed lake; L is the horizontal size of the
reservoir in the cross-moraine direction (x); 2A is the full width of the dam at half maximum height; W is
the lateral width of the channel in the along-moraine direction (y). The black arrow indicates the flow

direction.

experimental results, we advanced further and built a theo-
retical model similar to those used in hydraulic engineering.
The hydraulic model couples a shallow-water-type descrip-
tion of the fluid (actually the Saint-Venant equations) with an
empirical erosion law, and it is discussed in section 3. In
section 4 we draw some general conclusions and make some
remarks about the relevance of our results for geological
applications. In the Appendix A we describe some additional
features of the theoretical model which bear upon channel-
ization instability and bed form dynamics as often observed
prior to or during dam-break events.

2. Exploratory Experiments

[7] Our experimental setup is illustrated in Figure 1. A
dam of granular material was built inside a glass tank, and the
area to one side was filled with water to create a reservoir.
The dam is made of a mixture of roughly equal amounts of
fine sand (mean particle size 0.25 mm) and coarse grit
(rough, angular particles with mean diameters of about a
millimeter). The density and porosity of this material were
estimated to be about 2.4 g/cm? and 0.3, respectively, and its
angle of repose (when dry) was between 33° and 38.5°. The
tank measured 30 cm wide and 125 cm long; in some of the
experiments, we slightly tilted the tank to provide an overall
bottom slope of a few degrees with respect to the horizontal.
The dam was built up to a height of about 10—15 cm with a
width of 30—40 cm. In different experiments the dam was
positioned leaving a reservoir 40 cm or 100 cm long on one
side. We then waited a short while in order to allow the water
to soak into the dam and judge its stability against seepage.
When we were convinced that the dam held against the water
pressure, we then tried to break the dam by launching waves
toward it. The waves were produced by moving a paddle at
the back end of the reservoir; the wave amplitude was
estimated from videocam recordings.

[8] After some practice (specifically, varying the initial
wave amplitude and the material from which the dam was
built), we were able to initiate a catastrophic erosional
incision using overtopping waves. A sequence of photo-
graphs showing a “‘successful” experiment is shown in

Figure 2. The sequence lasts 42 s, and begins as the
launched wave breaks over the crest of the dam, and ends
when the dam failure is in full progress (the flood ends
about 30 s later when the reservoir has largely emptied).

[v] The overtopping wave in the first image of Figure 2 is
not particularly deep, primarily because much of the energy
of the original disturbance has been reflected back into the
reservoir by the dam. Moreover, the erosion generated by
the passage of that wave as it washes over the dam is
insufficient to cut an incipient channel. The second image
shows the dam after the initial wave has passed; some
erosion of the downstream face is evident, but there are no
incisions on its crest (deposition is also evident near the
original foot of the dam). In essence, the wave is too fast to
erode a channel, and if all hydrodynamic activity ended at
this stage, the dam would not be breached. However,
because the dam reflects much of the wave energy back
into the lake before the first flooding event, the story
continues: the upstream moving disturbance subsequently
hits the back wall of the reservoir and is reflected a second
time back toward the dam. This generates a second flooding
event, with further erosion. Repeated reflections lead to a
succession of erosive floods, and although the wave ampli-
tude decreases with each event, the cumulative effect is to
eventually incise the channel and breach the dam.

[10] In the experiment shown in Figure 2, over twenty
wave reflections occurred before the catastrophic incision
ensues. As a result, the reflecting wave in the lake increas-
ingly resembles a seiche-like (normal-mode) motion before
breach occurs. In other experiments, as few as five or six
wave reflections were sufficient to cut an incipient channel,
and the precise number required depended on the initial
wave amplitude. Indeed, from the experimental results it
rapidly became clear that there was a threshold in the initial
wave amplitude below which the dam did not break; as one
approached this threshold from above, the number of over-
spilling seiches needed to breach the dam grew larger.

[11] Figure 3 shows data extracted from an experiment in
which about ten seiche oscillations broke the dam. In this
case, the outflow channel forms adjacent to one of the glass
walls, allowing detailed observations of its bed. Displayed

2 0f 12



F01020 BALMFORTH ET AL.: DAM-BREAKING BY WAVE INDUCED EROSIONAL INCISION F01020

Figure 2. A sequence of photographs showing the catastrophic incision of a dam in the tank initiated by
launching a wave over it. The images are 4 s apart.
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Figure 3. Time series of water depth, H(f), and dam height, (,(?), extracted from a dam-break
experiment. The water depth is measured a short distance upstream of the dam, and the dam maximum,
Cu(?), is defined as the highest point on the bed of the outflow channel which forms adjacent to the glass
wall of the tank (see the inset photograph; the water has been dyed for visualization). The lower inset
shows a magnification of the first period of the evolution, before dam break, to illustrate the seiche-like
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oscillations.

are measurements of water depth, as recorded just to the left
of the dam (H(¢)), and the dam height, given by the highest
point on the bed of the outflow channel ((,(?)). The
oscillations in water depth reveal the decaying seiche of
the reservoir, and the step-like fall of the dam height reflects
the episodic incisions.

