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Abstract. We explore the level of saturation of instabilities in a two-species plasma
using a combination of matched asymptotic expansion and numerical computation.
The plasma is assumed to be spatially periodic, and the domain size is chosen to
allow a single mode to become unstable when a bump is added to the tail of the
distribution of the lighter species. We consider two versions of the problem, arising
when the mass ratio of the two species is either very small, or of the order of
unity. For small mass ratios, the initial saturation level of the mode amplitude, as
measured by the electric field disturbance, follows the ‘trapping scaling’. For mass
ratios of order unity, nonlinear effects become important at the level predicted by
Crawford and Jayaraman, but the instability does not saturate there and continues
to grow. In both cases, the initial onset of nonlinearity does not reflect the longer-
time evolution of the system. In fact, the system passes through multiple stages
of evolution in which the electric field amplitude is not simply predicted; none
of the previously published scalings are adequate. Eventually, for both cases, the
distribution of the lighter ions becomes significantly rearranged, and much (though
not all) of the destabilizing bump is flattened. A better predictor of the strength of
the instability is given by the extent of these rearrangements.

1. Introduction
A classical problem in plasma theory is how electrostatic instabilities develop in
the nonlinear regime. Some of the key previous results date back to Frieman et al.
(1963), O’Neil et al. (1971), Onishchenko et al. (1971), and Simon and Rosenbluth
(1976). All of these articles treat the single-species Vlasov equation, assuming that
the lighter ions adjust in the instability, but the heavier ions are fixed in place. One
of the striking features of the results is a disagreement regarding how the ampli-
tude of saturation in the associated electric field disturbance, Asat, scales with the
distance to the stability boundary, as measured by a suitable control parameter, ε
(proportional to the growth rate). Two characteristic scalings were hypothesized:
‘trapping scaling’, in which Asat ∼ ε2 (O’Neil et al. 1971; Onishchenko et al. 1971),
and Hopf scaling (e.g. Frieman et al. 1963; Simon and Rosenbluth 1976),Asat ∼ ε1/2,
which is the usual saturation level for strongly dissipative instabilities. The dispar-
ity arises because the system is not a dissipative one and the usual weakly non-
linear analysis is plagued by technical difficulties associated with singularities at the
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‘wave–particle resonance’. None of the original approaches convincingly dealt with
these singularities, with the result that the effort to distinguish between them fell to
numerical simulation and laboratory experiments. These suggested that trapping
scaling dictates the saturation level (e.g. Denavit 1981).

Much more recently, two articles have convincingly demonstrated that the cor-
rect scaling for a single species is trapping (Crawford 1995; del Castillo-Negrete
1998). Crawford’s approach follows the centre-manifold route and attempts to de-
rive an amplitude equation for the unstable mode. However, the approach essen-
tially begins with Hopf scaling and runs into technical complications associated
with integrals that diverge at the wave–particle resonance as ε → 0. Rather than
treating the singularities with some ad hoc rule, Crawford rescaled the mode am-
plitude with sufficient powers of ε in order to counter the divergent integrals. This
procedure rescales the mode amplitude back to the trapping scaling and avoids a
singularity, which formally establishes that trapping is the correct level of satu-
ration. Unfortunately, Crawford’s amplitude equation contains an infinite number
of terms of comparable size and cannot be used to explore how the instability
saturates.

Del Castillo-Negrete opts for a different approach based on the critical-layer the-
ory of fluid mechanics. In fact, the saturation of instabilities in inviscid fluid shear
flow is a close analogue of the plasma problem. The role of the wave–particle reso-
nance is played by the ‘critical level’ – the surface along which the mean fluid flow
equals the phase speed of a wave (and leads to Kelvin’s ‘disturbing singularity’).
In fluid mechanics, it was recognized that the singularities at the critical level sig-
nified a breakdown of the asymptotic expansion procedure within a narrow region
surrounding the critical level, the critical ‘layer’, and several articles (e.g. Churilov
and Shukhman 1987) exploited matched asymptotic expansions to heal the singu-
larity. The scaling required in the matched asymptotics is equivalent to trapping,
and del Castillo-Negrete thereby derived the single-wave model systematically.

Most recently, Crawford and Jayaraman (1996, 1999) added a new facet to the
problem. By repeating Crawford’s analysis, they suggested that if the heavy-ion
component of the plasma was allowed to be mobile, then trapping scaling would
no longer be the correct predictor of saturation. Instead, they claim that a new
scaling, Asat ∼ ε5/2, predicts the saturation level. Again, however, the analysis does
not lead to a predictive model, only the amplitude scaling. Interestingly, there is
a parallel result to this scaling in fluid mechanics found by Hickernell (1984). He
observed that if the unstable mode was not smooth as it is limited to the stability
boundary, which underlies the analysis leading to the single-wave model, but was
singular instead, then Asat ∼ ε5/2. Subsequently, the ‘singular’ scaling was found in
unstable compressible and stratified shear flows (Goldstein and Leib 1989; Churilov
1999). In fact, as we will see below, in the mobile ion problem, the neutral modes
on the stability boundary are singular and Crawford and Jayaraman’s scaling is
exactly the plasma analogue of Hickernell’s.

The aim of the current paper is to flesh out the nonlinear theory for the mobile-ion
problem, using a combination of matched asymptotics and numerical computations.
We show that the nonlinear dynamics of the two-species problem is much more
complicated than the single-species case; the instability passes through various
phases of evolution, each characterized by different scalings for the strength of the
instability. As a result, none of the predicted amplitude scalings correctly predicts
the saturation level. Worse still, we find that the electric field disturbance is a
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poor measure of the overall strength of the instability. We offer a more useful
characterization in our conclusion.

In the following, we first formulate the mathematical problem (Sec. 2) and then
consider two characteristic limits that demand different angles of attack. The first
limit (Sec. 3) is when the mass ratio is so small that it is comparable to, or smaller
than, ε. In this limit, we recover the trapping scaling for the saturation level of
instabilities, but there are some twists in the tale. The second limit (Sec. 4) is when
the mass ratio is not so disparate, ε is the smallest parameter of the problem, and
we encounter the singular scaling. Unfortunately, in neither limit does the weakly
nonlinear theory capture the long-time dynamics of the instability. We turn to
numerical computations to explore the late-time evolution (Sec. 5).

2. The problem
2.1. Formulation

The governing, dimensionless equations for a two-species, one-dimensional plasma
are:

f
(j)
t + vf (j)

x + κ(j)ϕxf
(j)
v = 0, j = 1, 2, (2.1)

with

ϕxx =
∫ ∞
−∞

[f (2)(x, v, t)− f (1)(x, v, t)] dv + Ψxx, (2.2)

where f (j)(x, v, t) denote the distribution functions of the two species, ϕ(x, t) is
the potential of the total electric field and Ψ(x, t) denotes a small external field
perturbation that we will exploit later to kick the system off an equilibrium solution
and into action. The first species we specify to be negative ions (we informally refer
to them as electrons); the particle mass and charge of this species are used to non-
dimensionalize the equations, leading to κ(1) = −1. The other species is positively
charged and κ(2) ≡ κ = |(e2m1)/(e1m2)|, a positive parameter which we take to be
less than unity.