[12] The downstream face of the dam in Figure 2
becomes channelized by erosion, and three or four distinct
grooves are cut during the initial phases of the dam break.
Eventually, one of the grooves deepens more than the others
and takes control of the water flow; that incision subse-

Reservoir

quently widens and deepens further, cutting increasingly far
back up the dam. It is this groove that eventually reaches the
top of the dam to open a steady outflow, and triggers the
catastrophic incision. Channelization patterns on the dam’s
downstream face were a common type of “bed form”
observed in the experiments. Figure 4 shows two more
examples. The first example displays a pattern that is fairly
periodic; the second shows a top view of the two channels
that eventually incise the top of the dam to open up multiple
outflows. We comment further on channelization in the next
section and in the Appendix A.

Figure 4. Snapshots of channelization. Five or six grooves have been cut into the downstream face of
the dam in the first picture; the nearest groove adjacent to the wall of the tank has deepened most and has
created an incipient channel at the top of the dam which is about to trigger catastrophic incision. In the
second image, the incision has already taken place. In this case, 4 or 5 grooves were cut, and two of these
eventually breached outflow channels in the dam. Black arrows indicate flow direction.
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Space-time plot of peaks

Figure 5. A photograph showing bed forms during a dam breach. Lines highlight the water surface, bed
elevation and the relic of the original dam in the background. The inset shows a plot of the spatial
positions of the maxima in the bed as functions of time.

[13] Channelization was not the only type of bed form
that one could observe. Once the outflow channels were
established, upstream-migrating undulations of their beds
could also be seen, see Figure 5, but they did not play any
key role in the dam-break process. Nevertheless, both the
channelization and migrating bed forms reflect the erosional
dynamics, and may be thought of as relatives of the
instabilities of the flow of a uniform sheet. Indeed, the
theoretical model described below captures such instabil-
ities (see the Appendix A).

[14] For completeness, we also considered the case where
a constant water flow was forced atop the dam, by filling the
reservoir from the bottom of its back side with a flux of
about 10 I/s. In marked contrast to the experiments in
which we launched waves at the dam, it was far easier to
break this obstruction by overfilling the reservoir. Shortly
after water first overtopped the dam, slight variations in dam
height selected preferred locations where erosion began,
initiating channels that breached the dam in a matter of
seconds. Once the runaway incision began, there was little
difference in the dam-break dynamics between the over-
filling experiments and those with overtopping waves. In
other words, once initiated, the runaway is roughly inde-
pendent of the manner in which it begun.

[15] A final issue concerns the role of the material
properties. Fine sand alone could be easily eroded by a
passing wave but, once the sand dam became wet, it
gradually lost structural strength. Consequently, most often,
the downstream face of the dam lost stability, and a
catastrophic failure ensued in the form of something like a
mudflow. Grit alone held its shape better when wet but it
could be eroded less easily by a wave, and water seeped too
easily through the dam, draining the reservoir before it
could be broken. The sand-grit mixture proved a good
compromise: the sand allowing for fast erosion and less
seepage, while the grit gave the dam structural strength.

[16] Without recourse to any empirical model of the
turbulent erosion process, one is tempted to use dimensional
analysis to estimate the effectiveness of erosion. For exam-
ple, by observing the rate at which the dam height
decreases, one can arrive at an “‘erosion speed” that can
be compared to the water flow speed [cf., Walder and
O’Connor, 1997]. Their ratio yields a dimensionless, char-

acteristic erosion speed which is order 10> in our experi-
ments. One is further tempted to use this measure in order to
scale our experiments up to the geophysical problem.
However, a simple estimate of this kind misses key details
of the erosion, namely that the erosion rate is a strongly
nonlinear function of the flow speed (there is a threshold
below which there is no erosion, and above which the rate
increases dramatically [cf., Parker, 2006]). This leads us to
grapple with the empirical erosion model described below.
Unfortunately, incorporating the nonlinearity of the erosion
rate also demands an inclusion of further parameters, which
we were unable to measure in our experiments.