We assume periodic boundary conditions in x (and denote the domain size by L);
in v, we insist that f (j) should remain bounded as v → ±∞. As indicated above, the
initial condition will be an equilibrium solution that is subsequently disturbed by
the external field Ψ(x, t). Equally well, however, we could take Ψ = 0 and consider
an initial state containing the equilibrium plus a perturbation with the form of a
low-amplitude instability wave. Either way, the nonlinear theory is little different
since the excited instability grows exponentially to dominate the dynamics.

The equilibria of the system that we consider are the spatially homogeneous
states, f (j) = F (j)(v). By way of an example, we take the family given by

F (1)(v) = e−v
2

+ aeλ(v−v0)2
and F (2)(v) = e−bv

2
, (2.3)

where a, λ, b and v0 are parameters, although the total charge neutrality of the
plasma requires that b = (1 + a/

√
λ)−2. An example is shown in Fig. 1. This

parametrized family consists of an electron distribution with a classical ‘bump-
on-tail’, together with a simpler ion distribution. Practically, we fix the parameters
λ and v0 (we take λ = 4 and v0 = 2). The parameter a then controls the size of the
bump, and we anticipate instability beyond some critical threshold in a.

In our asymptotic analyses, an alternative formulation of the equations makes
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Figure 1. An example equilibrium profile with a = 0.3, κ = 0.5, λ = 4 and v0 = 2;
b is determined by the condition of no net charge.

the formal derivations a little clearer: let g(x, v, t) = f (2) − f (1) − F (2) + F (1) and
h(x, v, t) = f (2) + f (1) − F (2) − F (1). Then,

gt + vgx + ϕxG
′ +
(
κ− 1

2
gv +

κ + 1
2

hv

)
ϕx = 0, (2.4a)

ht + vhx + ϕxH
′ +
(
κ + 1

2
gv +

κ− 1
2

hv

)
ϕx = 0 (2.4b)

and

ϕxx(x, t) =
∫ ∞
−∞

g(x, v, t) dv + Ψxx(x, t), (2.5)

where G = F (1) + κF (2) and H = κF (2) − F (1).

2.2. Linear theory

We set [g, h] = [ĝ(v), ĥ(v)]eik(x−ct) + c.c. and ϕ = ϕ̂eik(x−ct) + c.c., and then linearize
the equations in the perturbation amplitudes. With our periodic-in-x boundary
conditions, k = 2nπ/L for n = 0, 1, 2, . . .. The eigenvalues, c, are determined by the
relations,

ĝ = − ϕG′

v − c , ϕ = − 1
k2

∫ ∞
−∞

ĝ dv. (2.6)

It is now straightforward to find the dispersion relation,

1− 1
k2

∫ ∞
−∞

G′(v) dv
v − c = 0. (2.7)

This relation is identical in form to that for the single-species Vlasov problem,
and we mention a few of its properties that bear upon the current problem: the
dispersion relation contains a singular integral with a branch cut along the real
axis of the complex c plane; the cut locates the continuous spectrum of the lin-
ear eigenvalue problem. Complex conjugate solutions for c correspond to discrete,
growing/decaying mode pairs; the mode with ci > 0 is unstable. There must be at
least two peaks in the distribution G(v) in order for such modes to exist (and there-
fore for the equilibrium to be unstable). Two neutral stability conditions follow on
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using the Plemelj relation with c→ c∗, c∗ real:

G′(c∗) = 0 and k2 =
∫ ∞
−∞

G′(v) dv
v − c∗ . (2.8)

These define the neutral modes that connect the complex conjugate pairs to the
continuous spectrum as one proceeds along a parametrized sequence of equilibrium
profiles; that is, (2.8) defines the embedded neutral modes on the stability boundary.
Evidently, these modes have wave speeds defined by the extremal points of G(v),
and arise for certain values of the control parameter, a, such that the wavenumber
given by the integral in (2.8) is consistent with that demanded by the domain size.
For our sample equilibrium profiles, we parametrize the stability boundary by the
curves a = a0(k). Such curves are illustrated in Fig. 2.

Nevertheless, the construction of the stability boundary misses a key feature of
the two-species problem: in deriving (2.7), we take no account of the field, h, since
this does not enter into the integral for the perturbation to the electric potential.
However, this field is characterized by the eigenfunction,

ĥ = − ϕH
′

v − c . (2.9)

Furthermore, even though G′(c∗) must vanish on the stability boundary, as in (2.8),
there is no corresponding constraint on H ′(c∗), which, in general, will not vanish.
Thus, the perturbation amplitude ĥ(v) is singular at the critical point v = c∗ (the
wave–particle resonance). Hence, despite the existence of a well-defined stability
boundary with its associated wave speed c∗(a), the corresponding normal modes
are not smooth eigensolutions. This has crucial ramifications upon both the linear
and nonlinear development of weakly unstable modes, and is the source of the
change of scaling observed by Crawford and Jayaraman. In the weakly nonlinear
theories outlined below, the singularity in the normal-mode solution is healed by
adding unsteadiness and nonlinearity.

3. Nonlinear theory for disparate masses (κ� 1)
We first analyse the weakly nonlinear dynamics for κ� 1. We specify k = 2π/L,
thence a point on the stability boundary a = a0(k), and demand that there are
no other unstable or neutral modes with different wavenumbers. This distinguishes
a special neutral mode with which we may open an asymptotic expansion. The
expansion proceeds by displacing the system a small distance from the stability
boundary, as measured by our control parameter, a = a0 + ε. We then set κ = εκ1,
to ensure disparate ion masses. Provided we are not at the minimum of the stability
boundary, the distinguished mode has a pattern speed that lines up with either the
peak or the trough of the destabilizing bump; at the minimum, the mode’s pattern
speed lines up with the inflection point of the unperturbed equilibrium profile (see
Fig. 2). In both cases, the development of the equations is a simple generalization
of the theory for a single species which gives the single-wave model.

3.1. Trapping scalings and outer expansion

For ease of notation, in what follows, we adjust the origin of v such that the neutral
mode has zero wave speed (that is, c∗(a0) = 0) and pick L = 2π (so k = 1), but neither
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Figure 2. Sample stability boundaries on the (a, k)-plane for the equilibrium profiles (2.3)
with λ = 4 and v0 = 2. The four curves show four values of κ. The locus of the minimum
of the stability boundary as κ varies is also indicated, as is the line k = 1 along which we
perform most of our computations. The lower panel shows a magnification of the velocity
range surrounding the destabilizing bump in the distribution function G(v). Two pairs of
equilibrium profiles are shown. The dotted curves represent profiles on the stability boundary
at the minimum (where all wavenumbers are stable) and for k = 1. The solid curves show
neighbouring unstable equilibria. Also illustrated are the corresponding ‘critical regions’ –
the velocities surrounding the pattern speed of the neutral mode on the stability boundary
(shown by dashed lines) over which the distribution function is wound up as the mode grows
when it is made unstable. These regions are always much narrower than the velocity spread
of the bump.
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choice is essential.†We then introduce the (trapping) scalings and sequences,

∂t → ε∂T , a = a0+ε, G(v) = G0(v)+εG1(v), H(v) = −G0(v)+εH1(v),
(3.1)

and

g(x, v, t) = ε2g2(x, v, T ) + ε3g3(x, v, T ) + · · · , (3.2a)

h(x, v, t) = ε2h2(x, v, T ) + ε3h3(x, v, T ) + · · · , (3.2b)

ϕ(x, t) = ε2ϕ2(x, T ) + ε3ϕ3(x, T ) + · · · , (3.3a)

Ψ(x, t) = ε3Ψ3(x, T ), (3.3b)

where G0(v) ≡ −H0(v) is the neutrally stable equilibrium profile determined by
a = a0 and κ = 0, and G1 and H1 arise from the correction to a and κ1. In the
initial state, g(x, v, 0) = h(x, v, 0) = 0, and the external perturbation ε3Ψ3(x, T ) will
turn on the unstable mode.

We introduce the scalings and sequences into the governing equations and gather
terms of like order in ε. At leading order (ε2),

g2 = −G
′
0

v
ϕ2 = −h2 and ϕ2xx =

∫ ∞
−∞

g2 dv, (3.4)

with solution,

ϕ2 = A(T )eix + c.c. and g2 = −G
′
0

v
A(T )eix + c.c. = −h2, (3.5)

given that the neutral stability point demands that

1 =
∫ ∞
−∞

G′0(v) dv
v

. (3.6)

As yet, the amplitude, A(T ), is undetermined; our goal is an evolution equation for
A(T ) (with initial condition A(0) = 0).

At the following order (ε3),

g3 = −G
′
0

v
ϕ3 − G′1

v
(Aeix + c.c.)− G′0

v2 (iAT eix + c.c.), (3.7)

with a similar result for h3. At this stage, we are not able to integrate g3 over
v to formulate ϕ3 because that function is singular at the critical point, v = 0
– in general, G′′0 (0) � 0 and G′1(0) � 0. The way around the problem is not to
introduce an ad hoc mathematical rule for by-passing the singular point, but to
realize that the asymptotic scheme has formally broken down in its vicinity. In
particular, because g2 ∼ O(1) and g3 ∼ v−1 near v = 0, we see that the asymptotic
sequence ε2g2 + ε3g3 becomes disordered when v = O(ε). Over this region we cannot
use the regular solution derived above. Instead, we must rescale and look for an
alternative solution inside this ‘inner’ region; illustrations of the ‘critical region’
are shown in Fig. 2. This region is the site of the capture of resonant electrons by
the potential of the growing wave, in the classical vision of electrostatic instability,
and is analogous to the critical layer of fluid mechanics. The complete solution is

† By defining the new variables, t̃ = kt, x̃ = kx, ṽ = v − v∗ and f̃ (j) = f (j)/k2, where v∗
denotes the critical level of the neutral mode on the stability boundary, we may recast the
equations for general k into the form of the system with k = 1 and c∗(a0) = 0.
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found by matching the two different expansions over an intermediate matching
region, as in any matched asymptotic expansion.

3.2. The critical region

We rescale to resolve the critical region – the order ε region around v = 0:

v → εY, g(x, v, t)→ ε2Z(x, Y, T ), h(x, v, t)→ ε2W (x, Y, T ), (3.8)

G′0(v)→ εY G′′0∗ + · · · , G′1(v)→ G′1∗ + · · · , H ′1(v)→ H ′1∗ + · · · , (3.9)

where the ∗ subscript denotes the value at v = 0. The governing equations become,
to leading order,

ZT + Y Zx − 1
2ϕ2x(Z −W )Y = −Y G′′0∗ϕ2x −G′1∗ϕ2x,

WT + YWx + 1
2ϕ2x(Z −W )Y = Y G′′0∗ϕ2x −H ′1∗ϕ2x.

 (3.10)

Let 2z = Z −W and 2w = Z +W . Then,

zT + Y zx − ϕ2xzY = −Y G′′0∗ϕ2x − 1
2 (G′1∗ −H ′1∗)ϕ2x,

wT + Y wx = − 1
2 (G′1∗ +H ′1∗)ϕ2x = −κ1F

(2)
v∗ϕ2x.

 (3.11)

The first of these is a nonlinear partial differential equation that cannot be solved
in closed form, but must be solved numerically. The second relation is linear and,
given the form of ϕ2, has the solution,

w = −iκ1F
(2)
v∗

∫ T

0
[A(s)eix+iY (s−T ) + c.c.] ds. (3.12)

Below we require an integral of the solution over the critical region:

1
2π

∫ 2π

0

∫ ∞
−∞

w(x, Y, T )e−ix dY dx ≡ −iπκ1F
(2)
v∗A. (3.13)

3.3. The match

The final piece of the puzzle is to match the two parts of the solution over a matching
region, and then compute the integral determining ϕ3. The large Y behaviour of
z(x, Y, T ) and w(x, Y, T ) is given by

z ∼ −G′′0∗ϕ2− 1
2Y

(G′1∗−H ′1∗)ϕ2+
1
Y
G′′0∗ϕ2xT and w ∼ − 1

Y
κ1F

(2)
v∗ϕ2, (3.14)

and one can immediately match the inner and outer distribution functions. We next
define a solution for g to order ε3 that is uniformly valid over all v by using the
usual prescription, inner + outer −match. The integral of this construct gives

ε2
∫ ∞
−∞

g2(x, v, T ) dv + ε3P

∫ ∞
−∞

g3(x, v, T ) dv + ε3P

∫ ∞
−∞

[Z(x, v, T )− g2∗] dY +O(ε4),

(3.15)
where P indicates the principal value of the v-integral at v = 0, or the Y -integral



Saturation of electrostatic instability in two-species plasma 95

at ±∞ (as indicated by (3.14), Z − g2∗ ≡ z + w + G′′0∗ϕ2 decays like Y −1 for large
|Y |). Thence,

ϕ3xx = P

∫ ∞
−∞

g3(x, v, T ) dv + P

∫ ∞
−∞

[Z(x, Y, T )− g2∗] dY + Ψ3xx. (3.16)

Finally, we let z = ζ(x, Y, T ) − g2∗ (implying Z − g2∗ = ζ + w), and isolate the eix

component of (3.16):

iI0AT + I1A + Ψ̂3(T ) =
1
2π

P

∫ 2π

0

∫ ∞
−∞

e−ix(ζ + w) dY dx ≡ 〈e−ix(ζ + w)〉, (3.17)

where

I0 = P

∫ ∞
−∞

G′0
v2 dv, I1 = P

∫ ∞
−∞

G′1
v
dv (3.18)

and Ψ̂3(T ) is the relevant component of the forcing.

3.4. The modified single-wave model

We now summarize the results by quoting the complete set of equations after they
have been transformed into a canonical form. We use the scalings

T = τT ′, A = − 1
τ 2 e

iI1T/I0A′, ζ = −|I0|
τ 2 ζ

′, Y =
1
τ
Y ′ − I1

I0
, x = x′ − I1

I0
τT ′,

(3.19)
to find, after dropping the prime decoration,

ζT + Y ζx + ϕxζY = −βϕT − γϕx, (3.20)

ϕ = Aeix + c.c. and AT = i〈e−ixζ〉 − µA + χ(T ), (3.21)

where

β =
G′′0∗
|I0| , γ =

τ

|I0|
(
G′1∗ −H ′1∗

2
+
I1

I0
G′′0∗

)
and µ =

πκ1τF
′
2∗

I0
, (3.22)

and we have used the fact that I0 < 0 for our model equilibria; χ(T ) is a suitably
scaled forcing function. At this juncture, τ is still arbitrary; a convenient choice is
to fix this constant such that γ = ±1. Also, the transformation, ζ → −ζ, Y → −Y ,
A → A∗ and x → −x, changes β into −β but otherwise leaves the equations
unchanged. Thence, we may consider β as purely positive.