3. A Shallow-Water Model

[17] Motivated by the laboratory experiments, we devised
a theoretical model to rationalize the observational results
on the dam-break process. In the following, we describe the
model and the theoretical insights it can provide.

3.1. Governing Equations

[18] Our theoretical approach to the problem is based on
the Saint-Venant equations of hydraulic engineering [e.g.,
Balmforth and Provenzale, 2001]: The flow is assumed to
vary only slightly with depth (save for a logarithmic bottom
boundary layer) and can be described by the local velocity
field, (u(x, y, 1),v(x, y, £)), and the depth of the water layer,
h(x, y, f), which satisfy equations representing conservation
of mass and momentum:

oh 0 0
E+a(hu)+8*y(hv)—0, (1)
Ou Oou  Ou 0 Vu? +v?
E+u§+v6—y—fga(§+h)fq7u
0 du 19} ou
+8 (ea>+8_y<ye_y)7 (2)
ov ov  Ov 0 Vu? +v?
E-f—ua—i-va—y— —g5 ((—i—h)—C}TV
ad v 1o} ov
i (i) o () o

50f12



F01020

y

Cxy.b

X

Figure 6. Sketch of the geometry in the theoretical model.

where the surface z = ((x, y, f) represents the underlying bed
(see Figure 6), Cris a friction coefficient that depends on the
roughness of the surface over which the fluid flows and
measures the stress exerted on the fluid by the bed, and v, is
a turbulent viscosity. Models of eddy viscosity often
prescribe that quantity as a function of flow speed and
depth; here we keep the problem as simple as possible
and merely take 1, to be constant. In most of the
numerical experiments we have ignored any volume and
momentum source terms in the fluid equations, thereby
assuming that the suspended sediment does not feed back
on the flow dynamics (Cao et al. [2004] assess the
potential importance of such terms in related dam-break
problems). We return to this point at the end of this
section.

[19] The bed over which fluid flows is erodible and we
require a model for how material is lifted off this surface
and transported by the fluid. We borrow heavily from the
work of Parker and collaborators [Parker, 2006; Parker
and Izumi, 2000], who deal with different erosional prob-
lems [see also Cao et al., 2004]. We assume that the bed is
eroded by the overlying fluid with a rate that depends
purely on the stress exerted by the fluid on the bed, which
is proportional to u* + v>. The eroded material is then
suspended in the fluid for a time, where it is advected and
mixed by turbulence. However, the suspended material
also sediments under gravity and falls back on the bed. To
model in a crude fashion this dynamics, we use the Exner
equation for the surface of the bed,

a C
%_,C0

2 2
% , weE (u” +1%), (4)

in combination with a transport law for the suspended
load,

ac o p) Pc  PC .,
C
_WSZ7 (5)

where w, parameterizes the speed of erosion, wy is the
sedimentation speed, C(x, y, f) denotes the depth-integrated
concentration of the suspended load, E® + V%) is a
suitable dimensionless function modeling the precise
dependence of erosion on stress, and k., is a turbulent
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diffusivity (again assumed constant for simplicity). We
take

242 2
0 u+v- < Up,

E(u*++*) = { (6)

[ +2)/ UG = 1] w2 +32 > U,

where Uy, denotes a threshold speed below which erosion
does not take place, and « is a parameter put equal 1.5 in
all examples [e.g., Seminara, 2001 and cited references
therein]. In general, the values of U, and « are
empirically determined.

3.2. Dimensionless Form

[20] We remove some of the distracting constants from
the equations and formulate the important dimensionless
groups as follows. Let

=2
IRV (7)

(h,¢,C)=H(h,(,C),

(xvy) = A(jcvj}%
(uvv) = \/g_H(av‘N))a

where H and A denote respectively the characteristic
reservoir depth (or dam height) and dam width, L is the
horizontal size of the reservoir and W is the lateral width of
the channel. Thence, on dropping the tilde decoration,

hy + (hu)+(hv),= 0, (8)
72

uy + uiy, +vuy, = —hy — (. — cfuTﬂu + u(uxx + uyy), 9)
2.2

Vi uve + vy, = —hy — ¢, — C/MTHV + v (vex + ), (10)