We impose the boundary and initial conditions: ζ ∼ O(Y −1) as |Y | → ∞,
ζ(x, Y, 0) = 0 and A(0) = 0. The first of these repeats the need to interpret the
critical region integral 〈e−ixζ〉 in terms of a principal value at its limits in Y . Be-
low, we solve the equations numerically, using a variant of the operator-splitting
scheme proposed by Cheng and Knorr (1976; see Balmforth et al. 2000). We choose
χ(T ) = 0.1iT exp(−50T 2), which corresponds to a certain potential function Ψ3;
the particular form of χ is computationally convenient, but not significant (it also
differs from the forcing function used in the numerical computations of Sec. 5).

Except for the term involving µ, this system is identical to the model one derives
for a single species, and is the canonical form of the single-wave model. Crucially
important in the model are the two terms, γϕx and βϕT , which arise from gradi-
ents of the background equilibrium profiles. The first of these terms is exclusively
responsible for instability in our canonical problem (see below). The formulation
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is therefore different to the approach taken by del Castillo-Negrete (1998) who
adopts β = γ = 0. Instead, del Castillo-Negrete follows the original development
of the phenomenological single-wave model (O’Neil et al. 1971; Onishchenko et al.
1971) wherein instability is introduced via an arbitrary initial condition ζ(x, Y, 0).
Here, we consider only the canonical problem.

The positive-ion effect, as gauged by µ, depends crucially on the sign of F (2)
v∗ /I0.

The positive ions are stabilizing when µ > 0, which is the case for our family of
model equilibria. The stabilization originates from Landau damping in the positive-
ion distribution. The destabilizing case, µ < 0, requires a gradient reversal such as
would be given by a bump on the tail of the positive-ion distribution (cf. Berk et al.
1999).

The model has an infinite number of conservation laws that it inherits from the
original equations: let q = ζ+β(ϕ−Y 2/2)+γY denote the total distribution function
within the critical region (satisfying qT +Y qx+ϕxqY = 0). Then, 〈F (q)〉 = constant,
for any function F (q) consistent with a convergent integral, which expresses Casimir
invariants. In addition, there are the global momentum and energy relations,

(〈Y ζ〉+ |A|2)T = −2µ|A|2 and
〈

1
2
Y 2
(
ζ − βϕ2

Y 2

)
− ϕζ

〉
T

= 2µ Im(A∗AT ),

(3.23)
which apply once the forcing function χ has turned off. The global momentum
condition proves useful below; Landau damping by positive ions enters explicitly
as a sink of momentum in this formula.

3.5. Single-wave dynamics

3.5.1. Linear dynamics. We pause momentarily to give a quick summary of the
linear theory. By dropping the nonlinear term, we find

ζ = −
∫ T

0
eix−iY (T−s)

(
β
dA

ds
+ iγA

)
ds + c.c., 〈e−ixζ〉 = −π(βAT + iγA),

(3.24)
from which it follows that

AT − πγ − µ
1 + iπβ

A =
χ(T )

1 + iπβ
. (3.25)

Once the forcing subsides, χ→ 0 and an exponential solution emerges:

A ∼ exp
[

(πγ − µ)
1 + π2β2 (1− iπβ)T

]
. (3.26)

The system is therefore unstable when πγ > µ. If µ > πγ, A decays exponentially
through Landau damping.

3.5.2. Near marginal stability. We now focus on cases with µ > 0 and γ = 1. First,
we take β = 0, which corresponds to G′′0∗ = 0 and requires that we perturb about
the state at the minimum of the stability boundary – the marginally stable pro-
file for all wavenumbers (see Fig. 2). The time series of A(T ) for several numerical
computations with different µ are shown in Fig. 3. The initial phase of the instabil-
ity is well predicted by the exponential growth of linear theory. This growth does
not continue indefinitely, and eventually the system passes into a second phase of
evolution in which the parameter µ plays a key role. For µ = 0, the mode ampli-
tude remains close to the initial saturation level, and persistent, irregular ‘trapping
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is exploited to double the resolution of the numerical computation) and A(T ) is purely
imaginary. The figure shows Ai(T ).

oscillations’ occur about some mean level. On the other hand, if µ� 0, the mode
amplitude declines beyond the initial maximum, with a decay that is roughly given
by exp(−µT ) (see Fig. 4), together with superposed trapping oscillations.

For the profile with G′′0∗ = 0, when we add the equilibrium correction, G1(v),
to create the bump, the critical region sits at the centre of the unstable, positive
gradient of the distribution function (Fig. 2). The destabilizing gradient is locally
linear and competes with the damping provided by the positive ions. However, as
the instability grows, it winds up the equilibrium profile of the electron distribution
into a pattern of vortex-like structures (the analogue of Kelvin cat’s eyes, or BGK
modes – Bernstein, Greene and Kruskal 1958); see Fig. 4. This action removes the
destabilizing gradients with the result that the mode amplitude begins to saturate.
However, the destruction of the destabilizing gradients is permanent (there is no
mechanism to restore the gradients once they are removed), but the damping of the
positive ions continues all the while. As a result, beyond saturation, the damping
takes greater effect and exacts its toll on the mode; |A(T )| thereby declines, as seen
in Fig. 3.

By this stage of the evolution, the shearing action of the basic electron velocity
spread in tandem with the winding of the cat’s eye generates fine scales in the distri-
bution function. Any spatial averaging (including finite resolution and dissipation
in the computation) removes much of this structure and in a coarse-grained sense
the distribution function becomes flat. This smoothing action is illustrated by the
x-average of q = Y + ζ(x, Y, T ), which is also shown in Fig. 4.

Despite the positive-ion damping, the mode amplitude does not decay completely.
Persistent, residual, trapping-like oscillations occur in A(T ), which can be traced
to the emergence of coherent secondary cat’s eye structures at the boundaries of
the well-mixed central region (see Fig. 4). The structures are counter-propagating
BGK waves and appear to emerge from a secondary instability of the distribution
function after it has been restructured by the unstable mode.
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Figure 4. The top panel shows the evolution of the mode amplitude for β = 0 and µ = 0.5.
The linear growth, exp(π − µ)T , and the decay trend, exp(−µT ), are also shown. The fol-
lowing panels show snapshots of the total distribution function inside the critical region,
q(x, Y, T ) ≡ Y + ζ(x, Y, T ), plotted as a density on the (x, Y )-plane with the greyscale indi-
cated. The times of the snapshots are 2, 3, . . . , 8, 10, 14, 18, 22 and 26 (and are indicated by
stars in the top panel). The final plots show the evolution of the x-average of q (as contours
on the (T, Y )-plane) and its initial and final profiles.
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3.5.3. Further from marginality. When β� 0, the distinguished neutral mode on the
stability boundary is centred either at the peak or the trough of the destabilizing
bump; for k = 1, the critical region surrounds the trough. Although the equilibrium
electron distribution is now locally parabolic within the critical region, the pattern
of evolution is similar to the case with β = 0: the mode amplitude grows to satu-
ration, and then declines due to the effect of the positive ions. Unlike β = 0, however,
A(T ) recovers and then oscillates about a finite value (see Figs 5 and 6). Again the
decline of the mode amplitude depends on µ (the decay is roughly exp(−µT )), but
the level to which the mode amplitude recovers appears to be independent of this
parameter.

Because the mode amplitude levels off for finite β, the main cat’s eye shrinks a
little, but survives. At the same time, the cat’s eye also begins to drift in Y , leaving
a mixed region in its wake. The drift permits the mode to access fresh unstable gra-
dients, which revives the instability and allows the cat’s eye to survive the positive-
ion damping. A complementary interpretation is provided by the global momentum
constraint: if |A| becomes roughly constant, 〈Y ζ〉 ∼ −2µ|A|2T . Moreover, because
q is simply rearranged by the dynamics, the resonant contribution, 〈Y ζ〉, can only
decrease indefinitely if the region over which ζ is nonnegligible and negative spreads
to larger Y with time. Thus, in order to sustain a finite-mode amplitude indefinitely,
the cat’s eye must continually drift; the computational solutions show drifts over
relatively long times, and we conjecture that such a secular evolution is the fate
of the system. Drifting coherent structures in two-species plasma simulations have
been observed previously by Berman et al. (1985, 1986) and Berk et al. (1999).

The overall dynamics of the unstable mode is therefore largely a transient one:
the mode grows, saturates, and then declines (there are some similarities with re-
sults presented by Berk et al. 1996, for a Vlasov equation with a simple linear
damping term). Ultimately, the decline halts as cat’s eye structures drift out of the
critical region and into the unstable gradients beyond. The mode amplitude can be
maintained indefinitely in this fashion because the quadratic background profile of
the single-wave model contains a semi-infinite region with positive gradients. How-
ever, this is not a property of the underlying bump-on-tail distribution, for which
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the unstable equilibrium gradients have a finite velocity range. Hence, in reality
the drift of the cat’s eye must eventually run out of steam and the system pass out
of the trapping regime. We comment further on this passage later when we solve
the two-species equations numerically.

4. Nonlinear theory in the ‘generic’ case, κ ∼ O(1)
We now repeat the nonlinear theory for the case where κ ∼ O(1). In this case, the
nonlinear dynamics of the positive ions enters into the problem and we no longer
find the single-wave model, but another whose scalings were predicted by Crawford
and Jayaraman (1996, 1999) and Hickernell (1984).

4.1. Regular expansion

The scalings and sequences are now

∂t → ε∂T , a = a0+ε, G(v) = G0(v)+εG1(v), H(v) = H0(v)+εH1(v),
(4.1)

and

g = ε5/2g5/2 + ε3g3 + ε7/2g7/2 + · · · , (4.2a)

h = ε5/2h5/2 + ε3h3 + ε7/2h7/2 + · · · , (4.2b)

ϕ = ε5/2ϕ5/2 + ε3ϕ3 + ε7/2ϕ7/2 + · · · , Ψ = ε7/2Ψ7/2, (4.3)

where H0�−G0. (We have freely altered the scaling of Ψ in (4.3) on the grounds
that this forcing is added solely as a device to excite the unstable mode.)

We develop the equations once again: at leading order (ε5/2), we find the neutral-
mode solution,

g5/2 = −G
′
0

v
ϕ5/2, h5/2 = −H

′
0

v
ϕ5/2 and ϕ5/2 = A(T )eix + c.c. (4.4)

In this instance, singularities occur at the critical point at leading order because
H ′0∗ � 0. We now recognize these problems as symptoms of a critical region sur-
rounding the critical point; we press on to higher order to discover the critical-region
scalings and to complete the outer solution.

At the following order (ε3),

g3 = −G
′
0

v
ϕ3 and h3 = −H

′
0

v
ϕ3, (4.5)

and at O(ε7/2),

g7/2 +
G′0
v
ϕ7/2 = −G

′
1

v
Aeix − G′0

v2 iAT e
ix + c.c.,

h7/2 +
H ′0
v
ϕ7/2 = −H

′
1

v
Aeix − H ′0

v2 iAT e
ix + c.c.

 (4.6)

It turns out that g3 = h3 = ϕ3 = 0; the correct critical-region scaling is therefore
once again v = O(ε). As we approach that region, h→ O(ε3/2), which partly guides
our inner expansion.
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4.2. The critical region

Inside the critical region, we set v = εY and pose the sequences,

g → Z(x, Y, T ) = ε2Z2 + ε5/2Z5/2 + · · · ,

h→W (x, Y, T ) = ε3/2W3/2 + ε2W2 + ε5/2W5/2 + · · ·

 (4.7)

The fields Z and W satisfy

ZT + Y Zx + 1
2ε
−2ϕx [(κ− 1)ZY + (κ + 1)WY ] = −ϕx(G′1∗ + Y G′′0∗ + · · ·) (4.8)

and

WT +YWx + 1
2ε
−2ϕx [(κ + 1)ZY + (κ− 1)WY ] = −ε−1ϕx(H ′0∗ + εH ′1∗ + εY H ′′0∗ + · · ·).

(4.9)
We turn the handle of the crank of perturbation theory: at order ε3/2,

W3/2T + YW3/2x = −H ′0∗(iAeix + c.c.), (4.10)

giving,

W3/2 = −iH ′0∗$eix + c.c., $(Y, T ) =
∫ T

0
A(s)eiY (s−T ) ds, (4.11)

if W3/2(x, Y, 0) = 0. Note that
∫∞
−∞$(Y, T ) dY = πA and $ ∼ −iY −1A for large

|Y |, or equivalently W3/2 ∼ −Y −1H ′0∗ϕ5/2 ≡ −εv−1H ′0∗ϕ5/2.
At O(ε2), we have

Z2T + Y Z2x = −κ + 1
2

W3/2Y (iAeix + c.c.) (4.12)

and

W2T + YW2x = −
(
κ− 1

2
W3/2Y +H ′0∗

)
(iAeix + c.c.), (4.13)

with the solution,

Z2 =
κ + 1

2
H ′0∗J and W2 =

κ− 1
2

H ′0∗J −H ′0∗∂x
∫ T

0
ϕ3(x + Y (s− T ), s) ds,

(4.14)
where

J(x, Y, T ) = J0(Y, T ) + [J2(Y, T )e2ix + c.c.], (4.15)

J0 =
∫ T

0
[A(s)$∗(Y, s) +A∗(s)$(Y, s)]Y ds, (4.16a)

J2 = −
∫ T

0
e2iY (s−T )[A(s)$(Y, s)]Y ds. (4.16b)

Note that
∫∞
−∞ J(x, Y, T ) dY = 0 and Z2 ∼ O(Y −3) = O(ε3v−3) for large |Y |.

Lastly, at O(ε5/2),

Z5/2T + Y Z5/2x = −
(
κ− 1

2
Z2Y +

κ + 1
2

W2Y +G′1∗ + Y G′′0∗

)
(iAeix + c.c.)

− ϕ3x
κ + 1

2
W3/2Y , (4.17)
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and

W5/2T + YW5/2x = −
(
κ + 1

2
Z2Y +

κ− 1
2

W2Y +H ′1∗ + Y H ′′0∗

)
(iAeix + c.c.)

− ϕ3x
κ− 1

2
W3/2Y − ϕ7/2xH

′
0∗. (4.18)

Only the solution for Z5/2 is required in what follows and this is

Z5/2 = −G′′0∗ϕ5/2 +
∫ T

0
eiY (s−T )

[
G′′0∗As − iAG′1∗ −

κ2 − 1
2

(iAJ0Y − iA∗J2Y )
]
ds.