C
C,:eSZ—EE(uZ—i—vZ), an
E(u? +V?) = [Max(O,u2 +? — utzh)}a,

and

Ci + (uC) +(vC),= K(Cix + Cyy) + eE(u” +V7) — esg, (12)

h
where
Uy, A w, (gH)” A w
U = ’ =77 , € =7 5
" JeH H \/gH \UZ H \/gH (13)
Ve Re A
V= K = Ccr = —
AVeH’ A T H

and subscripts x, y and ¢ indicate partial derivatives. The
quantity u,; can be interpreted as the Froude number for
erosion initiation, while the other parameters are respec-
tively the normalized erosion and sedimentation velocities,
and the normalized fluid viscosity and sediment diffusivity.
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[21] To describe the initial shape of the bed, we assume
that there is a non-erodible bottom plane, (o(x) = —Sx,
where S is an overall slope parameter. Provided S is small,
the results are rather insensitive to its precise value and one
can also put S = 0. On top of this bottom plane, we
distribute erodible material such that the overall bed eleva-
tion is

GOr0) = 1+ ptxlewp( - 25) + Gl (4)

o2

where o measures the width of the (Gaussian-shaped) dam
and p(x, y) is a small (amplitude 5%), random (white noise)
perturbation.

[22] The domain spans the interval [—W/2, W/2] in the y-
direction and [—L, L] in the x-direction, with L taken large
enough to ensure a wide reservoir behind the dam, and
sufficient space downstream so that the boundary conditions
at x = L play no significant role. The boundary conditions
are those of impermeability and free-slip on the upstream
and sidewalls: u=v,=h,=C,=0atx=—L,and v=u,=h,
=C,=0ony==+W?2. Atthe downstream boundary, x = L,
“open” boundary conditions are used: v, =v,=h,=C,=0.

[23] Given the bed structure in (14), the equations have a
static lake solution, # = v = 0 and

hO - C(xay)
heq(xvy) =

if hp>(andx <0,

(15)

0 otherwise.

The initial perturbation to this equilibrium consists of a
sinusoidal wave with amplitude A, so that the initial water
elevation becomes

heg(x,y) + Asin(2mx/L) if x <0,
h(x,y,0) = (16)

0 if x>0.

[24] Equations (8)—(12) are integrated numerically with a
Leapfrog-Adams-Moulton predictor-corrector scheme in
time and a second-order-accurate finite difference scheme
in space, using an Arakawa “C” staggered grid [Arakawa
and Lamb, 1977]. A Flux-Corrected Transport scheme
[Boris and Book, 1976, Zalesak, 1979] is used for the
positive definite variables /# and C. To avoid any problems
with divisions by zero, we replaced the bottom friction
terms in _equations (9) and (10) by the “regularizations™,
—cp /(U2 +2) /(2 + 1078) (u, v).

3.3. Dam Break Simulations

[25] Figure 7 reports a sequence of model solutions in
time, starting from the initial conditions described above,
with ¢,=0.02 and € = 0.12. Part of the initial wave overtops
the dam, leading to erosion of the downstream flank. This
leads to the creation of channels which can be rationalized
as the channelization instability of a uniform flowing sheet
(as described in the Appendix A). A secondary wave is
reflected back into the reservoir and sets up a seiche of that
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water body, exactly as in the experiments. The repeated
floodings as the seiches overspill the dam’s crest further
incise the channels on the downstream flank. After six
seiches, a channel ultimately opens up on top of the dam,
through which the reservoir water begins to flow unabated.
At that stage, the rate of erosion increases rapidly and the
channel begins its catastrophic deepening. Eventually, the
water is completely evacuated from the upstream basin.

[26] Figure 8 displays further details of the modeled
incision process: the first panel shows the evolution in time
of the bed elevation at a few selected points; the second
illustrates the evolution of the average water height in the
upstream basin and of the water flux exiting the domain on
the right border. The time series of ¢ show a number of
small plateau (which represent the periods over which the
waves bounce back and forth in the reservoir), divided by
sharp steps (the erosion events). At about ¢ = 125, the
runaway incision takes place, leading to the peak discharge.

[27] Repeating the same experiment at different values of
crand ¢, gives qualitatively similar results. However, the
values of both the erosion parameter, €, and initial wave
amplitude, 4, are critical: if either € or 4 are decreased, the
time for the appearance of the incipient channel increases
rapidly as more and more reflections are required and the
reflected waves lose their strength. Ultimately, an incision is
completely suppressed; Table 1 presents a summary of the
results. In other words, there is a threshold for dam break in
either the initial wave amplitude, or erosion rate. The former
result mirrors our experimental findings.