(4.19)
We also now see that Z ∼ −ε5/2G′′0∗ϕ5/2 and W ∼ −ε5/2v−1H ′0∗ϕ5/2 as we move out
of the critical region, which matches straightforwardly with the inner limit of the
outer solution.

4.3. The amplitude equation

Once again, we construct the integral for ϕ by defining another uniformly valid
solution. This time,

ϕxx −Ψxx = ε5/2
∫ ∞
−∞

g5/2 dv + ε3
∫ ∞
−∞

g3 dv

+ ε7/2
[

P

∫ ∞
−∞

g7/2 dv + P

∫ ∞
−∞

(Z5/2 − Y g5/2∗) dY
]
. (4.20)

The O(ε5/2) terms reproduce the neutral stability condition. At order ε3, we find
that ϕ3xx +ϕ3 = 0. The nontrivial solution describes a redundant correction to the
amplitude of the neutral mode, and so we may take ϕ3 = 0, which further implies
that g3 = h3 = 0, as remarked earlier.

At order ε7/2, we arrive at the relation,

I0AT + iI1A + Ψ̂7/2 = 〈e−ix(Z5/2 − Y g5/2∗)〉, (4.21)

after projection onto the fundamental wavenumber, where Ψ̂7/2 is the projection of
the external forcing. Finally, we introduce the explicit solution for Z5/2, leading to
the nonlocal amplitude equation,

AT =
i(I1 + iπG′′0∗)
(I0 + iπG′1∗)

A

− π(1− κ2)H ′0∗
(I0 + iπG′1∗)

∫ T/2

0

∫ T−s

s

s2A(T − s)A(s′)A(s′ − s) ds′ ds + χ(T ), (4.22)

with χ(T ) again a suitable forcing function. This equation can be scaled into a
standard form in order to eliminate some of the distracting constants.

In form, (4.22) is identical to the nondissipative version of the equations derived
by Hickernell (1984), Goldstein and Leib (1989) and Berk et al. (1996). The analysis
of the equation presented by Goldstein and Leib reveals the unappealing feature
that the solution does not saturate. In fact, once nonlinearity comes into play, the
growth of the mode accelerates and diverges in finite time. The divergence of the
solution is approximately given by

A = C(Ts − T )−5/2 exp i[θ − σ log(Ts − T )] (4.23)

(Goldstein and Leib 1989), where Ts is the time of divergence, θ is an arbitrary
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phase, and C and σ are real constants that are determined by the relations,

C2 =
σ(5 + 2i)(I0 + iπG′1∗)
2π(1− κ2)H ′0∗D(σ)

, D(σ) =
∫ ∞

1

∫ ∞
v

(v − 1)2 du dv

[uv(u + v − 1)]iσ+5/2
. (4.24)

The amplitude equation cannot therefore capture the saturation of the insta-
bility, and merely describes a transient in the evolution. The divergence of A(T )
predicted by (4.22) is, of course, unphysical, and simply reflects the passage of the
mode amplitude out of the asymptotic regime. For this reason, we do not solve the
amplitude equation in detail, and instead refer the reader to the previous articles.
The failure of the amplitude equation to predict the saturation level is disappoint-
ing, and we turn to numerical computations to resolve the issue in the next section.
Interestingly, the singular solution is constructed by dropping the linear term in
(4.22), and thus exists even if the equilibrium is stable, implying the existence of
finite-amplitude, subcritical instability (see also Berk et al. 1999).

5. Numerical computations
We complement the asymptotic theory with a series of numerical computations.
We solve the two-species equations (2.1) and (2.2) using another operator-splitting
algorithm (Cheng and Knorr 1976). We select the computational domain, 0 6 x 6
2π and −4 6 v 6 4, and an initial condition given by an equilibrium profile of the
form (2.3). The disturbance is introduced by forcing the electric field potential with
a term, F0te

−10t2 cosx, where F0 is a small constant (typically taken to be 10−3).
We used various resolutions depending on the computations performed. The shorter
runs used to estimate the amplitude at which nonlinearity became important had
64 grid points in x (32 Fourier modes) and up to 2000 gridpoints in v. The longer
runs that explored the saturation process typically had approximately 512 and 2000
gridpoints in x and v, respectively. Overall, we attempted to minimize integration
and resolution errors wherever possible by taking sufficiently small timesteps and
fine grids. However, a key feature of the dynamics is a continual production of
increasingly fine spatial scales, which eventually results in resolution error. Thus,
whilst we have confidence in the shorter-time computations, the results at long
times are less reliable. At those late times, the computations are underresolved
and an artificial dissipation operates (Cheng and Knorr 1976) that is difficult to
quantify and control. This is especially unsatisfying because the ultimate fate of
the system is not revealed until such times, and we had no choice but to use the less
reliable runs to explore the late stages with resolutions of (128× 2000) gridpoints.

5.1. Scaling data

The disturbance introduced in the potential excites the unstable normal mode which
grows exponentially until nonlinear effects come into play. To measure the ampli-
tude of the disturbance, we use the quantity

Φ(t) =
[

1
4π

∫ 2π

0
ϕ2 dx

]1/2

=

[ ∞∑
n=1

|ϕ̂n(t)|2
]1/2

, (5.1)

where ϕ̂n(t) denote the Fourier mode amplitudes of ϕ. When the spectrum is domi-
nated by the longest, single wave, Φ ≈ |ϕ1| ≡ |A|. Typical time series of Φ(t) are
shown in Fig. 7, and illustrate the termination of exponential growth and the onset
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Figure 7. Sample time series of the amplitude measure, Φ(t), for k = 1. In (a), κ = 0.01 with
a = 0.19 (dashed), 0.22 (dotted) and 0.25 (solid). In (b), κ = 0.5 with a = 0.22 (dashed),
0.2275 (dotted) and 0.24 (solid). The stars indicate the measurements of Φm.

of trapping oscillations. The oscillations reflect nonlinear effects and so we estimate
the amplitude threshold for which nonlinearity becomes important by measuring
the level of the first peak in the time series, Φm (see Fig. 7). For κ = 0.5, saturation
does not occur beyond the first maximum, unlike at κ = 0.01.

In Fig. 8 we plot Φm against both the distance to the stability boundary, a− a0,
and the growth rate of linear theory, η ≡ ci. The peak amplitude scales with
either a − a0 or η in accordance with the predictions of the asymptotic theory:
Φm ∼ (a − a0)2 for κ ∼ (a − a0) or smaller, and Φm ∼ (a − a0)5/2 for κ� (a − a0).
Note the distinctive crossover in scaling when (a− a0) is slightly less than κ.

Also included in Fig. 8 is the corresponding data for the single-species case, κ = 0.
This case permits a simple comparison with the single-wave model, and is obtained
as follows. From the single-wave model with the appropriate value of β (which is
approximately 0.4 for k = 1), we compute the amplitude of the first maximum in
|A(T )| (cf. Fig. 5). With the scalings of Sec. 3.4, we then reconstruct the original
Φm. An analogous comparison for 0 < κ� 1 entails time-consuming computations
with many different values for µ which we have not performed. Instead, we opt for
detailed comparisons of a few computations, as given below.
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Figure 8. Scaling data for κ = 0.01 and 0.5. k = 1. Plotted is the amplitude of the first
peak in Φ(t) (the quantity defined in (5.1)), denoted by Φm, versus either the distance to the
stability boundary, a−a0, or the linear growth rate, η = kci. The trends of the trapping and
singular scalings are shown by dotted and dashed lines, respectively. In panel (c), we show
the corresponding result for κ = 0, together with the scalings predicted by the single-wave
model (solid lines).
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Figure 9. Time series of Φ(t) for (a) k = 0.626, a = 0.1111 and a = 0.12, and (b) k = 1,
a = 0.208 and a = 0.23 (κ = 0.01). In each case, the results are compared with the pre-
dictions of the modified single-wave model. In (a) β = 0 and µ = 0.5 and 0.25, and in
(b) β = 0.4 and µ = 0.25 and 0.15. The corresponding normal-mode eigenvalues in (a)
are cnum = 1.777 + 0.0107i and 1.762 + 0.0242i (computed numerically from the dispersion
relation), in comparison to cswm = 1.777 + 0.0112i and 1.761 + 0.0261i (calculated by recon-
struction from (3.26)). In (b), cnum = 1.523 + 0.0167i and 1.501 + 0.0307i, in comparison to
cswm = 1.516 + 0.0178i and 1.509 + 0.0278i.

5.2. Heavy ions

Some further details of solutions with κ� 1 are shown in Figs 9 and 10. The first
figure compares Φ(t) with the corresponding result reconstructed from the mode
amplitude |A(t)| of the modified single-wave model; the time series agree qualitat-
ively, at least for shorter times. Also compared in the caption are the corresponding
normal-mode eigenvalues computed numerically from the dispersion relation and
analytically from the single-wave model. The main source of disagreement arises
because we cannot take a−a0 to be too small (which is where the weakly nonlinear
theory is most accurate) whilst remaining within the single-wave regime for κ =
0.01.

Snapshots of the electron distribution function for κ = 0.01, a = 0.24 and k = 1
are shown in Fig. 10. The magnification of the critical region illustrates how the
distribution twists up into a localized cat’s eye structure, which drifts to larger v
over longer times, exactly as predicted by the single-wave model. By the time of the
final snapshots, however, the cat’s eye has drifted out of the regime of that model.

Although the results are less reliable, we continue the computations to longer
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Figure 10. For caption see facing page.
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Figure 10 (cont.). The top panel (on facing page) shows an initial electron distribution for
a = 0.24, k = 1 and κ = 0.01, plotted as a surface above the (x, v)-plane. Displayed next are
five snapshots of magnifications of the distribution in the vicinity of the critical region at
t = 140, 200, 300, 1000 and 2000. The evolution of the mode amplitude Φ(t) is shown above
(the stars indicate the times of the preceding snapshots).

times in order to uncover what happens when the cat’s eye reaches the peak of the
destabilizing bump. As shown in Fig. 11, the drift peters out and the trapping os-
cillations in Φ(t) become more irregular, occasionally bursting to higher amplitude.
The bursts appear to be connected with the formation of secondary vortical struc-
tures in the wake of the main cat’s eye (see the first panel of Fig. 11), and persist
whilst the main vortex interacts strongly with the peak. Ultimately, however, the
mode enters a protracted final decline that we attribute to the continued Landau
damping by the positive ions, which remain largely undisturbed throughout (see
the final snapshot of the positive-ion distribution in Fig. 11). By this time, the elec-
tron distribution is significantly rearranged, although a nonmonotonic remnant of
the bump still survives.

5.3. Comparable ion masses

Now we turn to the singular case. In Figs 12 and 13 we show results from a compu-
tation with k = 1, a = 0.25 and κ = 0.5. As anticipated from the diverging, nonlocal
amplitude equation, the mode amplitude reaches a first maximum that is merely
a temporary interruption of the linear growth and is much smaller than the max-
ima reached somewhat later. The mode amplitude eventually settles into a train
of erratic oscillations. Early in the computation, the amplifying disturbance again
begins to twist up the distribution inside a localized region contained within the
unstable gradients of the electron distribution function. Unlike in the single-wave
case, however, the thickness of this region continues to grow, and the nucleated
structures drift rapidly in velocity. Notably, a vortex-like hole in the electron dis-
tribution passes through the bump near t = 1000 (Fig. 12), and the x-averaged
distribution becomes significantly flattened at later times. Simultaneously, there is
some crenellation of the positive-ion distribution (Fig. 13), though the effect is far
less spectacular.

A suite of longer-time computations are shown in Fig. 14. Despite the different
parameter values in each of the computations, the final states of the computations
are all quite similar, consisting of a significantly flattened x-averaged electron dis-
tribution with an erratically varying mode amplitude. Figure 14 reveals the rather
surprising result that characteristic measures of Φ(t) do not scale in a clear way with
the distance to the stability boundary. For example, both the maximum amplitude
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Figure 11. Magnifications of the electron distribution in the vicinity of the critical region at
t = 5000, 10 000 and 20 000, for the continuation of the computation shown in Fig. 10. The
evolution of the mode amplitude Φ(t) is shown below (by a dotted line; the stars indicate
the times of the snapshots and the solid line shows a running average over 1000 time units)
together with the magnification of the positive-ion distribution at t = 20 000. a = 0.24, k = 1
and κ = 0.01.
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Figure 12. A computation with a = 0.25, k = 1 and κ = 0.5. The evolution of the mode
amplitude, Φ(t), is shown in the top panel. Below are displayed four snapshots of the electron
distribution in the vicinity of the critical region at t = 200, 300, 500 and 1000.

reached during the computations and the typical mean level at later times are
comparable in all the cases, and, in fact, depend nonmonotonically on a − a0 (the
computations with intermediate values for a− a0 have the lowest final mean level,
and at k = 0.728 425, the computation nearest the stability boundary reaches the
largest maximum amplitude). Therefore, even though the singular scaling correctly
predicts the onset of nonlinearity, we are unable to provide a scaling law that pre-
dicts the typical amplitude level beyond that onset, at least using the electric field.

Evolution over an even longer timescale is shown in Fig. 15 for a = 0.25. This
illustrates a further surprising result that the mode amplitude does not eventually
decline, but looks to converge to a finite value. Therefore, the damping effect of the
positive ions must somehow be arrested at larger κ. A glance at the final snapshot of
the distribution functions reveals why the Landau damping becomes ineffective: the
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Figure 13. Four snapshots of the positive-ion distribution in the vicinity of the critical
region at t = 200, 300, 500 and 1000 for the computation shown in Fig. 12.

positive-ion distribution twists up into independent cat’s eyes (unrelated secondary
structures are visible in both distributions). The winding action of the cores of
these structures removes the gradients that Landau damps the negative ions, and
leaves a staircase structure in the x-average. Moreover, the structures appear where
the negative-ion distribution has already been flattened, negating any effect the
electrons might otherwise have.

6. Discussion
In this article we have considered the nonlinear dynamics of two-species electro-
static instabilities. The central issue is how the saturation level of the instability, as
measured in the electric field, Asat, varies with the distance to the stability bound-
ary, ε (or, equivalently, the growth rate). Previous studies had presented conflicting
answers to this problem, predicting three different scaling laws: Asat ∼ εα, with
α = 1

2 (Hopf), 2 (trapping) or 5
2 (‘singular’, as we have termed it), and a depen-

dence on κ = |(e2m1)/(e1m2)|, a dimensionless combination of the two charge-mass
ratios. Our results shed further light on the correct saturation level for ideal plas-
mas with periodic spatial boundaries, subject to a classical bump-on-tail instability.
Specifically, none of the scalings accurately predict the saturation amplitude. By way
of conclusion, we summarize our findings in detail.