[28] Before closing this section, we stress the fact that the
above results have been obtained by ignoring the feedback
of the suspended sediment on the fluid dynamics, a fact that
in principle could lead to considerable errors in the case of
highly unsteady flows with intensive sediment transport and
rapid bed changes [e.g., Zech and Spinewine, 2002]. To
address, at least in a first approximation, this issue, we have
modified the continuity equation and included the effect of
the suspended sediment [Cao et al., 2004]. The modified
model provides qualitatively analogous results, with a slight
shift of the threshold for catastrophic dam break to larger
erosion rates. For example using the same values for other
parameters as in Figure 7, an erosion rate of e = 0.12 was
insufficient to trigger a catastrophic erosion; however, once
the erosion rate was increased to ¢ = 0.16, the dam was
broken after six seiches. This result provides confidence in
the findings obtained with the model without sediment
feedback.

4. Discussion

[29] In this work we have described a preliminary explo-
ration of breaking a moraine dam by initiating a displace-
ment wave in the glacial lake. Our main conclusion is that it
is feasible to reproduce the catastrophic erosional incision
scenario both in simple laboratory experiments and a
theoretical shallow-water model. We close by discussing a
number of important possible implications of our results and
indicating where our work could be extended.

[30] Although it was not our main focus, we also per-
formed a number of experiments and computations with the
theoretical model designed to break the dam by gradual
overfilling of the lake. These additional efforts (which are

7 of 12



F01020 BALMFORTH ET AL.: DAM-BREAKING BY WAVE INDUCED EROSIONAL INCISION F01020

0.5 054
0 0
-0.5 : 0.5
25

25

5 40 25 5 40 25

Figure 7. The panels illustrate a numerical experiment of dam-breaking instigated by overtopping waves,
showing the evolution of the water surface / + ¢ (blue/dark surface) and bed ¢ (brown/light surface; see also
the insets). The (nondimensional) parameters used are: S =0.04, o =1, ¢,= 0.02, v = 0.05, € = 0.12, ¢, =
0.002, 1y, =0.001, 2y =0.93,4=0.3, L= 10, W= 5. The numerical grid resolution was N, =256, N,, = 64.
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Figure 8. Left panel: Evolution in time of ((x;, 0, f) at a few selected points x;; Right panel: Evolution in
time of the average water height in the upstream basin (continuous curve), (h)(¢) = 1/(LW) f o, (M2,
h(x, y, t) dx dy; and the average discharge (dashed curve), O(f) = I/W f W h(xy, v, Du(xy, v, 1) dy,

computed at x; = 9.5. The inset shows the evolution of (h) (7) in semilogarithmic coordinates. The

simulation is the same as in Figure 7.

similar to previous work on the breaks of earthen dams
[e.g., Coleman et al., 2002]) exposed how it was much
easier to breach the dam by overfilling the lake than by
overtopping it with a displacement wave. This observation
contrasts sharply with the summary by Clague and Evans
[2000], which suggests that overtopping is a more prevalent
trigger than overfilling.

[31] For overtopping waves, a crucial detail is the estab-
lishment of a seiche in the lake that repeatedly feeds water
over the dam; our results indicate that a single wave by itself
is not sufficient (unless it breaks the dam through mechan-
ical failure). As a result of these multiple outflows, erosion
is able to channelize the downstream face of the dam and
cut the incipient channel. Such seiches have also been
inferred to occur in the field: for Laguna Safuna Alta,
Hubbard et al. [2005] concluded that the rockfall generated
over ten erosive seiches of the lake. When Queen Bess Lake
broke, two distinct surges were recorded in downstream
hydrographs, although Kershaw et al. [2005] suggested that
the main wave and the subsequent incision were responsi-
ble. Despite this, an investigation of moraine dam failure in
British Columbia suggested (albeit did not definitely prove)
that a single wave had created failure in one particular dam
[Blown and Church, 1985]. In that case, it was suggested
that the wave was substantially amplified by a focusing into
a restricted opening through the moraine previously occu-

Table 1. The Number of Seiches Before Dam Break in
Simulations With Different 4 and ¢; the Star Indicates no Break®

pied by an outflow stream. Careful investigation of wave
focusing into existing openings should thus be an important
complement to the present analysis.

[32] An important facet of the seiching process described
here is a threshold, determined by the physical character-
istics of the dam material and by the flow dynamics of the
overtopping waves, beyond which the system must lie
before a catastrophic incision can take place: specifically,
there is a competition between erosion, which lowers the
dam, and the combined effects of lake drainage and dissi-
pation of the seiche, which decrease the highest water level.
The catastrophic incision takes place when the erosion can
outpace lake drainage and decay of the seiche. Of course,
for the process to work, the lake must be close to full
(otherwise the first wave can drain the reservoir sufficiently
to prevent a break), and the wave reflected back into the
reservoir after the first overtopping must be able to set up a
coherent seiche (so the lake geometry cannot be too
complicated). Both issues suggest further, interesting geo-
logical constraints.

[33] Some extensions of the work presented here are
under way. Currently, we are considering a two-dimen-
sional version of the problem, in which we break dams in
a narrow tank in order to simplify the dynamics even
further and understand more of its details (see Zammett,
2006, for a preliminary report). There are also several open
issues in the three dimensional situation. For example, the
main shortcoming of the theoretical model is the prescrip-
tion for erosion. The process is itself quite poorly under-
stood, and as we have done here, often mimicked through
empirical parameterization. It would be worthwhile to see

€ = 0.08 €e=0.12 €=030 how dependent theoretical results are on the erosion
A=0.1 * * * parameterization. A different, but possibly very important,
A4=0.15 * * 5(397,0.04) mechanism is the seepage of water through the dam
4=03 * 5 (300, 0.05) 2(113,0.09)  material and the related structural weakening of the dam
A=05 * 5 (230, 0.1) 3 (101, 0.1)

*The remaining parameters are as in Figure 7. In parentheses, the time
needed to empty the reservoir (defined as the moment at which the reservoir
contains one percent of its original volume) and the peak discharge (the
maximum over time of the flux function, [ u(x, y, 7) h(x, y, f) dy, atx=1) are
noted.

itself. Although the laboratory experiments do naturally
include this effect, we did not consider it theoretically. The
qualitative agreement between simulations and experi-
ments suggests that seepage does not play the leading
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role, however, there is clearly a lot more that could be
done along these lines.

Appendix A: Channelization Instability of a
Flowing Sheet

[34] The equations have a uniform equilibrium solution
describing an homogeneous sheet of water flowing down an
inclined surface:

2
C:CEM7

€s

(A1)

(=7Z= -5,

where S denotes the inclination, and cfl/{z = §. Since there is
no dam in this problem, we choose A such that CA/H = ¢,
= 1, to simplify the coming algebra. Note that, if the
sedimentation speed €, = 0 and there is pure erosion, we
may ignore C and adopt the uniformly eroding equilibrium,
(=Z=-Sx—eEUHt

[35] It is straightforward to explore the linear stability of
the equilibrium solution: We put

u = U+ 2N
V= pefltibra

he=1+h ekt
(=Z+ aeikx+i1y+>\t7

_ o ikc-tily+ M
C =C+H g™

(A2)

where (k, I) denote the wave numbers of a wave-like
disturbance, and A is the growth rate, which satisfies the
dispersion relation,

(A + kU + 2U + vK*) [(A + ikU) (A + ikU + U + vK?) + ]
+ ik (U — ik) (A + ikU + U + vK?)
SN+ ikU) [PU* + ik (X + ikU) (A + ikU + U + vK?)]
M+ kU + € + KK?) ’
(A3)

where K> = /> + P and § = ¢ 3—5.

[36] Our primary interest is in situations with low erosion
rates: 6 < 1. The solutions of the dispersion relation then
split into two groups: four roots corresponding to erosion-
less modes, and a single mode relying on erosion. Of the
former, three are hydrodynamic modes and correspond to
the linear solutions of the Saint-Venant problem; the fourth
is a diffusive mode for sediment concentration. One of the
hydrodynamic modes can become unstable when the flow is
sufficiently fast. The instability corresponds to the roll
waves of Jeffreys [1925], which are unstable when U > 2
(equivalently, when the Froude number exceeds 2).

[37] The erosional mode has a growth rate of order 0,
which is given approximately by

SU(ik + RK?)[? — k*(1 + ik + DK?))
(& + ik + RK?)

A2+ ik + K P + (1 + ik + DK?)

x [ik (3 + ik + VK*)U* + K]},

=

(A4)
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where 7 = v/U and & = w/U. There are two types of
instability present in the erosional mode, both of which are
most easily detected by passing to the limit with v — 0 and
K — 0:

kU — K> (1 + ik))
(e + ik){(2 + k)2 + K2(1 — 4UP) + ik [3U* + k2 (1 = U]}
(AS)

First, consider modes with short transverse wavelength,
e, [ > 1:

NS SUK? + ek? + ik(2¢, — k?)
- (4 +k2)(eg + k2)

(A6)

Sufficiently short transverse waves are therefore always
unstable, independently of the strength of the flow
(although the growth rate remains proportional to the
flow speed). These instabilities are the analogues of the
landscaping modes of Smith and Bretherton [1971] and
would evolve into channels aligned downhill (i.e., they are
channelization instabilities).