When κ = 0, the correct scaling law is trapping (as already indicated by Crawford
(1995) and del Castillo-Negrete (1998)). At a level predicted by this scaling, the
instability saturates and trapping oscillations occur in the mode amplitude. The
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Figure 14. The mode amplitudes, Φ(t), for a sequence of runs with different a and two
values for k: (a) k = 1 and (b) k = 0.728 425 (the second k-value characterizes equilibrium
profiles that limit to the minimum of the stability boundary for κ = 0.5). In (a), the runs
have a = 0.217, 0.222 and 0.231. In (b), a = 0.18, 0.185 and 0.195. The dotted line shows
the actual amplitude, and the solid line and dots show a running average (over 150 time
units). In each case, the curves are offset for the sake of clarity; the value of a decreases as
one moves up the curves (the weakening of the linear instability is seen as the increasingly
delayed emergence of the mode).

main effect on the distribution function is localized within a narrow velocity range
surrounding the pattern speed of the unstable mode (the critical region) that is far
narrower than the scale of the bump.

If κ is small (order ε or smaller), nonlinearity again becomes important at the
trapping scaling, and the main effect of instability is once again confined to a narrow
critical region. Thereafter, the mode amplitude subsides due to Landau damping
by positive ions, but then enters a quasi-steady regime in which the critical region
slowly expands as vortex-like structures embedded in the distribution function drift
in velocity. Ultimately, the affected region spans a far larger velocity spread than
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Figure 15. Magnifications in the vicinity of the critical regions of the electron and positive
ion distributions at t = 20 000 for κ = 0.5 and a = 0.25 (the continuation of the computation
shown in Fig. 12). The x-averages are also shown, together with the equilibrium profiles. The
lowest panel shows the time series of Φ(t) (dotted line), including a running average (over
200 time units; solid line).

expected from the trapping scaling, and the destabilizing bump is substantially
eroded. At that stage, bursting, erratic trapping oscillations occur, but eventually
the mode amplitude enters a final decline.

For larger values of κ, nonlinearity first comes into play with the singular scaling
α = 5

2 , but this is not the saturation level, and the mode continues to grow. The
disturbance still remains confined to a critical region. However, that region evolves
rapidly and spreads quickly, halting when the disturbance spans a region envelop-
ing the destabilizing bump. The typical electric field amplitude at this stage has an
unobvious dependence on ε, and we find no clear scaling law for the level of satu-
ration. Unlike the dynamics at small κ, the mode may survive for long times due
to the rearrangement of the positive-ion distribution and the creation of secondary
vortical structures in that distribution.
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Overall, we are unable to characterize the dynamics by a single-amplitude scaling
based on the electric field: depending on the size of κ, the system passes through
several stages, each with its own characteristic measure of mode amplitude. A bet-
ter estimate for the strength of the instability is based not on the electric field,
but on the conclusion that the mode eventually suppresses much of the nonmono-
tonic profile of the x-averaged electron distribution, f (1), over the bump region. For
example, consider the change to the particle kinetic energy as t→∞:

〈v2(f (1)−F (1))〉 ≡
∫ 2π

0

∫ ∞
−∞

v2[f (1)(x, v, t)−F (1)(v)] dv
dx

2π
∼


ε Hopf
ε3 trapping
ε7/2 singular
ε3/2 actual,

(6.1)

where ε is the customary distance to the stability boundary, but ε measures the
peak-to-trough size of the bump, which in turn implies that the velocity spread of
the bump region is O(ε1/2). (Only for κ = 0 and at the minimum of the stability
boundary is it true that ε = ε.) The estimate for the Hopf scaling is based on a
nonlinear perturbation of amplitude ε1/2 covering an order of unity velocity spread
(the usual dissipative estimate, with no critical-layer structure, for which the in-
stability affects the mean at order ε). The trapping and singular scaling estimates
follow because the critical region has width ε and disturbance amplitude ε2 or ε5/2.
Neither of these correctly estimate the strength of the instability because the dis-
tribution is significantly rearranged over the region of the bump, leading to a quite
different result, ε3/2.

A crucial ingredient is therefore that the strength of the mode is measured by the
shape of the initial electron profile, rather than the distance to the stability bound-
ary. This premise is somewhat similar to Gardner’s ideas concerning the energy
available to the electric field through rearrangements of the electron distribution,
which follow from a consideration of the energy conservation law (Gardner 1963).
For our particular form of the the two-species problem, energy conservation can
be written as

1
2
〈v2f (1)〉 +

1
2κ
〈v2f (2)〉 +

1
2

∫ 2π/L

0
ϕ2
x

dx

2π
= constant, (6.2)

once the forcing potential has been turned off. Gardner’s argument proceeds by
observing that, since f (1) can only be rearranged by the dynamics, there is a mini-
mum possible kinetic energy contained in the electrons, 〈v2fR〉/2. The function
fR(v) is obtained from a suitable rearrangement of the initial electron distribution,
F (1)(v), which preserves the area of phase space and makes that distribution mono-
tonic in v > 0. Thus, provided the initial perturbations about the equilibrium state
introduced by the external forcing are small,

1
2κ
〈v2(f (2) −F (2))〉+ 1

2

∫ 2π/L

0
ϕ2
x

dx

2π
≈ 1

2
〈v2(F (1) − f (1))〉 6 1

2
〈v2(F (1) − fR)〉. (6.3)

Moreover, since F (2) is already monotonic for v > 0, any rearrangement of the
positive ions can only add to the kinetic energy contained in that species. Hence,

1
2

∫ 2π/L

0
ϕ2
x

dx

2π
6 1

2
〈v2(F (1) − fR)〉. (6.4)



116 N. J. Balmforth and R. R. Kerswell

We may regard the right-hand side of this inequality as the total free energy avail-
able to the system from the electrons. As the instability develops, this energy is
tapped and becomes divided between the electric field energy and the kinetic en-
ergy of the positive ions. Our estimate for the saturation level is also bounded by
this free energy, but is clearly of the same order.

Of course, the time required to reach the state characterized by the alternative
scaling does depend strongly upon ε, because this parameter controls both the linear
growth phase, the onset of nonlinear effects and the drift and expansion of the
critical region. The new scaling further implies nontrivial subthreshold dynamics,
since bumps can still exist in linearly stable electron distributions when k is suitably
chosen. Such dynamics is also evident from the singular solution to Hickernell’s
amplitude equation (which exists regardless of the sign of the linear growth rate).
Indeed, using a suite of numerical computations, we verified that the two-species
system is unstable to finite-amplitude perturbations even in the stable regime.

Subthreshold phenomena in two-species plasma has previously been observed by
Berman et al. (1985, 1986). Morrison (1987) suggested that this could be the signa-
ture of the nonlinear instability of a linearly stable Hamiltonian system. However,
we observe a subcritical transition that requires a threshold initial amplitude (see
also Berk et al. 1999). We conjecture that nonlinear instability, if it occurs, requires
a quite different initial excitation of the system, notably one that changes the
x-averaged distribution function (and therefore the reference equilibrium state).
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