[38] Next consider modes with very long transverse scale:
[ — 0. In this case,

RoUR (U 1) = 3U2,]
(&+ ) [ou + k(1= 1)°]

Re()) = (A7)

Slow flows are therefore stable to this type of incisional
modes, but sufficiently fast flows are unstable. The unstable
modes are the cyclic steps of Parker and Izumi [2000], and
migrate upstream like the bed forms seen in experiments
(Figure 5).

[39] Note that, for all /, one can analytically deduce the
(v = k = 0) stability boundary on the (k, /)-plane. For ¢ =
0, for example, this is

1
P=2p
4

X {1 +A4U + K+ \/(1 FAU R 8(1 - U (1 + K2,
(A8)

which is pictured for various parameter settings in
Figure Al.

[40] For all the types of instability, the role of v is to
stabilize short-waves (K > 1), but the longer-wave behavior
remains relatively unaffected. This is illustrated in Figure A1,
which also shows scaled growth rates, Re(\)/(6U), as a
density over the (k, /)-plane for four choices of ¢/ and v,
with ¢, = 0. The picture is much the same when ¢, # 0,
although, as expected from (A7), a finite streamwise wave
number, k, is required for the cyclic step instability, and
there are minor variations at smaller wave numbers (see the
final panels of the figure).

[41] The channelization instability is clearly present for
smaller U/, and v reduces the growth rates at large / (although
it does not cut off the instability). For ¢/ > 1, the step
instability enters strongly; again v limits the wave numbers
of the most unstable modes. For the parameters plotted, the
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Figure Al.
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Scaled growth rates as densities over the (k, /)-plane for (a) v =0 and & = 0.6, (b) v =0

and U = 1.4, (¢) »=0.06 and U = 0.6, and (d) v = 0.14 and U = 1.4. ¢, = 0. The dark, solid lines show
the stability boundaries; the dotted lines show the v = 0 approximation of them (as given by (ss); in (a)
and (b), the solid and dotted lines coincide). Panels (e) and (f) repeat (c) and (d), but with ¢ = 1.

two types of instability remain distinct, and the step insta-
bility is the more dominant. The strongest instabilities
emerge for rays with & ~ [: For k > 1 with &k ~ [, we
observe that

SUK* + O(k)]

MR- 1) —p+o®]

(A9)

implying growth rates can potentially become large near the
ray [ = kvVU* — 1, which also is close to the stability
boundary. A finer analysis indicates that the growth actually
saturates for large £, and it flattens out to a maximum at the
shortest waves (which is somewhat unphysical, though not
mathematically ill-posed).
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the porch of Walsh Cottage. We thank Claudia Cenedese, Karl Helfrich and
Jack Whitehead for allowing us to make a mess in the Coastal Research
Laboratory, and Keith Bradley for technical assistance.

References

Arakawa, A., and V. Lamb (1977), Computational design of the basic
dynamical processes of the UCLA general circulation model, Methods
of Computational Physics 17 (Academic Press, New York), 174—-267.

Balmforth, N. J., and A. Provenzale (Eds.) (2001), Geomorphological Fluid
Mechanics, Springer-Verlag, Berlin.

Blown, I. G., and M. Church (1985), Catastrophic lake drainage within
the Homathko River Basin, British Columbia, Can. Geotech. J., 22,
551-563.

Boris, J. P., and D. L. Book (1976), Solution of Continuity Equations by the
Method of Flux-Corrected Transport, in Methods of Computational Phy-
sics 16 (Academic Press, New York), 85—129.

11 of 12



F01020

Cao, Z., G. Pender, S. Wallis, and P. Carling (2004), Computational dam-
break hydraulics over erodible sediment bed, J. Hydraul. Eng. ASCE,
130, 689—-703.

Clague, J. J., and S. G. Evans (2000), A review of catastrophic drainage
of moraine-dammed lakes in British Columbia, Quat. Sci. Rev., 19,
1763—-1783.

Coleman, S. E., D. P. Andrews, and M. G. Webby (2002), Overtopping
breaching of noncohesive homogeneous embarkments, J. Hydraul. Eng.
ASCE, 128, 829-838.

Costa, J. E., and R. L. Schuster (1988), The formation and failure of natural
dams, Bull. Geol. Soc. Am., 100(7), 1054—1068.

Froehlich, D. C. (1995), Peak outflow from breached embankment dam,
J. Water Resour. Plan. Manage. Div., ASCE, 121(1), 90—-97.

Hubbard, B., A. Heald, J. M. Reynolds, D. Quincey, D. S. Richardson,
M. Zapata Luyo, N. Santillan Portilla, and M. J. Hambrey (2005),
Impact of a rock avalanche on a moraine-dammed proglacial lake:
Laguna Safuna Alta, Cordillera Blanca, Peru, Earth Surf. Processes
Landforms, 30, 1251-1264.

Jeffreys, H. (1925), The flow of water in an inclined channel of rectangular
bottom, Philos. Mag., 49, 793—-807.

Kershaw, J. A., J. J. Clague, and S. G. Evans (2005), Geomorphic and
sedimentological signature of a two-phase outburst flood from mor-
aine-dammed Queen Bess Lake, British Columbia, Canada, Earth Surf.
Processes Landforms, 30, 1-25.

McDonald, T. C., and J. Langridge-Monopolis (1984), Breaching charac-
teristics of dam failures, J. Hydr. Eng. ASCE, 110(5), 567—586.

Parker, G., and N. Izumi (2000), Purely erosional cyclic and solitary steps
created by flow over a cohesive bed, J. Fluid Mech., 419, 203—238.
Parker, G. (2006), 1D sediment transport morphodynamics with applica-
tions to rivers and turbidity currents, last updated April 13 2006. http://

cee.uiuc.edu/people/parkerg/morphodynamics_e-book.htm

Seminara, G. (2001), Invitation to Sediment Transport, in Geomorphologi-
cal Fluid Mechanics, N. J. Balmforth and A. Provenzale (Eds.), Springer-
Verlag, Berlin.

Singh, V. P. (1996), Dam breach modeling technology., Kluwer Academic
Publisher, Dordrecht.

BALMFORTH ET AL.: DAM-BREAKING BY WAVE INDUCED EROSIONAL INCISION

F01020

Singh, V. P, and P. D. Scarlators (1988), Analysis of gradual earth-dam
failure, J. Hydraul. Eng. ASCE, 114(1), 21-42.

Smith, T. R., and F. P. Bretherton (1971), Stability and the conservation of
mass in drainage basin evolution, Water Resour. Res., 8, 1506—1529.
Tingsanchali, T., and C. Chinnarasri (2001), Numerical model of dam fail-

ure due to flow overtopping, Hydrol. Sci. J., 46(1), 113—130.

Walder, J. S., and J. E. O’Connor (1997), Methods for predicting peak
discharge of floods caused by failure of natural and constructed earthen
dams, Water Resour. Res., 33(10), 2337—-2348.

Wang, Z., and D. S. Bowles (2006a), Three-dimensional non-cohesive
earthen dam breach model. Part 1: Theory and methodology, Adv. Water
Resour., 29, 1528—1545.

Wang, Z., and D. S. Bowles (2006b), Three-dimensional non-cohesive
earthen dam breach model. Part 2: Validation and applications, Adv.
Water Resour., 29, 1490—1503.

Wurbs, R. A. (1987), Dam-breach flood wave models, J. Hydraul. Eng.
ASCE, 113(1), 29—-46.

Zalesak, S. T. (1979), Fully multidimensional flux-corrected transport,
J. Comput. Phys., 31, 335-362.

Zammett, R. (2006), Breaking moraine dams by catastrophic erosional
incision, Proceedings, Geophysical Fluid Dynamics Summer Study Pro-
gram, Woods Hole Oceanographic Institution, Technical Report WHOI-
2007-02. http://www.whoi.edu/cms/files/Rachel_21238.pdf

Zech, X. X., and X. X. Spinewine (2002), Dam-break induced floods and
sediment movement - state of the art and need for research, First Work-
shop of the EU Project IMPACT, HR Wallingford, http://www.gce.ucl.
ac.be/hydraulique/recherches/recherches/rechbs/publis/pap02Wall-
screen.pdf

N. J. Balmforth, Departments of Earth and Ocean Science and
Mathematics, University of British Columbia, Vancouver, BC, Canada.
(njb@math.ubc.ca)

A. Provenzale and J. von Hardenberg, Institute of Atmospheric Sciences
and Climate, CNR, Corso Fiume 4, 10133 Torino, Italy. (a.provenzale@
isac.cnr.it; j.vonhardenberg@isac.cnr.it)

R. Zammett, Department of Mathematics, University of Oxford, UK.
(rachel_zammett@yahoo.co.uk)

12 of 12



